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Abstract 
Large vocabulary continuous speech recognition is always a 
difficult task, and it is particularly so for low-resource 
languages. The scenario we focus on here is having only 1 
hour of acoustic training data in the “target” language. This 
paper presents work on a data borrowing strategy combined 
with the recently proposed Subspace Gaussian Mixture Model 
(SGMM). We developed data borrowing strategies based on 
two approaches: one based on minimizing K-L Divergence, 
and one that also takes into account state occupation counts. 
We demonstrate improvements versus the baseline SGMM 
setup, which itself is better than a conventional HMM-GMM 
system. The SGMMs are more robustly estimated by 
borrowing data from the non-target language at the acoustic-
state level. Although we tested the approach for SGMMs, we 
expect the general idea of borrowing data from a non-target 
language to be applicable for conventional GMMs as well. 
Index Terms: speech recognition, low-resource language, 
subspace gaussian mixture model 

1. Introduction 
Speech is the most convenient medium for human-to-human 
communication and should in principle also be convenient for 
human-to-machine interaction. The performance of speech 
processing systems has improved dramatically, but state-of-
the-art systems require for their training a large amount of 
language-specific transcribed speech data. However, demand 
exists for speech recognition systems in languages that have 
only limited available training data; quickly developing ASR 
systems for resource-insufficient domains or languages is a 
research topic that has recently attracted  interest [1][2]. 

Several strategies have been previously proposed. 
Developing a multilingual speech recognition system is a 
popular approach to deal with the low-resource problem [3][4]. 
In these systems a universal phone set is obtained based on the 
principle that the speech units with similar sounds across 
different languages are grouped together and represented by a 
single phonetic symbol. The International Phonetic Alphabet 
(IPA) or data-driven based phone clustering methods have 
been used to obtain universal phoneme units. After collecting 
a large set of speech data covering all speech units, a 
“universal” set of acoustic models can be trained, so an ASR 
system can be built even for languages with little or no 
training data. However the universal phone set is not as 
accurate as the language-specific one, and phone clustering 
induces more confusion among models, so the performance of 
these systems is not very promising. 

Another way to deal with this problem is so-called 
automatic speech attribute transcription (ASAT), which has 
been proposed for developing multilingual or low-resourced 
ASR systems [5][6]. This tries to deal with the problem that it 

is hard with a limited set of training languages to get complete 
coverage of a universal phone set such as the IPA. Articulatory 
features are a solution to this problem, because all the phones 
can be modeled by a small number of articulatory attributes 
and most of the attributes, such as voicing, nasality, and 
friction, can be identified in any particular language. Most of 
the research in this area has up till now been focused on 
phone-level rather than word-level transcription. 

The Subspace Gaussian mixture model (SGMM) is a 
recently proposed acoustic model that is especially suited for 
low-resource applications [7][8]. The majority of the trainable 
parameters of an SGMM are, in typical configurations, 
globally shared and not specific to any individual acoustic 
state; the only parameters specific to acoustic states are some 
relatively low-dimensional (e.g. 40-dimensional) vectors that 
represent fewer parameters than a typical GMM-based system. 
Therefore, when training SGMMs we can borrow other 
languages’ data for model training without sharing the 
acoustic states, and obtain more robust estimates of the 
globally shared parameters [9]. 

This paper reports experiments with SGMMs, but addresses 
the question of whether it is helpful, in addition to sharing the 
global parameters, to merge some of the acoustic states across 
languages.  This is an idea that would be equally applicable to 
conventional models such as GMMs. Our experimental setup 
is similar to [7]: we have limited amounts of training data in 
English, Spanish and German to imitate the low-resource 
situation. We were able to show statistically significant 
improvements versus the previously described SGMM system, 
which is substantially better than a GMM-based system. 

The remainder of this paper is organized as follows: In 
Section 2, we describe the SGMM and then describe our new 
data borrowing strategy in detail. In Section 3, we describe our 
experimental setup and present experimental results. We 
summarize and give conclusions in Section 4. 

2. Data borrowing strategy 

2.1. Subspace Gaussian Mixture Model 
The most basic form of the Subspace Gaussian Mixture Model 
(SGMM) can be expressed in the following three equations: 
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where ( | )p x j  is the distribution of features in HMM state 
j . The model is a mixture of Gaussians, but unlike the 



conventional GMM, the number of mixture components I  is 
the same for all states and is typically quite large, e.g. several 
hundred. The covariance i∑ for each Gaussian in the mixture 
is globally shared across states (we use full covariances). The 
most important difference is that the mean jiμ  and mixture 

weights jiω  are not direct parameters of the model, and 

instead they are expanded from a state-specific vector jv , via 

globally shared parameters iM  and iw , as illustrated in 
Equations (2) and (3).  

This model has a more complicated structure than a GMM; 
however a well-tuned SGMM typically has fewer parameters 
than the well-tuned GMM system [7]. Moreover, the majority 
of the parameter count in a SGMM system consists of shared 
parameters iM  , i∑ and iw , which for well-tuned systems 
trained on small amounts of data can be 8~10 times larger than 
the state-specific parameters jv . This leads to a natural 

method of training SGMMs in a multilingual way: the state-
specific SGMM parameters are trained as separate language-
specific states, and the common SGMM parameters are, 
however, shared across languages. This can be thought of as a 
single system covering multiple languages, in which the 
phones from distinct languages are given distinct names. 

We mention at this point that the SGMMs we use are a 
slight extension of the simplified version described above: we 
introduce sub-states, where each state j  has jM  sub-states 

each with its own mixture weight jmc  and vector jmv . The 

extended equations with sub-states are given in [7]. 
It was previously shown [9] that training the globally shared 

parameters across languages can lead to substantial 
improvements if the amount of training data in the target 
language is limited. Our work here builds on that previous 
work, and attempts to address the question of whether in 
addition to sharing the global parameters, it might be 
advantageous to also share some of the speech states.  This is a 
similar idea to sharing phones across languages (which we 
also explore in our experiments), but is more fine-grained. We 
emphasize that although we do the experiments in the SGMM 
framework, the idea of sharing states across languages is 
equally applicable for normal GMM models, although the 
details would be different.  

In the multilingual SGMM framework introduced in [9], the 
target-language and non-target language models are trained at 
the same time (the statistics for updating the shared parameters 
are shared across languages). At a point towards the start of 
training, we decide for each target-language HMM-state 
whether or not it should be shared, and if so select some non-
target-language HMM-state to share it with. We explore two 
techniques: one based on an approximated K-L divergence 
(Section 2.2), and one that uses K-L divergence but also takes 
into account occupation counts (Section 2.3). 

2.2. Minimum K-L divergence principle 
The first of our two methods uses an approximated K-L 
divergence between SGMM states.  The basic method is: for 
each state in the target language, find the “closest” state in 
some non-target language, and if this falls below some 
threshold, share with that state; otherwise leave the state in 
question unshared. The distributions in SGMM states are just a 
special case of Gaussian Mixture Models (GMMs), and 
exactly computing the K-L divergence between GMMs is 
quite hard (e.g. see [10]). However, because there is a 

correspondence between the states of the models (i.e. the index 
i is shared), by making the assumption that the Gaussians are 
“far apart” and there is insignificant overlap in distribution 
between differently numbered Gaussians, we can obtain a 
convenient closed-form expression for the K-L divergence. 
We additionally make the approximation that the Gaussian 
priors are the same across states, i.e. we use a global rather 
than state-specific Gaussian prior. This is quite crude, but our 
main aim was to obtain a distance measure that makes sense; 
we do not believe that the algorithm should be particularly 
sensitive to the exact distance measure used as long as it is 
reasonable. 

The distance measure between SGMM states j and k is 
defined as follows: 
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where ( )p i is the prior on the Gaussian index i , iM  and 

i∑  are the shared projection matrix and Gaussian covariance, 

jv  and kv  are the state-specific parameters of state j and 

k . The prior of Gaussian i  can be defined as: 
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where ( )j
i tγ is the occupation probabilities per-Gaussian and 

per-state as defined in the standard forward-backward or 
Viterbi algorithm [7]. Note that it is possible to simplify (4) 
into an inner product of the difference between the two vectors, 
with a particular matrix, so this distance measure is the same 
as the Euclidean distance in an appropriately pre-scaled space. 
The threshold e controls the amount of shared states, i.e. 
borrowed data. We evaluate this criterion and tie states before 
introducing sub-states, in order to avoid complications arising 
from sub-states. 

The following algorithm summarizes the state-tying 
procedure; the threshold e controls the amount of state tying 
that takes place. The overall training schedule is as described 
in [9]; we applied this algorithm on the second “epoch” of 
training as defined in [9] (an epoch corresponds to eight passes 
over the data). 
Algorithm 2.1 Data Borrowing with Minimum K-L 
Divergence Principle on SGMM 
Follow the SGMM multilingual training schedule, and 
finish the second epoch of the normal SGMM training 

for each state j in the target language do 
for each state k in the non-target languages do 

        calculate the KL divergence ( , )Dis j k  
end for 
select the relative minimum KL divergence  
if the minimum KL divergence is smaller than threshold e
then share the target state j with the non-target state k 
else leave the state j unchanged 
end if 

end for 

2.3. State occupation principle 
We also tried a second approach that makes use of the state 
occupation counts.  The basic intuition is that if there is a large 
amount of data available to train a particular target-language 
state, there is no need to share it with a non-target language 
because the only point of this procedure is to overcome data 



sparsity. The way we apply this intuition is to select a count 
cutoff ε, and to treat target-language states with counts above 
and below this value differently, in that we apply two different 
distance thresholds: a large threshold e2 for states with “small” 
counts and a smaller threshold e1 for states with “large 

counts”. Let the state occupation counts be jγ . 
The modified algorithm is as follows: 
Algorithm 2.2 Refined Data Borrowing with State 
Occupation Principle on SGMM 
Follow the SGMM multilingual training schedule, and 
finish the second epoch of the normal SGMM training 

for each state j in the target language do 
for each state k in the non-target languages do 

        calculate the KL divergence ( , )Dis j k  
end for 
select the relative minimum KL divergence  
if the minimum KL divergence is smaller than KL 

threshold e1 
then 

share the target state j with the non-target state k 
else if the minimum KL divergence is smaller than KL 

threshold e2 (e2 > e1), and the state occupation of state j is 
lower than occupation threshold ε 

then 
share the target state j with the non-target state k 

else 
        leave the state j unchanged 

end if 
end for 

3. Experiments and Results 

3.1. Experimental data and Baseline system 
Our experiments are on the Callhome English, German and 
Spanish databases [11], and are based on those in [9]. The 
conversational nature of speech in Callhome database along 
with high out-of-vocabulary rates, use of foreign words and 
telephone channel distortions make the task of speech 
recognition on this database challenging. 

The database contains 80 spontaneous telephone 
conversations in each of English, German and Spanish, with 
about 15 hours of speech per language to be used as training 
data. To imitate the low-resource application, we select the 
English as the target language and use 1 hour of randomly 
chosen speech from the English corpus as the target-language 
training data. Besides this, we use the entire 15 hours of 
German and 16 hours of Spanish training data. The 20 
conversations of the English evaluation set, roughly containing 
1.8 hours of speech, form our test set. 

The features are 39-dimensional and based on PLP features 
with energy, first and second order deltas, plus per-speaker 
mean and variance normalization. We use a 42-phone set for 
English, 46 for German and 28 for Spanish. We use the 1 hour 
English data to train a baseline HMM-GMM system with only 
550 states and 4 Gaussians per state, and we pool all the three 
languages’ data to train a multilingual HMM-SGMM system 
which has 1500, 1771 and 1623 tied states for English, 
German and Spanish respectively. The number of tied states 
was tuned separately for the GMM baseline and the 
multilingual setup. The number of Gaussian components I is 
400, and dimension of the state-specific vector jv

 
is 40. We 

used the SRILM tools [12] to build a language model which is 
a trigram with a word-list of 62K words obtained by 
interpolating individual models trained from English Callhome 

corpus, the Switchboard corpus [13] and the Gigaword corpus 
[14]. We use the HDecode and Kaldi decoders to decode the 
GMM or SGMM model respectively, and score the results 
with the NIST scoring scripts. 

The first two lines of Table 1 summarize the HMM-GMM 
baseline and HMM-SGMM baseline results for our 
experiments. It is clear that the multilingual SGMM approach 
gives substantial improvement (more than 10% absolute). This 
is the approach previously reported in [9]. 

3.2. Data borrowing at the SGMM state-level 
We first construct the initial multilingual SGMM model, and 
finish the first two epochs of the normal SGMM training. Then 
we apply the Minimum KL Divergence Principle of Algorithm 
2.1 to calculate the distances between the states of target 
language and the states of borrowed languages, German and 
Spanish. We vary the threshold to control the quantity of 
ultimately shared states. The number of states coming from 
German versus Spanish as we vary the threshold e is 
illustrated in Fig. 1; German contributes more states than 
Spanish, as one would expect from its closer linguistic 
relationship to English. The difference between German and 
Spanish in this regard suggests that for this technique to work 
it may be important to select non-target languages that are 
linguistically close to the target language. 

 
Figure 1: Distribution by language of borrowed states 
using Minimum KL Divergence Principle. 

 
Figure 2: WER as number of borrowed states is increased, 

using Minimum KL Divergence Principle. 
 
When we decide the final shared states between the target 

and non-target languages, we edit the HMM-state level 
training transcription obtained by Finite State Acceptors [15] 
and pool the real target data and borrowed data to train these 
shared states. Then we finish the later epochs of SGMM 
training including updating individual parameters and splitting 



sub-states as normal. We varied the number of shared states to 
investigate the performance of the SGMM system using 
Minimum KL Divergence Principle. 

Fig.2 shows how the WER changes as we vary the threshold 
e (we plot WER against the number of borrowed states). The 
WER initially decreases, but then increases again if we 
combine states too aggressively. We get the best performance 
when about 20% of target-language states are shared. 

Lines 3 and 4 of Table 1 compare two different methods of 
sharing states: the Minimum KL Divergence Principle 
(Algorithm 2.1) and the State Occupation Principle (Algorithm 
2.2). We get about 1.2% absolute WER improvement from the 
Minimum KL Divergence principle, and 1.7% with the State 
Occupation Principle, which validates our intuition that it 
makes more sense to share target-language states with small 
data counts. In each case we tuned the number of shared states 
to minimize WER, which resulted in about 250 and 200 states 
shared respectively. We applied the matched-pairs significance 
test described in [16], and in either case the improvement 
versus the SGMM baseline was statistically significant1 at the 
chosen confidence level of 99.5%. 

Table 1. Performance comparison of different systems 
using only 1 hour of target language data 

System description WER
1. Conventional HMM-GMM 72.57%
2. SGMM 61.74%
3. SGMM + data borrowing Algorithm 2.1 60.55%
4. SGMM + data borrowing Algorithm 2.2 60.02%
5.SGMM + sharing states within target language 61.88%
6.SGMM + data borrowing on the phone level 
from non-target languages 

62.59%

 
In order to verify that the effect we were seeing was a 

genuinely “cross-language” effect and not simply a gain from 
post-clustering the states obtained by HTK’s state clustering 
procedure, we did the experiment in line 5 where we applied 
Algorithm 2.1 to share states, but only within the target 
language and not across languages. This degraded 
performance, which confirms that the improvements we were 
seeing were not explainable in this way. 

We also attempted to use a more conventional method based 
on tying phones across languages; this experiment is in line 6. 
We used the State Time Alignment (STA) algorithm described 
in [17], but replacing the Bhattacharya distance with the K-L 
divergence for consistency with the current experiments; we 
tuned it to share 20% of the target-language phones in order to 
be comparable to our state-tying experiments. This results in a 
degradation. The conclusion we draw from this is that data 
sharing across languages can be helpful, but phones are a too-
coarse level at which to tie, and it is better to tie the context-
dependent states.  

4. Conclusions 
In this paper, we present our work on a data borrowing 
strategy for low-resource speech application. We performed 
experiments based on the recently proposed Subspace 
Gaussian Mixture Model (SGMM). The SGMM has an 
inherent mechanism of tying data across languages because it 
has a large number of globally shared (not language-specific) 

                                                                 
 
1This significance test is not completely valid since we tuned the number of 
states borrowed on the test set, but it at least shows that the improvements are of 
a magnitude that is potentially significant 

parameters, but we wanted to investigate whether, in addition 
to this mechanism, we could apply a method based on cross-
language state tying to further improve results. We looked at 
the scenario where we have 1 hour of in-language data 
together with a larger amount of out-of-language data. We 
were able to get improvements from state tying of about 1.7% 
absolute. While this is smaller than the original improvements 
of the SGMM over the HMM-GMM baseline, it is still 
substantial. We showed that it is possible to improve results by 
tying states across languages, and our results seem to indicate 
that it is important to select linguistically close languages to do 
this tying, and that it is important to tie parameters at the 
context-dependent state level rather than at the phone level. 
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