Speaker Adaptation with an Exponential Transform

Daniel Povey, Geoffrey Zweig, Alex Acero

Microsoft Research, Microsoft, One Microsoft Way, Redmawd 98052, USA
dpovey@ri crosoft.com gzwei g@n crosoft.com al exac@ri crosoft.com

Abstract—In this paper we describe a linear transform that we call
an Exponential Transform (ET), which integrates aspects ofCMLLR,
VTLN and STC/MLLT into a single transform with jointly train ed
components. Its main advantage is that a very small number ofpeaker-
specific parameters is required, thus enabling effective aptation with
small amounts of speaker specific data. Our formulation shas some
characteristics of Vocal Tract Length Normalization (VTLN), and is
intended as a substitute for VTLN. The key part of the transfam is
controlled by a single speaker-specific parameter that is adogous to a
VTLN warp factor. The transform has non-speaker-specific paameters
that are learned from data, and we find that the axis along whib male
and female speakers differ is automatically learned. The eonential
transform has no explicit notion of frequency warping, which makes it
applicable in principle to non-standard features such as tbse derived
from neural nets, or when the key axes may not be male-femaldased
on our experiments with standard MFCC features, it appears 6 perform
better than conventional VTLN.

. INTRODUCTION

Vocal Tract Length Normalization (VTLN) [1], [2], [3], [4]9 a
standard feature of modern speech recognition systems.bakie

idea is to scale the frequency axis on a per-speaker basis SO,

to normalize the formant positions. These can vary by ab@3b6 2
between speakers [5] because gender and other factorg #ffec
length of the vocal tract. Currently, the most commonly usgproach
to VTLN operates by repeating feature extraction multipiess (e.g.
20 times), for a discrete set of warping factors, and selgdtie warp
that provides the highest likelihood features with respea simple
model.

A natural question to ask is: once we are working in a linear
transform based framework, why not estimate the (say) 23toams
in a purely data-driven way, without reference to the ogjidTLN?
For large training datasets, the number of parameters imast
is relatively quite modest so such an approach may be feasibl
One way to do this would be in a K-means framework, iteragivel
estimating transforms and reassigning speakers to tnansfaOne
might even envision initializing these clusters from the\T'warp
factors, thereby nudging the system towards normal VTLNvéier,
our experiments along these lines (not described furthernewot
successful, motivating a more powerful approach.

Il. THE EXPONENTIAL TRANSFORM
A. Basic ldea

We now turn to a form of transform which will give us a con-
tinuously varying set of transforms controlled by a singtegmeter.
We first consider a pure linear transform; later an offsenteaiill be
introduced. The most basic form of the idea is to use a tramsff
H form

)

wheret(®) is a speaker-specific scalar that may be positive or negative
and that is analogous to the log of a VTLN warp factArjs a global
parameter matrix that is learned from data, akt?) is the speaker
specific “exponential transform”. Herexp is the matrix exponential
function, which is defined (for square matrices only) by tleayldr

A = exp(t®A),

Linear-transform based implementations of VTLN have been iseries expansion:

vestigated by various authors [1], [6], [7], [8], [9], [10The basic

idea is to approximate the VTLN frequency warping by a linear

exp(M) M, ®)

transformation of the MFCC or PLP features. In some cases [1].

[6], [8] this is based on an analysis that leads to a formudayther
cases [7], [9] it is based on linear transforms which aren&dito
approximate the conventional feature-level VTLN warpird. test
time these techniques are equivalent to Constrained MLLRL({AR)
[11] but choosing from a fixed set of transforms. Note that mvh
applying a linear transform — Ax+b, one should adtbg | det A |
to the log-likelihoods, as dictated by the identity

N(Ax+b;pu, B)|det A| = N(x; A" 'u— A 'b,AT'ZA™T),
)

where the right hand side represents the “model-spacefpirgiation

of the transformation. This is referred to as Jacobian corsgu#on,

€

with M"™ defined in the obvious way as a productNf with itself

n times andM?° being the identity matrixi. Thus, if the entries
in M are small, we obtain a transform which is a small delta on
the identity matrix. The attraction of this functional forithat the
family of functions is closed under matrix multiplicationge. the
product of two warping matrices is still a warping matrix.

B. Full Version

We turn now to an extension of the basic transform which addh®
the further normalization issues of mean normalization feadure
rotation. We augment thé dimensional input vectok with a one
to form a vectorx™, and denote the speaker-specific transform with

since A is the Jacobian of the transformation. In practice not aW ). The “complete” exponential transform (ET) is:

authors include the Jacobian term; see [10] for an invetsbigaf the
effect of this. In conventional (feature-level) VTLN, céyad variance
normalization generally has to be applied because there istural
way to do Jacobian compensation [9].

Linear-transform based approaches to VTLN have generagnb

W =D exp(t'YA)B, (4)

whereD®) handles mean offsets (and, at test time, diagonal scaling),
the middle factor with thexxp is the core “exponential transform”
part, andB corresponds to MLLT/STC [12], [13]. Any quantities

found to be about as effective as standard VTLN, while beingithout the superscript are globally shared. The dimensions are

more efficient to implement. Typically about 20 transformeuld
be estimated at training time, and at test time one wouldcséhe

D(a) c Rdx(d+1)’ Ac R(d+1)><(d+l)’ andB € R(d+1)><(d+l).
Reflecting its mean-offset functio(® is a matrix with ones

best one of these based on the likelihood assigned by thelrtmdealong ad x d diagonal, unconstrained entries in the last column,

the transformed data.

and zeros elsewhere. At test time, we optionally allow ustained



entries on the diagonals, but not at training time as thisiagntly K = Z wjm(t)E;,}lujmij (6)
complicates the reestimation formulae. t,j,m
The intuition behind adding th®*) and B components is that if 1 4 47

G, = i () —— 7
we want the factorexp(¢t( A) to model a VTLN-like transform, D viml )afmi X X )
which might correspond to a relatively subtle difference tire ) N L
features, we need to normalize for gross effects such askepeafor 0 < < d, and the auxiliary function is:
dgpepqent offse.ts and global correlations betwegn paeasné€ther- QW) = tr(KTW) +log| det(WT - % Zil wlGiw: (8)
wise it is more likely that the central factexp(t*) A) would learn
instead to model these types of effects; by modeling suckciff D. Manipulations of CMLLR statistics

explicitly, we free the exponential term to model the effethat |t will be necessary in our estimation algorithms to apply a

t,3,m

cannot modeled b3 and D(*). transform in the feature space to CMLLR statistics; this dnel as
We emphasize that, like linear VTLN, ET is a specially comigied  fo|lows. Let M € R4+ *(d+1) ha g matrix with last row 0 ... 1
form of CMLLR. that represents an affine transform. We do as follows, which i
equivalent to having pre-multipliest™ by M while collecting the
I1l. M ODEL ESTIMATION statistics:
A. Overview K — KwM? 9)
At training time we need to compute the global parameterand G, — MG,M”. (10)

B, and also train a model on suitably adapted features. Thectg

function we optimize is the data likelihood; the procedwsebased  Applying a transform in the model space to some statisticloie
on Expectation-Maximization (E-M). An overview of the tnaig as follows. LetW ¢ R?*(@+1) pe the affine transform. The model-
procedure is: space transformation can only be dond\f is a diagonal transform,
i.e. W = [M b] with M diagonal. We'll write the(, 7)'th element
of M asm;. The transform corresponds to setting«— m;x; + b;.
After working out how to equivalently apply this transform the
means and variances and obtaining the corresponding dramsfon
K and G;, we get as follows. The elements Bf change with:

« Initialize the global parameterd and B
o For a number of training iterations:

— Computet™® and D for the training speakers
— Update the model (means, variances, etc.)
— On early iterations (e.g. the first 15 iterations), altezhat

+ Update the matrixA, or: kij = miki; —mibigi.a;, (11)
+ Update the matriB. where the index! is the feature dimension, and then the matrias

« Compute a speaker independent model using just (the dirstare scaled with:
rows of) B as the feature-space transform. G; — m2G;. (12)

The speaker independent model has the same mixture-ofsiaass
structure as the final speaker-adapted model, and is cothpate
one pass using Gaussian-level alignments from the speaketed  For a review of ways to compute the matrix exponential fuorcti
model. It is used at test time for the first-pass decoding arabtain S€€ [14]. The method we used is one of the simpler methodestied

E. Computing the matrix exponential function

Gaussian-level alignments for estimating the transform. there. Suppose we are computiegy(M). DefineP = 2~ M. We
choose the smallest integé¥ > 0 such that||P|| < 0.1 (using
B. Summary of notation the Frobenius norm). The method is a slight twist on the itient

2N . . .
exp(P)* = exp(M), using successive squaring to compute the

o The feature dimension ig. ) .
power. DefineBy = exp(P) — I, computed with:

« We assume zero-based indexing of vectors and matrices.

« We usex; for the unadapted features on timeWe don't have Ko
an index for the utterance (we just assume distinct uttesanc By = Z EP", (13)
have differently numbered time indices). n=1""
« x1 means the vectox with a 1 appended to it. the series is truncated when we detect that adding the ktesthas
« A7, whereA is a matrix, meand with its last row removed. not caused any change B, (we remember the number of terms as
« AT, meansA with a row with value0 0 ... 1 appended. K). Then we use the recursion, for< n < N,

o« AT meansA with a zero-valued row appended.

« Gaussian mixture components in a HMM-GMM system are in- Bn =Bn-1Bn-1+2Bn, (14)
dexedj, m wherej is the state anch is the mixture component. and the answer is given byxp(M) = By + L.

« The means and (diagonal) variances arg, and X;,,, with

sz-m as thei'th variance component. F. Reverse differentiating through the matrix exponerigction
« The Gaussian-level posteriors on tirhere ;. (t). In this section we define for later use a function exp-bagkpus
« Unless otherwise definedn; is thei'th row of M (viewed as the form
a column vector), aneh; ; is its ¢, j'th element. exp-backprop(M, X) = M, (15)
C. Definition of CMLLR statistics where the elements oM are the derivatives of scalaf =

tr(X” exp(M)) w.r.t. the corresponding elementsof. We assume

that the intermediate quantities used while computing thegrim

8= z Yjm (t) (5) exponential functiorexp(M) (as described in the previous section)
tgom are available. We are going backwards through that comipatat

The sufficient statistics for CMLLR (for a particular spegkare:



computing derivatives. We first sédBy = X. Then forn = matrix exp(t'A) as a feature-space transformation to the statistics as
N—-1,N-2,...,0 we do: decribed in Section IlI-D.
1 i 1 (16) H. UpdatingB

Next we want to comput@, and we will do so with .
P The accumulation and update formulas Bare based on those for

. K. MLLT (equivalently, global STC). Defininge’ as W®x*, i.e. the
P= Z Pa, 17 current transformed features, we accumulate the suffiggaitstics
n=t (for 0 < i < d),
whereP,, is the part of the derivative arising from théth term of

. -~ -~ im (T
Ithte truncated Taylor series 13. We &t = By, and for2 < n < K, G; = Z W;z_() (im — %) (jm — x’)T 7 (24)
e + jmi
5 _ 1o VAN SRR
Pn = nP”’lA o A Bo, (18) and 8 = Y, vim(t). Let the result of the MLLT/STC update be

where it is convenient to cache the powersffrom the forward the feature transformation matri¢ € R**“, which we optimize

computation. The final answer is given Bff = QLNﬁ'_ starting fromC = I using the formulas from [15, Appendix A].
] -~ For convenience, we repeat them here. The auxiliary funciso
G. Computing the speaker-specific transforms Blog | det C| — %27;01 ¢’ G;c;. To maximize it, for a number of

In this section we describe how to compute the speakerfépeciterations (e.g. 10), we do as follows: for< i < d,
parameterg® and D®, given the sufficient statisticK, G; and

(. At training time these statistics are computed with Gaussi F — Cc 7 (25)
level alignments given by the previous iteration’s speacific 8 1
transforms W(*). At test time the Gausian-level alignments are Ci TG 11 G fi. (26)

computed using features transformed only wiBhand the speaker-
independent model trained using single-pass retrainirly features Let C; be C extended with an extra row and column, with zeros
transformed only withB. except for a 1 in positiofid, d). After estimatingC we do as follows:

We will omit the speaker superscript We first initializet < 0
andD « [I 0]. Then we applyB as a feature-space transform to the
statistics as described in Section IlI-D. We next do seviéeahtions
of update (we used three iterations). On each iteration vee rfé-
estimateD and then re-estimate

1) UpdatingD: In the update oD, we first estimate a transform
D’ that will go to the right of any existing transford®, and then
modify D to take into account the new transfolY. We estimate  The statistics for updating the matriA are functions of the
D’ via Maximum Likelihood fromK, G; and 3 as either an offset- standard CMLLR statistics for the training speakers. THeb# LR
only CMLLR transform (at training time) or a diagonal CMLLR statistics are computed with Gaussian alignments obtainid
transform (at test time). We then sBt — DD’" (the meaning of features transformed withV(*), but the statistics themselves contain
+ was explained in Section 11Il-B), and then apdly as a model- the original features, not the transformed features.
space transformation to the statistit6 and G; as described in  For each training speaker let the CMLLR statistics accumulated
Section III-D. as in Section 1I-C beK®), G and 8. Using the current values

2) Updatingt: The update for is similar to the update foD  of D(*) and B, apply B as a feature transform to the statistics and
in that we always estimate an “‘incremental patt’and add this apply D) as a model-space transform to the statistics, as described

to ¢t. To computet’ we do a single iteration of Newton’s method ,in Section 11I-D. Let us write the transformed statisticsk&” and
starting fromt’ = 0. The update formulas are as follows. First defin@ﬁsﬁ_ Define

J € RIXWEHD py

« Transform the model by setting;» «— Cpjm

« Transform all the current speaker transforms by sefivg’ «—
CW®)

o SetA «— C;AC;!, andB «— C;B.

I. Updating A

(s) _ (s)
J=K_S, (19) XY =exp(t'”A). (27)

where thei'th row s; of S is the same as théth row g,; of G, This e will write the derivative ofQ w.r.. X asX‘®), using notation

L . L . . ~(s) _ _90
equals the auxiliary function derivative w.ekp(t'A)~, ignoring Wherei;; = —==;. We have
the log determinant. We will be maximizing the quadratic dtion

ij

2 .
f(tl) —at’ — %bt/ . with X(s) _ (KZ(_S) _ S(S))(+O) (28)
a = tr(JTA7)+Btr(A) (20)
b = by — by (21) where (+0) means appending a zero row, and thh row of S*)
a1 is given by:
[ (Z al Giai> (22) st =Gl (29)
1=0
by = tr(IJT(AA)") (23) The derivative ofQ‘*) w.rt A is given by:
wherea; is thei'th row of A. To ensure the correct sign of update A® = exp-backprop(t®' A, X)), (30)

even in pathological cases far from convergence, we replaceb,
with by —min(0.8b1, b2). We have never seen this flooring take place The statistics for updating. are written as follows, where summa-
in practice. We set’ = a/b. We then set «— ¢ + t, and apply the tions overs are over all training speakers. The indetakes values



0<i<d.

B => 8" (31)
5 = ith(s) (32)
A= iA(” (33)
G; = i §()? (GES) + max(gfsl)l - kgi),O)eieiT) , (34)

wheree; is the unit vector in the'th dimension. Note thaG; is
not the same as th&; quantities for theB update or the speaker-

dependenGES) guantities in the CMLLR statistics. The (weak-sense)

auxiliary function we optimize at test time is a quadratindtion with
quadratic part—3 >>7" ' af
value of A) given byH = A" + 3,I; the 3,I comes from the log

determinant. The update equation is, oK ¢ < d,
a; —a;+G; 'h; (35)

wherea; andh; are the:'th rows of A and H, viewed as column

vectors; the last row ofA is not updated (it is always zero). The

auxiliary function improvement ig 37" h G; 'h;. This should
generally decrease as training progresses.

We want to keep the warp factars’ “centered” at training time so
that they average to zero; this makes them more consisténeee
training runs, and makes the approximations we used inidgrihe
estimation formulas foA more valid (since we ensure smaller value
of ¢(*)). To do this, after updating\ we take the “average part” of

exp(t¥ A), and put it intoB. The update equation is:

B )
=A |B.
B

We then normalizeA to have unit Frobenius norm; this keeps th
t) values in a more consistent range from run to run (it does
affect the actual transforms produced by the method).

B exp < (36)

IV. BASELINEVTLN IMPLEMENTATION

G;a;, and a derivative (at the current

Erins to estimating a diagonal CMLLR matrix, applied aftee ¥ (*)

Nyquist

Upper cutoff

warped frequency

Lower cutoff

Mel bin cutoff

un-warped frequency

Fig. 1. VTLN warping function

factor, we estimate a CMLLR matri¥v® to minimize the sum-of-
squares error of predictingy givenx;: that is, ifzy = Wx,, we
first estimateW* to minimize the sum-of-squares difference betwen
z andy. We then scale each row of the CMLLR matrices so that the
variance ofz{* matches the variance af; (any shift in mean does
not matter, for reasons that will become clear below).

Our training process for LVTLN is essentially a constrairfetn
of speaker adapted training. On selected iterations of itiaing
%rocess (we used iterations 2, 4, 8 and 12), we compute suifici
statistics for CMLLR and for each training speaker, chobseW <,
that maximizes the likelihood, but treating the offset teimmthe
last column as a variable to be optimized (we compare thdianxi
function values after optimizing this offset term). Thus wombine
VTLN with offset-only CMLLR. At test time, we optionally egnd

transform. We train the model on the adapted features. laraxgnts
we reported here, we always used the Jacobian as requireldeby t
math (we found that omitting the Jacobian sometimes helgétea

As the first element of our baseline VTLN implementation w&Ut Sometimes hurt a lot).

implemented the standard, feature-level form of VTLN. Tdéperates
by shifting the locations of the center frequencies of thentular

mel bins during the MFCC computation. The warping functisn i

as diagrammed in Figure 1. The two solid lines are examples
warping functions for warping factors greater than, and lgsn,
one. The longest, central line segment always “points” atdfigin.
Ours is similar to the approach used in the Attila speechgeition
toolkit [16], which uses a bilinear function with the propethat the
inverse of each function is also in the functional farﬁil'y handles
the upper frequency cutoff differently from HTK [17], in wdhi the
knee is always at the same point on the x-axis. Our functismigar
to HTK in that it also supports a lower cutoff (this would nadhy be
zero if the lower frequency cutoff for the mel-bin compubatiwas
zero). In our experiments, the lower cutoff was 100 and thgeup
cutoff was always 600 Hz lower than the Nyquist frequency.

We implemented linear VTLN (LVTLN) in a way quite similar
to [9], except that the linear functions are implemented adows.

In order to implement conventional, feature-level VTLN, w&ed
the final warp factors computed during LVTLN training and did
an iteration of single-pass retraining, along with the enionally
\gf,-lrped features, to convert the model. At test time we used th
LVTLN approach and LVTLN-trained models to work out the warp
factor to use in the feature-level VTLN. In our implementati we
found the use of LVTLN derived warp factors more reliablertha
conventionally estimated warp factors, even for VTLN itsels
with ET, we did the speaker-independent decoding at test tiging
a speaker independent model with the same mixture-of-Gmsss
structure as the speaker-adapted model. The speaker imege
model was obtained using a single iteration of re-estimatising
Gaussian alignments from the final adapted model and featbrs
accumulating speaker-independent statistics.

V. EXPERIMENTAL RESULTS
Our experiments are conducted with the recently releaseeh-o

On a small subset of data (the same for all warp factors), wepate  Source Kaldi toolkit [18], available from http:/kaldisa@eforge.net.
the original featuresc, and the warped features;’, warped with Ve report results on the Resource Management (RM) and WaiéSt
warping factore as described in the previous paragraph. We use@urnal (WSJ) corpora. Scripts corresponding to the enygetis
31 separate warping factor8:85,0.86, ... 1.15. For each warping eported here are available in version 1.0 of the toolkit.

The Resource Management corpus has 3.8 hours of trainiag dat

1Brian Kingsbury, personal communication The Word Error Rates (WERs) we give are averaged over theBBgb’



Feb'91, Mar'87, Oct’'87, Oct'89 and Sep’'92 test sets, 1.3rhanf Fig. 2. Distribution of warp factors antl values (female dark blue, male
data in total; we use the standard word-pair bigram languaggel. Pale green)

The WSJ test sets are decoded with the 20K open vocabulary
with non-verbalized pronunciations, which is the harddsthe test
conditions. We used a highly-pruned version of the trigrangliage
model included with the WSJ corpus; this is because Kalds dust
yet have a decoder that works with large language modelsfifthe
trigram model has 6.7 million entries/arcs; the pruned oas h.5
million). We report results on the Nov'92 and Nov'93 evaloattest
sets, which have 3439 and 5641 words respectively. For cuitse
here, for fast turnaround of experiments we trained on elf31-84 (a) RM: ET scalet (b) RM: VTLN warp factor
data, using randomly sampled utterances.

Both systems use decision-tree-clustered triphones arttiastd
HMM-GMM models. In addition, for the WSJ experiments we used
an extended phone set with position and stress dependenegho
but decision-tree roots corresponding to “real” phoneggtjons can
be asked about the central phone). As reported in [18], tesot
this setup are comparable to previously published resulthe RM
and WSJ corpora. The features are based on 13-dimensioraCBtF e e #0R -
we show experiments either with delta and acceleratiorufest or

20 g 0 Bas

processed by splicing 9 adjacent frames together and doiwy L (c) WSJ: ET scale (d) WSJ: VTLN warp factor

to 40 dimensions. LDA features are further transformed émis

tied Covariance (STC) estimation, except for ET systems hickv TABLE II

STC is automatically included. The RM systems had 1473 kave ET VERSUSLVTLN VERSUSVTLN: ON DELTA PLUS ACCELERATION

and 9 000 Gaussians. The WSJ systems had 1583 leaves and 10 000 FEATURES %WERSs

Gaussians. Whenever we accumulate statistics to estimgatdrad of Adapting per speaker

transformation matrix, whether global or speaker-spediidraining VT'-eN C’;’”—';R Syisdtem M NOV,QZWSL v03

or test time time, we always exclude the statistics cormesiny to ,flyopne Ny(fne e A

silence. None | Diag | tiza | 39  12.7 17.2
TABLE | ET Diag tri2b 3.1 11.5 15.0

LVTLN Offset tri2g 3.3 111 16.4

0,
BASELINE %WERS, UNADAPTED LVTLN | Diag tig | 31 107 165

System WSJ VTLN None tri2g 3.7

Features ID RM  Nov'92 Nov'93 VTLN Offset tri2g 3.2
Delta+Accel trica 4.0 12.5 18.3 VTLN Diag tri2g 3.1 10.9 15.9

Delta+Accel+STC| tri2d 4.3 13.0 19.4 Adapting per utterance

Splice+LDA trie 4.7 14.3 19.1 None Diag triza 3.9 12.6 17.3
Splice+LDA+STC | tri2f 3.9 12.2 17.7 ET Diag tri2b 3.3 11.5 15.0
LVTLN Offset tri2g 3.3 11.2 16.2
LVTLN Diag tizg | 3.1 111 16.1

We show the unadapted WERs in Table I. Considered separately VTLN Diag tigg | 34 109 16.1
LDA and STC both hurt performance, but together they impribve
Although this is unintuitive, the combination of LDA plus SIMLLT
is known to work well [19]. Bear in mind that ET does STC/MLLT
as part of the training process, so it should be at a sligtedden-
tage versus conventional VTLN when working from the deltaspl
acceleration features.

Figure 2 shows the distribution ofvalues and VTLN warp factors,
on RM and WSJ. This is for systems based on MFCC plus delta pl
acceleration features. Both with (linear) VTLN and ET we dav
very reasonable distribution of warp factors, with a goopasation
between male and female; this is clearer in RM, and we spiecul
that it has to do with the characteristics of the speakers. iumber
of speakers is relatively small, which accounts for the ears the
distributions.

A. Integration of CMLLR with ET/LVTLN/VTLN B. Results on delta and acceleration features

We should emphasize that our implementations of both ET andTable Il compares ET with LVTLN and VTLN, on top of MFCC
LVTLN incorporate an element of Constrained MLLR. When complus delta and acceleration features. The rows that sayg‘Dia
puting the speaker-specific transfoli‘®) in ET, we make the factor (meaning, the transforms have a diagonal CMLLR componemt) a
D) a diagonal CMLLR matrix at test time (i.e. it contains a scalprobably the most suitable ones to compare, as this is altsys
and an offset term for each dimension). In order to make ouFLLlY  best configuration. We do not see any consistent pattern—e nbn
results comparable, we also enabled the estimation oftaffdg the three methods is consistently best across all test ldetgever,

and diagonal CMLLR matrices after the pure “LVTLN" part ofeth
transform. This uses the same CMLLR statistics that are uged
estimate the warp factor, and it is integrated into the wagidr
calculation in that we compare the likelihoods after inahgdthe
effect of the diagonal or offset-only transform. In the caféeature-
Vel VTLN, after extracting the VTLN-warped features githe
warp factor obtained from the LVTLN computation, we estietht
an offset-only or diagonal CMLLR transform on top of the VTLN
Qvarped features. This was done without an extra pass of degod
i.e. all results in Tables Il and Ill are done with a single almE-
independent decoding pass and a single adapted decodisg pas



it is clear that doing some form of VTLN or VTLN substitute is
better than doing nothing at all. We should note that ET doata

which the training consists of optimizing a simple objeetfunction,
as opposed to VTLN in which many implementation details are

STC/MLLT, and we can see from Table | that STC makes thingsot obvious and have to be tuned (e.g. frequency cutoffsanvee

worse on delta and acceleration features, so in some sense &T
a disadvantage here.

C. Results on LDA+STC features

TABLE Il
ET VERSUSLVTLN VERSUSVTLN: ON SPLICED PLUSLDA PLUSSTC
FEATURES %WERS

Adapting per speaker

normalization; what to do with the determinant). The expuia
transform is also applicable in principle to any kind of feat which
is an advantage if we want to significantly change the feature

We have noted that both ET and the linear version of VTLN are
special cases of Constrained MLLR, and the training proeejust
a specially constrained form of Speaker Adapted TrainilgT{SWe
find that SAT-trained models and standard CMLLR is betteroag |
as we are adapting per speaker rather than per utterantés(tisave
have enough adaptation data). When adaptation must be doae o
per-utterance level, however, the Exponential Transfoam achieve
superior results.

A longer version of this paper with more discussion, morévder
tions and more experimental results can be obtained as [20].

VTLN CMLLR | System WSJ
type type ID RM  Nov92 Nov'93
None None tri2f 3.9 12.2 17.7
ET Diag tri2k 3.1 10.6 14.7
LVTLN Offset tri2m 3.2 10.8 15.0
LVTLN Diag tri2m 3.1 10.7 16.5
VTLN Offset tri2m 4.7
VTLN Diag tri2m 3.1 10.7 14.9
SAT Full tri2m 2.7 9.6 13.7
Adapting per utterance
ET Diag tri2k 3.0 10.4 14.6
LVTLN Offset tri2m 10.6 14.4
LVTLN Diag tri2m 3.3 10.8 145
VTLN Diag tri2m 4.3 10.6 14.4 [3]
SAT Full tri2l 5.1 12.0 16.8

(4]

In Table 11l we show results on top of features based on LDAsplu [5]
STC/MLLT. In the case of the ET models, the estimation of tRi€S
is part of the ET computation so we just need to provide it \tlit (6]
LDA features. In the case of the LVTLN or VTLN, it would have [7]
been too complex to embed the estimation of STC/MLLT into the
training procedure, so instead we used the STC transforimaisid
with the baseline LDA+STC system, and initialized the systauild
using alignments from the LDA+STC model. This possibly pdes
an unfair advantage to the LVTLN/VTLN system, as it uses dneex [g]
phase of system building and better alignments.

This time, we again do not see perfectly consistent resoiltisthe
general advantage seems to be in favor of ET. Note that ouleimp
mentation of VTLN seems to fail quite badly in some circumsts
on RM; we could not find the reason for this. [11]

The bottom row of each section of Table Il is with Speaker
Adapted Training (SAT), in which we train with CMLLR-adapte
features. We felt that this was a relevant comparison for NTL
because both the ET and LVTLN training procedures are specjags]
cases of SAT. It can be seen that when adapting per speaker,
SAT outperforms all the versions of VTLN, but when adaptirey p
utterance, the SAT trained system performs very badly atideiicase
of RM, is worse than a completely unadapted system (thisdcoat

(8]

[10]

[12]

[14]

necessarily be fixed by adjusting the count cutoff for edfiingga [15]
transform, because the “default” transform may not be weitaned
to the SAT trained model). [16]

VI. CONCLUSIONS

We have introduced a new form of adaptation which fuses ai&sne[17]
of VTLN, CMLLR and STC/MLLT. Our method is a generic feature
transformation with parameters learned from data, and duss (18]
include any explicit notion of frequency warping. The expemtal [19]
results show that it generally performs about the same asadin
transform based VTLN (LVTLN) or conventional VTLN, and may[20]
have a slight advantage when combined with features based on
spliced frames plus LDA plus STC/MLLT. For us, the most com-
pelling advantage is that it is a simple, attractive forrtioka in
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