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Abstract

In this paper we report the use of discriminative training
and other techniques to improve performance in a HMM-
based isolated handwritten character recognition system.
The discriminative training is Maximum Mutual Informa-
tion (MMI) training; we also improve results by using com-
posite images which are the concatenation of the raw im-
ages, rotated and polar transformed versions of them; and
we describe a technique called block-based Principal Com-
ponent Analysis (PCA). For effective discriminative training
we need to increase the size of our training database, which
we do by eroding and dilating the images to give a three-
fold increase in training data. Although these techniques
are tested using isolated Thai characters, both MMI and
block-based PCA are applicable to the more difficult task of
cursive handwriting recognition.

1. Introduction

In this paper we report experiments on a HMM-based
system for Thai character recognition. Although HMMs
are not always the method of choice for isolated character
recognition, they are generally used for cursive character
recognition and the techniques we report here should be ap-
plicable in that case. We apply discriminative training using
the Maximum Mutual Information (MMI) criterion, based
on a previously described implementation with the use of
lattices. Such an implementation is intended for continu-
ous speech recognition and also applicable to cursive hand-
writing recognition. We describe a novel approach to PCA,
which we call block-based PCA. This applies PCA to small
overlapping sections of the vertical frame independently.

We also obtain considerable improvements by using
“composite images,” in which the image is concatenated
with a rotated and polar transformed version of itself.

Section 2 explains the MMI criterion and describes the
techniques used to optimise it; Section 3 describes how
composite images are obtained from the raw images; Sec-
tion 4 describes block-based PCA; Section 5 describes the
training data and how it was obtained; Section 6 describes
the baseline system and experimental conditions; Section 7
gives experimental results; and conclusions are presented in
Section 8.

2. Maximum Mutual Information training of
HMM parameters

In Maximum Likelihood (ML) training, we maximise
the likelihood of the training data given the training tran-
scriptions, i.e.

FML(λ) =
R∑

r=1

log pλ (Or|sr) , (1)

whereλ is the HMM parameters,Or is the observed data
for ther’th training file, andsr is the correct transcription
of ther’th file (just a single character in this case).

The Maximum Mutual Information (MMI) criterion is
the posterior probability of the correct transcription, so:

FMMI(λ) =
R∑

r=1

log
pλ (Or|sr)

κ
P (sr)κ∑

s pλ (Or|s)κ
P (s)κ

. (2)

The summation
∑

s in the denominator is a summation over
all possible sentences (characters in this case), or in practice
only the most likely ones. The scaleκ, which will typically
be less than one (e.g. in the range1

10 to 1
20 ), is a scale on

the log likelihoods which enables more sentences to com-
pete with the correct sentence.P (s) are the language model
probabilities, which are not discriminatively trained. Ex-
periments in large vocabulary speech recognition [5] have
shown that scaling probabilities is essential for good test set
performance. In experiments reported here we useκ=0.1.



Our implementation uses the Extended Baum-Welch
(EB) formulae to optimise the HMM parameters, and rep-
resents the most likely competing sentences by “lattices”
which in this case just include the 5 most likely characters
derived from N-best recognition using a baseline HMM set.
See [4] and [5] for a more complete description of the opti-
misation methods used to train the HMM parameters.

Discriminative training is more sensitive to the amount
of training data than is ML training, as is clear from the re-
sults presented in [5] and in this paper. We augment our
training data by eroding and dilating each training image to
give a threefold increase in training data, and this improves
discriminative training results. Dilation and erosion are two
basic operators for image morphology which are used to
respectively enlarge and erode away the boundaries of re-
gions of foreground (black) pixels. We used a kernel with
3×3 pixels with origin in the center for the dilation opera-
tion and the kernel with 2×2 pixels with top-left origin for
the erosion operation.

In [1], discriminative training (MCE in that case) was
also applied successfully to character recognition. More
improvement was obtained (33% relative difference for the
best system reported there, relative to 25% in our case) but
this is expected since there are about 1000 training exam-
ples per character, whereas in this case only 60 are avail-
able which are augmented to 180 by adding an eroded and
dilated version of each image (although this is not the same
as 180 independent examples).

3. Composite images

We obtain a large relative improvement of up to 33% de-
pending on experimental conditions, by using a composite
image. The image is concatenated with a90◦ rotation of
itself, and a polar transformed version of itself.

The polar transformation, similar to the log-polar trans-
form [2] widely used in computer vision research, is a con-
formal mapping from points in imagef(x, y) to points in
the polar imageg(r, θ). We adapt this by defining an ’ori-
gin’ O = (ox, oy) given by the centroid(ox = x̄, oy = ȳ)
of the image. Definingd as the maximum distance between
O and all pixels inf , the mapping is described by

r =

√
(x− ox)2 + (y − oy)2

d
(3)

θ = arctan
(

y − oy

x− ox

)
(4)

The maps are then normalised to the size of 64×64 pixels.
An example of a polar transformed image is given in Fig.
1(b) and a rotated image in Fig. 1(c). The original image
and the two transformed images give similar recognition re-
sults individually, but when concatenated into a composite
image as in Fig. 1(d) they give substantial improvements.

As can be seen from the results in Table 1, the compos-
ite image technique gives an improvement in recognition
results ranging from about 11% to 33% depending on the
feature vectors used.
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Figure 1. Samples of transformed character
images: (a) size-normalised image, (b) polar
transformed image, (c) 90 ◦ rotated image and
(d) composite image.

4. Feature vectors and block-based PCA

In our experimental setup the raw images to be processed
into features are size-normalised to give images of a con-
stant heightH (64 pixels in this case). The baseline method
for processing these images into a sequence of feature vec-
tors is to use each vertical column of pixels as the feature
vector (Fig. 2(a)).

The simplest application of PCA is to project the first
d principal components of theH-dimensional pixel vector
into ad-dimensional vector, which is referred to as standard
PCA technique. In [3], higher-resolution images were avail-
able so average blackness values for cells of pixels were in-
put into their PCA rather than the single pixels.

In block-based PCA we start with a block of the image,
which will typically be a tallw ×H block of pixels with a
small widthw (e.g. 1 . . . 4). This is divided vertically into
overlapping sub-blocks of heighth (e.g. 16), with succes-
sive sub-blocks moving by a vertical offsetov (e.g.8) until
they cover the entire vertical height (Fig. 2(b)). For exam-
ple, with sub-blocks of height 16 separated by an offset of 8
we would need 7 sub-blocks to cover a block of height 64.

PCA is then applied to each of thew × h sub-blocks to
reduce its dimension to a small dimensiond′. The vectors of
sized′ from the sub-blocks are concatenated to form a fea-
ture vector of sized. In our implementation each sub-block
has its own matrix to extract the principal components, cal-
culated from the covariance of that sub-block in the training
data.

In all experiments reported here, the successive feature
vectors are obtained by shifting the horizontal position by 1
each time and repeating the analysis. For generality, we can



express this as a horizontal offsetoh, with oh = 1 in this
case.

To summarise: aw ×H block of the image is broken to
w × h subblocks separated by a vertical offsetov, and each
sub-block is projected by PCA tod′ dimensions. These are
concatenated for all the1 + H−h

ov
subblocks to make a final

vector of sized.

Figure 2. Difference between (a) vertical
columns of pixels where normal PCA was
applied, and (b) sub-blocks of the vertical
columns where block-based PCA was ap-
plied.

5. Data and recognition task

The Thai written language consists of isolated characters
that cannot be written as a cursive script, and Thai charac-
ters are difficult to recognise as there are 77 of them includ-
ing tone marks and numbers, with some characters looking
quite similar (Fig. 3).

 

(a)                           (b)                         (c) 

Figure 3. Samples of three different Thai
characters with unconstrained writing style:
Character (a) gor-gai, (b) tor-thung and (c) por-
sam-pao.

At present there is no publicly available database of Thai
handwriting. We established a database of Thai characters
with unconstrained writing style collected from twenty na-
tive writers who were instructed to write characters in a spe-
cially prepared form. Writers were instructed to write in an
unconstrained style, resulting in a wide variety of styles (see
Figure 4).

The database has 120 samples from each character for
each of the 20 writers. Currently it is divided into train-
ing and testing databases of equal size, by including half

Figure 4. Example of handwritten characters.

the samples from each writer in the training database and
half in the testing database. The character images are ex-
tracted from the boxes in the form by Connected Compo-
nent Analysis (with manual intervention for where the char-
acters overlap the margins of the boxes), and the aspect ra-
tios and sizes of the resulting images are normalised to give
bi-level images of 64×64 pixels.

64 of the 77 characters are so-called “baseline” charac-
ters (analogous to letters and numbers) and 13 are “non-
baseline” characters which appear above and below charac-
ters (these are tone marks, above and below vowels).

6. Experimental conditions

HMMs are trained and tested using the HTK toolkit (a
toolkit primarily used for speech recognition), with addi-
tional software which we use to prepare the feature vector
sequences from the images and to train models using MMI.

The testing setup is based on the notion that one would
have prior information (from the positions of the characters)
which characters are baseline characters and which appear
above and below the baseline characters. The 63 baseline
characters are recognised with a single word net with equal
“language model” probabilities, and the 11 non-baseline
characters have their own word net again with equal proba-
bilities.

The HMMs use a left-to-right topology, in which each
state has a transition to itself and the next state. HMMs
for each character have 50 states, which has been found
to be approximately the optimal number of states for the
raw image and close to the optimal number for the compos-
ite image. HMM states have diagonal Gaussian probability
density functions (pdfs), with no parameter tying.

For MMI training we use the probability scaleκ=0.1, and
the constantE which controls speed of optimisation in the
Extended Baum-Welch (EB) equations is set to1 (see [5]
or [4] for an explanation of the setup for optimisation). The
lattices required to encode the most likely competing hy-



potheses are generated from the output of N-best recogni-
tion using the 5 most likely outputs from recognition of the
training file; training using these lattices this gives almost
identical recognition results to training using a lattice con-
sisting of all characters. The N-best recognition is repeated
on each iteration of training. MMI training starts from an
ML-trained HMM. Results are given after 10 iterations of
EB optimisation.

7. Experimental results

7.1 Feature extraction and image concatenation

Initially, experiments were performed using ML estima-
tion only to investigate feature extraction methods. Experi-
ments are performed using both raw images, and composite
images obtained as described in Section 3.

Table 1. Recognition results on different fea-
tures with ML trained system.

Results are given in Table 1. In all cases composite im-
ages give better results than raw images, the relative im-
provement varying between 11% and 33%. In addition
block-based PCA consistently gives better results than stan-
dard PCA. Standard PCA baselines are also given for a
block with a width of 4, for comparability with block-based
PCA.

Comparing block-based with standard PCA, forw = 1
there is an improvement of 23% or 19% with the raw and
composite images respectively, and withw = 4 an improve-
ment of 19% or 3.8%. The PCA baseline forw = 4 consists
of doing PCA on all of the pixel values in the64× 4 block.

There is a difference between the raw and composite im-
ages in the relative advantage of using raw pixels or PCA.
PCA usually gives a degradation for the raw image but an
improvement for the composite image. This is probably re-
lated to the fact that we used a constant number of HMM
states for both types of image, while the composite image
is 3 times more complex. PCA may be more suitable where
there are relatively few states relative to the complexity of

the image. Although these results do not find a consistent
benefit from PCA relative to pixels, block-based PCA does
give better results than PCA in all cases.

7.2 MMI training

Table 2. Recognition results on testing set of
MMI training.

Table 2 gives ML and MMI test set results for the block-
based PCA features. Results are given both for the basic
training set (60 samples per character) and the augmented
training set (180 samples per character) obtained by erod-
ing and dilating each training image. The extra data only
slightly improves ML results (2.6% relative) but gives a
considerable improvement for MMI (11% relative). Thus,
augmenting the training data makes much more difference
to the discriminatively trained result than to the ML-trained
result. The improvement from MMI compared with the ML
baseline is 18% relative with the original data and 25% rel-
ative with the augmented data. The improvement gained
from MMI is predicted to be even greater than 25% for a
system with a more typical quantity of training data.
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Figure 5. MMI and ML criterion per frame ver-
sus the number of iterations of the experi-
ment in Table 2 (180 training samples).



Figure 5 shows the MMI and ML criteria varying with it-
eration of training, and demonstrates that MMI optimisation
is proceeding smoothly.
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Figure 6. Recognition rates on training and
testing sets versus the number of MMI itera-
tions of the experiment in Table 2 (180 training
samples).

Figure 6 shows recognition results varying with training
iteration. As expected, the training set results rise quickly
to nearly 100% correct recognition while the test set shows
a more modest improvement.

Results in Table 2 are only given for the block-based
PCA features withw = 4. MMI training was not as suc-
cessful with all of the other features. With pixel-based fea-
tures the EB training algorithm failed to converge and train-
ing and test accuracy fell, probably because our optimisa-
tion approach is not well suited to work with binary pix-
els (indeed, continuous Gaussian HMMs would not be ex-
pected to work well with such features). Block-based PCA
using single columns of pixels (w = 1) was the best ML re-
sult (89.36% for the composite image, as shown in Table 1),
but the testing accuracy of the MMI-trained system trained
using the non-augmented training set peaked on the 3rd it-
eration of training at 90.23% (only 8.9% relative improve-
ment), and dropped after that. Training set accuracy im-
proved faster as MMI training proceeded than for the wider
block size, which may indicate that the narrower-based fea-
tures are more susceptible to overtraining. This problem
may be due to the very small size of our training set, but in
any case it still holds true that block-based PCA always out-
performs standard PCA and that MMI always gives at least
some improvement for non-binary features.

8. Conclusions

We have demonstrated improvements over a basic
HMM-based isolated character recognition system by ap-
plying three techniques: MMI, composite images and
block-based PCA.

MMI is a technique used for speech recognition and we
have demonstrated its utility for written character recogni-
tion. This implementation of MMI can also be used for cur-
sive handwriting recognition which is analogous to continu-
ous speech recognition. We have improved results by about
25% (relative) compared with ML, using training data aug-
mented by erosion and dilation of images.

Composite images are a concatenation of an image with
a90◦ rotated image and a polar representation of the image.
These improve results by 11% to 33% (relative) depending
on which other techniques are used.

Block-based PCA is an alternative way to apply PCA,
applying to small vertical sections separately rather than a
single large vertical section. This improves results by be-
tween 4% and 25% (relative) compared with standard PCA.
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