
REVISITING SEMI-CONTINUOUS HIDDEN MARKOV MODELS

K. Riedhammer1, T. Bocklet1, A. Ghoshal2,3, D. Povey4

1Pattern Recognition Lab, University of Erlangen-Nuremberg, GERMANY
2Spoken Language Systems, Saarland University, GERMANY

3Centre for Speech Technology Research, University of Edinburgh, UK
4Microsoft Research, Redmond, WA, USA

korbinian.riedhammer@informatik.uni-erlangen.de

ABSTRACT

In the past decade, semi-continuous hidden Markov models (SC-
HMMs) have not attracted much attention in the speech recognition
community. Growing amounts of training data and increasing so-
phistication of model estimation led to the impression that continu-
ous HMMs are the best choice of acoustic model. However, recent
work on recognition of under-resourced languages faces the same
old problem of estimating a large number of parameters from lim-
ited amounts of transcribed speech. This has led to a renewed in-
terest in methods of reducing the number of parameters while main-
taining or extending the modeling capabilities of continuous mod-
els. In this work, we compare classic and multiple-codebook semi-
continuous models using diagonal and full covariance matrices with
continuous HMMs and subspace Gaussian mixture models. Experi-
ments using on the RM and WSJ corpora show that while a classical
semi-continous system does not perform as well as a continuous one,
multiple-codebook semi-continuous systems can perform better, par-
ticular when using full-covariance Gaussians.

Index Terms— automatic speech recognition, acoustic model-
ing

1. INTRODUCTION

In the past years, semi-continuous hidden Markov models (SC-
HMMs) [1], in which the Gaussian means and variances are shared
among all the HMM states and only the weights differ, have not
attracted much attention in the automatic speech recognition (ASR)
community. Most major frameworks (e.g. CMU SPHINX or HTK)
have more or less retired semi-continuous models in favor of contin-
uous models, which performed considerably better with the growing
amount of available training data.

We were motivated by a number of factors to look again at semi-
continuous models. One is that we are interested in applications
where there is a small amount of training data (or a small amount of
in-domain training data), and since in semi-continuous models the
amount of state-specific parameters is relatively small, we felt that
they might have an advantage there. We were also interested in im-
proving the open-source speech recognition toolkit KALDI [2], and
felt that since a multiple-codebook form of semi-continous models
is, to our knowledge, currently being used in a state-of-the-art sys-
tem [3], we should implement this type of model. We also wanted
to experiment with the style of semi-continous system described in
[4, 5], particularly the smoothing techniques, and see how these
compare against a more conventional system. Lastly, we felt that
it would be interesting to compare semi-continous models with Sub-

space Gaussian Mixture Models (SGMMs) [6], since there are obvi-
ous similarities.

In the experiments we report here we have not been able to
match the performance of a standard diagonal GMM based system
using a traditional semi-continuous system; however, using a two-
level tree and multiple codebooks similar to [3], in one setup we
were able to get better performance than a traditional system (al-
though not as good as SGMMs). For both traditional and multiple-
codebook configurations, we saw better results with full-covariance
codebook Gaussians than with diagonal. We investigated smoothing
the statistics for weight estimation using the decision tree, and saw
only modest improvements. We note that the software used to do the
experiments is part of the KALDI speech recognition toolkit [2] and
is freely available for download, along with the example scripts to
reproduce these results.

In Section 2 we describe the traditional and tied-mixture mod-
els, as well as the multiple-codebook variant of the tied system, and
describe some details of our implementation, such as how we build
the two-level tree. In Section 3 we describe two different forms of
smoothing of the statistics, which we experiment with here. In Sec-
tion 4 we describe the systems we used (we are using the Resource
Management and Wall Street Journal databases); in Section 5 we
give experimental results, and we summarize in Section 6.

2. ACOUSTIC MODELING

In this section, we summarize the different forms of acoustic model
we use: the continuous, semi-continuous, multiple-codebook semi-
continuous, and subspace forms of Gaussian Mixture Models. We
also describe the phonetic decision-tree building process, which is
necessary background for how we build the multiple-codebook sys-
tems.

2.1. Acoustic-Phonetic Decision Tree Building

The acoustic-phonetic decision tree provides a mapping from a pho-
netic context window (e.g. a triphone), together with a HMM-state
index, to an emission probability density function (pdf). The statis-
tics for the tree clustering consist of the sufficient statistics needed to
estimate a Gaussian for each seen combination of (phonetic context
window, HMM-state). These statistics are based on a Viterbi align-
ment of a previously built system. The roots of the decision trees
can be configured; for the RM experiments, these correspond to the
phones in the system, and on Wall Street Journal, they correspond to
the “real phones”, i.e. grouping different stress and position-marked
versions of the same phone together.



The splitting procedure can ask questions not only about the con-
text phones, but also about the central phone and the HMM state;
the questions about phones are derived from an automatic clustering
procedure. The splitting procedure is greedy and optimizes the like-
lihood of the data given a single Gaussian in each tree leaf; this is
subject to a fixed variance floor to avoid problems caused by single-
ton counts and numerical roundoff. We typically split up to a spec-
ified number of leaves and then cluster the resulting leaves as long
as the likelihood loss due to combining them is less than the likeli-
hood improvement on the final split of the tree-building process; and
we restrict this clustering to disallow combining leaves across differ-
ent subtrees (e.g., from different monophones). The post-clustering
process typically reduces the number of leaves by around 20%.

2.2. Continuous Models

For continuous models, every leaf of the tree is assigned a separate
Gaussian mixture model. Formally, the emission probability of tree
leaf j is computed as

p(x|j) =

NjX
i=1

cjiN (x; µji,Σji) (1)

where Nj is the number of Gaussians assigned to j, and the µji and
Σji are the means and covariance matrices of the mixtures.

We initialize the mixtures with a single component each, and
subsequently allocate more components by splitting components at
every iteration until a pre-determined total number of components is
reached. We allocate the Gaussians proportional to a small power
(e.g. 0.2) of the state’s occupation count.

2.3. Semi-continuous Models

The idea of semi-continuous models is to have a large number of
Gaussians that are shared by every tree leaf using individual weights,
thus the emission probability of tree leaf j can be computed as

p(x|j) =

NX
i=1

cji N (x; µi,Σi) (2)

where cji is the weight of mixture i for leaf j. As the means and
covariances are shared, increasing the number of states only implies
a small increase in number of parameters even for full-covariance
Gaussians. Furthermore, the Gaussians need to be evaluated only
once for each x.

Another advantage is the initialization and use of the codebook.
It can be initialized and adapted in a fully unsupervised manner us-
ing expectation maximization (EM), maximum a-posteriori (MAP),
maximum likelihood linear regression (MLLR) and similar algo-
rithms on untranscribed audio data.

For better performance, we initialize the codebook using the tree
statistics collected on a prior phone alignment. For each tree leaf,
we include the respective Gaussian as a component in the mixture.
The components are merged and (if necessary) split to eliminate low
count Gaussians and to match the desired number of components. In
a final step, 5 EM iterations are used to improve the goodness of fit
to the acoustic training data.

2.4. Multiple-Codebook Semi-continuous Models

A style of system that lies between the semi-continuous and con-
tinuous types of systems is one based on a two-level tree; this is

described in [3] as a state-clustered tied-mixture (SCTM) system.
The way we implement this is to first build the decision tree used
for phonetic clustering to a relatively coarse level (e.g. 100 leaves).
Each leaf of this tree corresponds to a codebook of Gaussians, i.e. the
Gaussian parameters are tied at this level. The leaves of this tree are
then split further to give a more fine-grained clustering (e.g. 2500
leaves), where for each new leaf we remember which codebook it
corresponds to. The leaves of this second tree correspond to the ac-
tual context-dependent HMM states and contain the weights. For
this type of system we do not apply any post-clustering.

The way we formalize this is that the context-dependent states
j each have a corresponding codebook indexed k, and the function
m(j) → k maps from the leaf index to the codebook index. The
likelihood function is now

p(x|j) =

Nm(j)X
i=1

cjiN
`
x; µm(j),i,Σm(j),i

´
(3)

where µm(j),i is the i-th mean vector of the codebook associated
with j.

Similar to the traditional semi-continuous codebook initializa-
tion, we start from the tree statistics and distribute the Gaussians to
the respective codebooks using the tree mapping to obtain prelim-
inary codebooks. The target size Nk of codebook k is determined
with respect to the occupancies of the respective leaves as

Nk = N0 +

P
l∈{m(l)=k} occ(l)P

r

P
t∈{m(t)=r} occ(l)

(N −K ·N0) (4)

where N0 is a minimum number of Gaussians per codebooks (e.g.,
3), N is the total number of Gaussians, K the number of codebooks,
and occ(j) is the occupancy of tree leaf j. The target sizes of the
codebooks are again enforced by either splitting or merging the com-
ponents.

2.5. Subspace Gaussian Mixture Models

The idea of subspace Gaussian mixture models (SGMM) is, simi-
lar to semi-continuous models, to reduce the number of parameters
by selecting the Gaussians from a subspace spanned by a universal
background model (UBM) and state specific transformations. The
SGMM emission pdfs can be computed as

p(x|j) =

NX
i=1

cjiN (x; µji,Σi) (5)

µji = Mivj (6)

cji =
expwT

i vjPN
l expwT

l vj

(7)

where the covariance matrices Σi are shared between all leaves j.
The weights wji and means µji are derived from vj together with
Mi and wi. The term “subspace” indicates that the parameters of the
mixtures are limited to a subspace of the entire space of parameters
of the underlying codebook. A detailed description and derivation of
the accumulation and update formulas can be found in [6]. Note that
the experiments in this article are without adaptation.



3. SMOOTHING TECHNIQUES FOR SEMI-CONTINUOUS
MODELS

3.1. Intra-Iteration Smoothing

Although an increasing number of tree leaves does not imply a huge
increase in parameters, the estimation of weights at the individual
leaves suffer from data fragmentation, especially when training mod-
els with small amounts of data. The intra-iteration smoothing is mo-
tivated by the fact that tree leaves that share the root are similar, thus,
if the sufficient statistics of the weights of a leaf j are very small,
they should be interpolated with the statistics of closely related leaf
nodes. To do so, we first propagate all sufficient statistics up the tree
so that the statistics of any node is the sum of its children’s statistics.
Second, the statistics of each node and leaf are interpolated top-down
with their parent’s statistics using an interpolation weight τ :

γ̂ji ←

 
γji +

τ`P
k γp(j),k

´
+ ε

γp(j),i

!
| {z }

:=γ̄ji

·
P

k γjkP
k γ̄jk| {z }

normalization

, (8)

where γji is the occupancy of the i component in tree leaf j and p(j)
is the parent node of j. For two-level tree based models, the propaga-
tion and interpolation cannot be applied across different codebooks.
A similar interpolation scheme without normalization was used in
[4, 5] along with a different tree structure.

3.2. Inter-Iteration Smoothing

Another typical problem that arises when training semi-continuous
models is that the weights tend to converge to a poor local optimum
over the iterations. Our intuition is that the weights tend to overfit
to the Gaussian parameters in such a way that the model quickly
converges with the GMM parameters very close to the initialization
point. To try to counteract this effect, we smooth the newly estimated
parameters Θ(i+1) with the ones from the prior iteration using an
interpolation weight ρ

Θ̂(i) ← (1− ρ)Θ(i) + ρ Θ(i−1) (9)

which leads to an exponentially decreasing impact of the initial pa-
rameter set. We implemented this for all the parameters but found
it only helped when applied to just the weights, which is consistent
with our interpretation that stopping the weights from overfitting too
fast allows the Gaussian parameters to move farther away from the
initialization than they otherwise would. We note that other prac-
titioners have also used mechanisms that prevent the weights from
changing too fast and have found that this improved results1.

4. SYSTEM DESCRIPTIONS

The experiments presented in this article used the DARPA Resource
Management Continuous Speech Corpus (RM) [7] and the Wall
Street Journal Corpus [8].

For both data sets, we first train an initial monophone continuous
system with about 1000 diagonal Gaussians (122 states) on a small
data subset; with the final alignments, we train an initial triphone
continuous system with about 10000 Gaussians (1600 states). The
alignments of this triphone system are used as a basis for the actual
system training.

1Jasha Droppo, personal communication.

Note that this baseline may be computed on any other (reduced)
data set and has the sole purpose of providing better-than-linear ini-
tial alignments to speed up the convergence of the models. The de-
tails of the model training can also be found in the KALDI recipes.

For the acoustic frontend, we extract 13 Mel-frequency cepstral
coefficients (MFCCs), apply cepstral mean normalization, and com-
pute deltas and delta-deltas. For decoding, we use the language mod-
els supplied with those corpora; for RM this is a word-pair grammar,
and for WSJ we use the bigram version of the language models sup-
plied with the data set.

4.1. Resource Management

For the RM data set, we train on the speaker independent training and
development set (about 4000 utterances) and test on the six DARPA
test runs Mar and Oct ’87, Feb and Oct ’89, Feb ’91 and Sep ’92
(about 1500 utterances total). The parameters are tuned to this joint
test set since there was not enough data to hold out a development
set and still get meaningful results. We use the following system
identifiers in Table 1:

• cont: continuous triphone system using 9011 diagonal covari-
ance Gaussians in 1480 tree leaves

• semi: semi-continuous triphone system using 768 full covari-
ance Gaussians in 2500 tree leaves, no smoothing (explana-
tions later).

• 2lvl: two-level tree based semi-continuous triphone sys-
tem using 3072 full covariance Gaussians in 208 code-
books (4/14.7/141 min/average/max components), 2500
tree leaves, τ = 35 and ρ = 0.2.

• sgmm: subspace Gaussian mixture model triphone system us-
ing a 400 full-covariance Gaussian background model and
2016 tree leaves.

4.2. WSJ

Due to time constraints, we trained on half of the SI-84 training set
using settings similar to the RM experiments; we tested on the eval
’92 and eval ’93 data sets. As the classic semi-continuous system did
not yield good performance on the RM data both in terms of run-time
and performance, we omitted it for the WSJ experiments. Results
corresponding to the following systems are presented in Table 3:

• cont: continuous triphone system using 10000 diagonal co-
variance Gaussians in 1576 tree leaves.

• 2lvl: same configuration as for RM (no further tuning).

• sgmm: subspace Gaussian mixture model triphone system us-
ing a 400 full-covariance Gaussian background model and
2361 tree leaves.

5. RESULTS

5.1. RM

The results on the different test sets on the RM data are displayed
in Table 1. The classic semi-continuous system shows the worst
performance of the four, which serves to confirm the conventional
wisdom about the superiority of continous systems. The two-level
tree based multiple-codebook system performance lies in between
the continuous and SGMM system.

Keeping the number of codebooks and leaves as well as the
smoothing parameters τ and ρ of 2lvl constant, we experiment with



ma87 oc87 fe89 oc89 fe91 se92 avg
cont 1.08 2.48 2.69 3.46 2.66 5.90 3.38
semi 1.80 3.19 4.72 4.62 4.15 6.88 4.66
2lvl 0.48 1.70 2.46 3.35 1.89 5.31 2.90
sgmm 0.48 2.20 2.62 2.50 1.93 5.12 2.78

Table 1. Detailed recognition results in % WER for the six DARPA
test sets using different acoustic models on the RM data set.

covariance Gaussians none inter intra both
full 1024 3.70 3.64 3.79 3.74
full 3072 3.01 3.01 3.02 2.90

diagonal 3072 4.13 4.15 4.25 4.35
diagonal 9216 3.22 3.09 3.28 3.20

Table 2. Average % WER of the multiple-codebook semi-
continuous model using different numbers diagonal and full covari-
ance Gaussians, and different smoothings on the RM data. Settings
are 208 codebooks, 2500 context dependent states; τ = 35 and
ρ = 0.2 if active.

the number of Gaussians and type of covariance; the results are dis-
played in Table 2. Interestingly, the full covariances make a strong
difference: Using the same number of Gaussians, full covariances
lead to a significant improvement. On the other hand, a substantial
increase of the number of diagonal Gaussians leads to a similar per-
formance as the regular continuous system. The effect of the two
smoothing methods using τ and ρ is not clear from Table 2, i.e. the
results are not always consistent. While the inter-iteration smoothing
with ρ helps in most cases, the intra-iteration smoothing coefficient
τ shows an inconsistent effect. In the future we may abandon this
type of smoothing or investigate other smoothing methods.

5.2. WSJ

The results on the different test sets on the WSJ data are displayed
in Table 1. Using the parameters calibrated on the RM test data, the
2lvl system performance is not as good as the continuous or GMM
systems, but still in a similar range while using about the same num-
ber of leaves but about a third of the Gaussians. Once the number of
Gaussians and leaves, as well as the smoothing parameters are tuned
on the development set, we expect the error rates to be in between
the continuous and SGMM systems, as seen on the RM data.

eval ’92 eval ’93 avg
cont 12.75 17.10 14.39
2lvl/none 12.92 17.85 14.79
2lvl/intra 13.03 17.56 14.61
2lvl/inter 12.80 17.59 14.61
2lvl/both 13.01 17.59 14.75
sgmm 11.72 14.25 12.68

Table 3. Detailed recognition results in % WER for the ’92 and ’93
test sets using different acoustic models on the WSJ data; the 2lvl
system was trained with and without the different interpolations.

6. SUMMARY

In this article, we compared continuous and SGMM models with
two types of semi-continuous hidden Markov models, one using a
single codebook and the other using multiple codebooks based on a
two-level phonetic decision tree, similar to [3]. Using the single-
codebook system we were not able to obtain competitive results,
but using a multiple-codebook system we were able to get better re-
sults than a traditional system, for one database (RM). Interestingly,
for both the single-codebook or multiple-codebook systems, we saw
better results with full rather than diagonal covariances.

Our best multiple-codebook results reported here incorporate
two different forms of smoothing, one using the decision tree to
interpolate count statistics among closely related leaves, and one
smoothing the weights across iterations to encourage convergence
to a better local optimum. In future work we intend to further inves-
tigate these smoothing procedures and clarify how important they
are.

If we continue to see good results from these types of systems,
we may investigate ways to speed up the Gaussian computation for
the full-covariance multiple-codebook tied mixture systems (e.g.
using diagonal Gaussians in a pre-pruning phase, as in SGMMs).
To get state-of-the-art error rates we would also have to implement
linear-transform estimation (e.g. Constrained MLLR for adapta-
tion) for these types of models. We also intend to investigate the
interaction of these methods with discriminative training and system
combination; and we will consider extending the SGMM framework
to a two-level architecture similar to the one we used here.

7. REFERENCES

[1] X.D. Huang and M.A. Jack, “Semi-continuous hidden Markov
models for speech signals,” Computer Speech and Language,
vol. 3, no. 3, pp. 239–251, 1989.

[2] D. Povey, A. Ghoshal, et al., “The Kaldi Speech Recognition
Toolkit,” in Proc. IEEE Workshop on Speech Recognition and
Understanding (ASRU), 2011.

[3] R. Prasad, S. Matsoukas, C.L. Kao, J.Z. Ma, D.X. Xu,
T. Colthurst, O. Kimball, R. Schwartz, J.L. Gauvain, L. Lamel,
et al., “The 2004 BBN/LIMSI 20xRT English conversational
telephone speech recognition system,” in Ninth European Con-
ference on Speech Communication and Technology, 2005.

[4] E.G. Schukat-Talamazzini, T. Kuhn, and H. Niemann, “Speech
Recognition for Spoken Dialog Systems,” in Progress and
Prospects of Speech Research and Technology in Proc. Artifi-
cial Intelligence, H. Niemann, R. De Mori, and G. Hanrieder,
Eds., 1994, pp. 110–120.

[5] E.G. Schukat-Talamazzini, Automatische Spracherkennung –
Grundlagen, statistische Modelle und effiziente Algorithmen,
Vieweg, Braunschweig, Germany, 1995.

[6] D. Povey, L. Burget, M. Agarwal, P. Akyazi, F. Kai, A. Ghoshal,
O. Glembek, N. Goel, M. Karafiát, A. Rastrow, R. Rose,
P. Schwarz, and S. Thomas, “The subspace Gaussian mixture
model - A structured model for speech recognition,” Computer
Speech and Language, vol. 25, pp. 404–439, 2011.

[7] P. Price, W.M. Fisher, J. Bernstein, and D.S. Pallett, “Resource
Management RM1 2.0,” Linguistic Data Consortium, Philadel-
phia, USA, 1993.

[8] J. Garofalo et al., “CSR-I,II (WSJ0,1) Complete,” Linguistic
Data Consortium, Philadelphia, USA, 2007.


