
NOTES FOR AFFINE TRANSFORM-BASED VTLN

Daniel Povey

Microsoft,
One Microsoft Way, Redmond, WA 98052

dpovey@microsoft.com

(Written in 2010)

ABSTRACT

These are some notes on a linear transform based approximation to

VTLN. It describes how, given a small amount of data for which

we have the original and “conventionally warped” features, we can

obtain a transform that approximates the original warping and leaves

the mean and covariance of the sample data unchanged.

Index Terms— VTLN

1. INTRODUCTION

The idea is to approximate, as closely as possible, VTLN done in

the conventional way, by an affine transform of the cepstra. This is a

trained approximation based on data (i.e. a few utterances’ worth of

feature data). In addition we constrain the mean and covariance ma-

trix of the transformed features to be the same as the un-transformed

features (for the sampled data). This ensures that the warped features

will be well-matched to the unwarped features.

The inputs to this process are as follows. We have the un-warped

features xt, for t = 1 . . . T . We have N VTLN warp factors, typi-

cally 21 of these. These are used to generate VTLN-warped features

y
(n)
t

for 1 ≤ n ≤ N , using a conventional feature-level computation

(e.g., one based on moving the center positions of the mel-frequency

filter banks). We use x+ to represent x with a 1 appended. We are

training N affine transforms T(n) that do the transform

x → T
(n)

x
+
. (1)

We define z
(n)
t

to be T(n)xt; this is the affine approximation to y
(n)
t

,

and the idea is that we choose T(n) to make z
(n)
t ≃ y

(n)
t , subject to

mean and covariance constraints.

The reason for doing the affine approximation is partly for con-

venience, so we can store the un-warped features and use a simple

transform to create the warped ones. It is also a convenient way

to ensure that the mean and covariance of the features is the same

across the warp factors, which helps to ensure that they can all be

modeled reasonably well with the same model. We note that the

motivation for keeping the mean and variance of the sample data

unchanged after the warping is questionable. The reason is that we

are going to apply the different warping functions to different sets

of data. It makes sense that after the warping, we would want map

all the original data subsets to have the same mean and covariance.

But it does not follow from this, that we want a given subset of data

to have the same mean and covariance after being warped by each

of the individual warping functions. With this in mind, we explain

further why we do it this way. The initial motivation is that the lin-

ear transform is, in practice, not a very good approximation of the

conventionally applied warp (perhaps 20%-40% of the variance of

the conventionally warped cepstra is left over after linear prediction,

for the highest order cepstra and the more extreme warp factors).

Therefore, we are concerned that the linear versions of the warped

cepstra will have a lower overall variance than the unwarped ones

and this will introduce various mismatches and biases. This is the

initial motivation; we originally normalized the variance in each di-

mension, andwhat we describe here is a full-covariance extension of

that, that normalizes the entire covariance matrix. Another motiva-

tion is as follows: when we were normalizing only the diagonal of

the covariance, the resulting matrices had non-unit determinants: the

log-determinants were zero for the central warped factor, going neg-

ative (e.g. around −0.5) for the most extreme warp factors (0.9 or

1.1). If we used these determinants as we “should” do, at the stage

when we pick which warping matrix to use for a given utterance, we

got poor performance VTLN and we noticed that the VLTN warp

factors were clustered to closely around 1.0. It was better to ignore

the log-determinant. If we compute the linear approximations the

way we describe here, the log-determinant is zero and hence there is

no need to ignore it. Also we were concerned that without correcting

for the full covariance, the warping with more extreme warp factors

might produce variances that were too low in some off-diagonal di-

rections, and when we use more advanced models with full covari-

ances, these might be hard to model with a single covariance matrix

across all warp factors and would result in extra parameters being

allocated by the model simply to account for the different warping

functions.

We feel we should mention at this point that the “right” way

to solve this problem, from our point of view, is: after determining

the mapping from utterances to PVTLN warp factors (or interleaved

with determining this mapping), use a Maximum Likelihood solu-

tion based on fMLLR to compute the best transform for the class.

Unfortunately our initial investigations in this direction were not

very promising.

2. COMPUTING THE TRANSFORM MATRIX:

DERIVATION

Now we describe the way we compute the transformation matrix

T(n) (for the warping class index n). The inputs to the process are

xt and y
(n)
t for 1 ≤ t ≤ T , and the output is the transformation

matrix T(n). At this point we drop the superscript (n) and make it

implicit.

The formulation is as follows: we want to compute T(n) to min-

imize an appropriately weighted sum-squared distance between zt
and yt, subject to the constraint that z has the same mean and co-

1



variance as x. We can write this as follows: subject to the constraints

T
∑

t=1

xt =

T
∑

t=1

zt (2)

T
∑

t=1

xtx
T

t =
T
∑

t=1

ztz
T

t , (3)

minimize
T
∑

t=1

(zt − yt)
T
K(zt − yt) (4)

where K is an appropriate kernel matrix. We set K to the inverse

covariance matrix of xt (which is the same as the inverse covari-

ance matrix of zt). This ensures that the resulting inner product is

unaffected by affine transforms of the original features, which is a

desirable kind of invariance.

Let us write

T = [M;v] , (5)

so

zt = Tx
+
t = Mxt + v. (6)

Let x̄ be the mean of x, i.e.

x̄ =
1

T

∑

t

xt. (7)

Let us define

x̂t = xt − x̄ (8)

ẑt = zt − x̄ (9)

ŷt = yt − x̄. (10)

We can rewrite Equations (2), (3) and (4) with x̂t in place of xt

and the same for y and z, and they are equivalent to the original

equations (i.e. the constraints are true for for the same values of T

and Equation 4 will have the same value when rewritten. Because of

the mean constraint, the mean of ẑ must equal zero. Written as an

affine function of x̂, the offset term would be zero: therefore we can

make ẑ a linear (not affine) function of x̂, and write:

ẑt = Mx̂t. (11)

Let us write the covariance of x̂ as:

S =
1

T

T
∑

t=1

x̂x̂
T
, (12)

recalling the x̂ has zero mean. Consider the constraints (2) and (3).

The first constraint is automatically satisified because ẑ = Mx̂ en-

sures that ẑ is zero-mean. The second constraint becomes:

1

T

T
∑

t=1

ẑtẑ
T

t = S. (13)

It is helpful to perform a further change of variables so that the unit

matrix appears on the right of (13). Let us do the Cholesky decom-

position:

S = CC
T
, (14)

where the lower triangular matrix C is the Cholesky factor of S.

Define

x̃t = C
−1

x̂t (15)

ỹt = C
−1

ŷt (16)

z̃t = C
−1

ẑt. (17)

The relationship between x̃t and z̃t is given by substituting x̂ =
Cx̃t and ẑ = Cz̃t into (11) and then left-multiplying by C−1: we

get

z̃t = C
−1

MCx̃t (18)

= Nx̃t, (19)

N ≡ C
−1

MC. (20)

Multiplying Equations (12) and (13) on the left by C−1 and on the

right by C−T , we have:

1

T

T
∑

t=1

x̃tx̃
T

t = I (21)

1

T

T
∑

t=1

z̃tz̃
T

t = I. (22)

Using z̃t = Nx̃t, it follows from Equations (21) and (22) that

NN
T = I, (23)

i.e. N is an orthogonal matrix. We have thus simplified the variance

constraint to an orthogonality condition on the transform N. Next

we turn to the objective function we are minimizing. When we write

Equation (4) in the new variables, it becomes:

T
∑

t=1

(z̃t − ỹt)
T (z̃t − ỹt). (24)

Here, the kernel matrix K = S−1 cancels because when we use

ẑt = Cz̃t and the same for ŷt, we get a middle factor CTS−1C =
I. Equation (24) can be written as three terms: two squared terms

and a cross term. The squared terms are irrelevant to the optimization

because
∑

T

t=1 z̃
T

t z̃ = T tr (I) which is a constant, and
∑

T

t=1 ỹ
T

t ỹ

is a data-dependent quantity that is independent of N. This leaves

us with the following objective to be minimized:

−2

T
∑

t=1

ỹ
T

t z̃t. (25)

This is equivalent to maximizing:

T
∑

t=1

ỹ
T

t z̃t (26)

=
T
∑

t=1

ỹ
T

t Nx̃t (27)

= tr

(

N

(

T
∑

t=1

x̃tỹ
T

t

))

(28)

= tr (NP), (29)

P ≡

T
∑

t=1

x̃tỹ
T

t . (30)

The quantity P is accumulated from the data, and will determine the

optimal value of N. We do the singular value decomposition on P:

P = ULV
T
, (31)

where U and V are orthogonal and L is nonnegative and diagonal.

Let us define:

Q ≡ V
T
NU. (32)

2



This implies:

N = VQU
T
, (33)

which we get multiplying (32) on the left by V and the right by UT

and using orthogonality of U and V to cancel. Thus, we can write

function we are maximizing, tr (NP), as:

tr (VQU
T
ULV

T ) = tr (QLV
T
V) = tr (QL). (34)

Here, L is a known diagonal matrix that arises from the SVD of P,

and Q is a matrix that we are solving for (that determines N). It

follows from the orthogonality of N, U and V, and Equation 32,

that Q is orthogonal (e.g. write out QQT substituting in (32) and

all factors cancel). Because L is nonnegative and diagonal, tr (QL)
is maximized by having the diagonal entries of Q as positive as pos-

sible. These diagonal entries cannot be more than 1 (by orthogonal-

ity), so the objective function is maximized by having them all equal

1. This implies that the off-diagonal terms are zero, so tr (QL) is

maximized by Q = I.

The rest of the work consists of substituting back to get the orig-

inal transform. Using Q = I, Equation (33) becomes:

N = VU
T
. (35)

Multiplying (20) on the left by C and the right by C−1, we have:

M = CNC
−1

. (36)

Next we show how to obtain T from M. T operates on the original

features x which differ from x̂ by a mean offset. Substituting (8)

and (9) into ẑ = Mx̂,

zt − x̄ = M (xt − x̄) (37)

zt = Mxt −Mx̄+ x̄ (38)

zt = Tx
+
t , (39)

T ≡ [M ; v] (40)

v ≡ x̄−Mx̄. (41)

3. COMPUTING THE TRANSFORM MATRIX: SUMMARY

Here we summarize the computation. The input to the process is

a sequence of un-transformed features xt for 1 ≤ t ≤ T , and for

each warping class n, a sequence of warped features y
(n)
t . We aim

to compute a transform T(n) that takes x+
t

to y
(n)
t

as closely as

possible while leaving the mean and covariance of x unchanged.

Firstly, we compute statistics of x:

x̄ :=
1

T

T
∑

t=1

xt (42)

S :=

(

1

T

T
∑

t=1

xtx
T

t

)

− x̄x̄
T

(43)

We compute the Cholesky factor C such that:

S = CC
T
. (44)

For each n, the computation is as follows (and we are dropping

the superscript (n) here that appears on all quantities except C, xt

and x̄):

P0 :=

(

T
∑

t=1

xty
T

t

)

− x̄

T
∑

t=1

y
T

t , (45)

so that P0 =
∑

T

t=1 x̂ty
T

t =
∑

t
x̂tŷ

T

t , where the second equality

uses the fact that the mean of x̂t is zero. Then we compute

P := C
−1

P0C
−T

. (46)

We do the singular value decomposition:

P = ULV
T
. (47)

Here, the diagonal elements of L are a useful diagnostic; if they

are close to T , then the variance constraint is not affecting the sum-

of-squares objective function very much (versus having no variance

constraint). We compute:

N := VU
T

(48)

M := CNC
−1

(49)

v := x̄−Mx̄ (50)

T := [M ; v] . (51)

3


