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ABSTRACT

We propose a simple but effective weighted finite state
transducer (WFST) based framework for handling out-of-
vocabulary (OOV) keywords in a speech search task. State-
of-the-art large vocabulary continuous speech recognition
(LVCSR) and keyword search (KWS) systems are developed
for conversational telephone speech in Tagalog. Word-based
and phone-based indexes are created from word lattices, the
latter by using the LVCSR system’s pronunciation lexicon.
Pronunciations of OOV keywords are hypothesized via a
standard grapheme-to-phoneme method. In-vocabulary prox-
ies (word or phone sequences) are generated for each OOV
keyword using WFST techniques that permit incorporation of
a phone confusion matrix. Empirical results when searching
for the Babel/NIST evaluation keywords in the Babel 10 hour
development-test speech collection show that (i) searching
for word proxies in the word index significantly outperforms
searching for phonetic representations of OOV words in a
phone index, and (ii) while phone confusion information
yields minor improvement when searching a phone index, it
yields up to 40% improvement in actual term weighted value
when searching a word index with word proxies.

Index Terms— Speech Recognition, Keyword Search,
OOV Keywords, Proxy Keywords, Low Resource LVCSR.

1. SEARCHING FOR OOV WORDS IN SPEECH

Keyword search (KWS) for spoken documents has become
more and more important nowadays as large speech reposi-
tories, such as oral history archives [1, 2] and online lectures
[3, 4] are easily accessible. However, searching for keywords
in spoken documents remains a changeling problem. Manual
transcription of speech is usually prohibitively expensive, and
given the amount of the spoken material available online, it is
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impractical to manually transcribe any nontrivial portion for
search. Therefore, automatic KWS is highly desirable. State-
of-the-art KWS systems usually rely on the large vocabulary
continuous speech recognition (LVCSR) systems [5, 6]. In
such systems, lattices of speech segments in the search col-
lection are generated. An inverted index (postings list) is then
created from the lattices. KWS may then be performed by
searching for a given keyword via the inverted index. The
KWS task is ideally “open vocabulary.” However, LVCSR
systems typically have a fixed vocabulary [7], making it im-
possible to search for out-of-vocabulary (OOV) words. One
therefore uses as large an LVCSR vocabulary as feasible.

We are interested in KWS in low resource settings, where
only limited resources are available to develop the LVCSR
system, e.g. 10 hours of transcribed speech corresponding
to about 100K words of transcribed text, and a pronunciation
lexicon that covers only the words in the training text. Due to
the low coverage of the pronunciation lexicon, the rate of en-
countering OOV keyword could be as large as 50%, leaving a
lot of room for improvement over word-based KWS methods.

One way to minimize the OOV problem is to preemp-
tively expand the the LVCSR lexicon. In other words, one
adds automatically generated pronunciations of a large num-
ber of words in the LVCSR lexicon before lattice generation
and indexation. In [6] it is shown that if one can anticipate the
OOV keywords ahead of time, such a method leads to remark-
able improvement in KWS performance. However, advance
knowledge of all possible keywords is rarely the typical oper-
ating condition for KWS systems.

Another way to handle OOV keywords is via sub-word
units such as phones, syllables or word-fragments. A sub-
word index is created by either generating a sub-word lattice
[8, 9, 10], or by converting a word lattice into a sub-word lat-
tice with or without the use of an appropriate phone confusion
matrix [11]. OOV keywords are represented as sequences of
sub-word units, and matched against the sub-word index.

The idea of query expansion in text retrieval has also been
adopted to tackle the OOV problem in speech search. A con-
fusion matrix is used in [12, 13, 7, 14] to generate alternative
words or syllables for OOV keywords, and a word or syllable
index is searched for them instead of the original keywords.
Unlike the idea of query expansion in text retrieval, wherein



one augments a possibly unseen keyword with other key-
words that are semantically similar (e.g. synonyms), speech
search entails other keywords that are acoustically similar.
We will therefore call them proxy keywords in this paper.

Our work is most similar to that of [7], where proxy key-
words are created using a phone confusion matrix. However,
instead of searching for the proxy keywords in an n-best list
generated by the LVCSR system, we introduce a weighted
finite state transducer (WFST) based framework for directly
matching multiple proxies against entire LVCSR lattices. We
further demonstrate that using word proxies with the word in-
dex usually outperforms searching for OOV words in a con-
verted phone index.

The rest of the paper is organized as follows. We describe
our WFST based framework for proxy keywords generation
in Section 2, and our KWS pipeline in Section 3. The exper-
imental setup, results and some discussion follow in Section
4. Section 5 closes with some conclusions.

2. PROXY KEYWORD GENERATION

Let K represent a finite-state acceptor for an OOV keyword,
and L2 a finite state transducer for the pronunciation of the
OOV keyword; e.g. pronunciations hypothesized via the
joint-sequence model implemented in Sequitur software [15].
Let E be an edit-distance transducer that maps a phone se-
quence to any other phone sequence with costs estimated
from a phone confusion matrix. Let L1 denote the pronuncia-
tion lexicon of the LVCSR system. Our WFST procedure for
generating a proxy keyword K ′ may be described as,

K ′ = Project
(
ShortestPath

(
K ◦ L2 ◦ E ◦ (L∗1)−1

))
. (1)

This framework is similar to the method proposed in [6],
where Levenshtein distance was used as the cost in E. Other
phone confusion costs can easily be encoded in E, as we will
do in this paper. The WFST based framework also makes
it possible to convey the confusion cost to the final stage in
which retrieved keywords are sorted for presentation to a user.
Finally, the WFST framework supports both phone and word
proxies, as will be explain below.

2.1. Sequitur Pronunciation Generation (L2)

Pronunciations for OOV keywords are automatically obtained
with the use of the Sequitur G2P software [15]. This method
is based on automatically aligning graphemes and phonemes
in a set of training examples of words+pronunciations to cre-
ate “graphones,” and building a joint multigram model of gra-
phone sequences. Our model is trained on the baseline Babel
low resource Tagalog lexicon containing 5.5K word pronun-
ciation pairs. Pronunciations of an OOV keyword are “read
off” the most likely graphone sequences corresponding to the
grapheme sequence of the keyword.

2.2. Phone Confusion Matrix Estimation (E)

The phone confusion probabilities needed for E are obtained
through standard maximum likelihood estimation. Training
data for these conditional probabilities are collected by align-
ing the reference phone string for some held-out speech to the
phone string corresponding its ASR hypothesis. The align-
ment maximizes the phone matching rate. A small subset of
the development-test speech is utilized for this. Deletions and
insertions are treated separately from phone substitutions, so
that high rates of deletions and insertions will not adversely
affect the estimation of E.

Fig. 1. Example of a phone confusion encoding transducer E.

These phone confusion statistics are encoded in the edit-
distance transducer, as illustrated in Figure 1.

2.3. Using Proxies of OOV Keywords with a Phone Index

Since languages usually have a closed phone set, a KWS sys-
tem based on a phone index may be considered open vocabu-
lary. Furthermore, as claimed in [14], adding phone confusion
to either the index or the phoneme representation K ◦ L2 of
the (OOV) keyword can help improve KWS performance. To
generate such phone proxies in our framework requires only
a minor modification of (1) as,

K ′′ = Project (ShortestPath (K ◦ L2 ◦ E)) . (2)

A phone index, however, represents a much larger search
space by removing lexical constraints. Therefore phone-
based KWS systems often suffer higher false alarm rates.

2.4. Improving the Word Proxy Generation of [6]

Instead of searching for phone proxies K ′′ of an OOV key-
word K in a phone index, we can generate word proxies K ′

and search directly against a word index. The obvious ad-
vantage is that we do not have to keep a separate index for



OOV keywords — they share the index with the in-vocabulary
(IV) keywords. Another potential advantage is that by impos-
ing the lexical constraints on the permissible phone sequence
via L∗1, the search space is greatly limited, which may reduce
false alarms.

However, there is a disadvantage of using (1) to generate
word proxies, as illustrated by the following made-up En-
glish example. Suppose balloon ≡ /B AH L UW N/
is an OOV word, but some ≡ /S AX M/, Samba ≡
/S AA M B AH/ and loon ≡ /L UW N/ are IV words.
If the decoder encounters the sequence some balloon in
the speech, it may hypothesize the word sequence Samba
loon in that location. Now, generating K ′ = Samba loon
from K = baloon by (1) requires E to insert 3 phones
/S AA M/, while generating K ′ = loon requires E to
delete 2 phones /B AH/. So both appear to be poor proxies,
even though a perfect phone match for K exists in the lattice!

To address the problem described in the previous exam-
ple, we modify the edit-distance transducer of Figure 1 to the
transducer E′ shown in Figure 2.

Fig. 2. Modified phone confusion encoding transducer E′,
with freer edits permitted at the keyword-boundary.

In this modified transducer, insertions and deletions at
the boundaries of the keyword K are allowed at a lower
cost, making search-by-word-proxy closer to phonetic search,
while still retaining lexical constraint on the phone sequence
of K ′. Word proxies are thus generated as,

K ′ = Project
(
ShortestPath

(
K ◦ L2 ◦ E′◦ (L∗1)−1

))
. (3)

Note that the ShortestPath algorithm can be computationally
expensive on large WFSTs. We therefore resort to pruning in
the ShortestPath algorithm as needed.

2.5. On the Language Model Score of the Proxies

The proxy generation process (3) takes acoustic confusion
into account, so that occurrences of K ′ in the index are good
candidates for actual occurrences of K. But the word lattices
from which the index was created contain both acoustic and
language model scores. The language model score for K ′ is

arguably not appropriate for comparing/sorting these occur-
rences. We will evaluate the impact of retaining/discarding
this score in Section 4.

3. KEYWORD SEARCH PIPELINE

Our KWS pipeline is comprised of two major parts: lattice
generation and lattice indexation. We build our pipeline using
the open source toolkit Kaldi [16], which includes all the nec-
essary tools for building and using an LVCSR system, as well
as OpenFST [17] based indexation tools created for this work.
All the code and scripts needed to reproduce the experiments
in this paper have been checked into the Kaldi repository on
SourceForge.

3.1. The Kaldi-based LVCSR System for Tagalog

We use the IARPA Babel Tagalog language collection re-
lease babel106b-v0.2g-sub-train, which contains
10 hours of transcribed conversational telephone speech and
a 5.5K pronunciation lexicon that covers the training tran-
scripts, to build our LVCSR system. This setting simulates
typical low resource conditions. In addition to the 10 hours
of training data, the Babel Tagalog collection also provides
a 10 hour dataset of conversational telephone speech for
development-testing. We use these 10 hours of speech data as
our search collection. A small (1.5 hour) subset of it is also
used for tuning a handful of parameters, such as the language
model scale factor.

Standard PLP analysis is employed to extract 13 dimen-
sional acoustic feature, and a maximum likelihood acoustic
training recipe is followed to train speaker adaptive models.
This is followed by the training of a universal background
model from speaker-transformed data, which is then used to
train a subspace Gaussian mixture model (SGMM). Finally,
all the training speech is decoded using the SGMM system,
and boosted maximum mutual information (BMMI) training
of the SGMM parameters is performed.

The language model is trained using the SRILM tools
[18]. A trigram language model with Good Turing smooth-
ing is used. The model order, smoothing method and count-
cutoffs are selected to minimize the perplexity of the 1.5 hour
subset mentioned above.

Word lattices are generated with the SGMM+BMMI
model using the Kaldi decoder. To support the creation of a
phone index, the word latices are converted to phone lattices;
no separate phone decoding is performed.

3.2. OpenFST-based System for Indexation and KWS

We implement the lattice indexation algorithm of [19] within
the Kaldi suite. Specifically, the lattice of each utterance
is converted into a finite-state acceptor with the posterior
score, start-time and end-time for each word encoded as a



3805 keywords in 106b-v0.2g conv-eval.kwlist2.xml
1736 in-vocab keywords 2069 OOV keywords

1067 669 670 1399
Found in Dev Not in Dev Found in Dev Not in Dev

Table 1. Keyword statistics relative to the LVCSR lexicon
and the Dev speech transcripts (search collection).

3-dimensional weight. An inverted index is then created from
these individual acceptors, with paths to accept every possible
word sequence in the original lattices. By applying standard
WFST operations, one can work out the posterior score, start-
and end-time of each occurrence of a word sequence.

To carry out KWS, keywords (which include multiword
key-phrases) are typically compiled into linear acceptors K.
By composing the acceptor K with the inverted index, one
obtains the posterior score, start- and end-time of each occur-
rence of that keyword. The keyword acceptors do not have
to be linear acceptors. They can be any acceptor, as long as
each path in the acceptor represents a meaningful keyword or
keyword phrase, such as the acceptor K ′ of (3) that represents
multiple proxies for K. Furthermore, weights can be encoded
in the keyword acceptors (such as the edit-distance supplied
by E′) if a single keyword has more than one representation.

Finally, a YES/NO decision is made according to the pos-
terior scores from the search. We apply a keyword specific
threshold proposed in [20], which uses the expected count of
the keyword to estimate the number of the “true hits” in the
formula for the actual term weighted value (ATWV). ATWV
is computed using the NIST scoring tool F4DE.

4. EMPIRICAL EVALUATION OF KWS BY PROXY

4.1. Experimental Setup

We use babel106b-v0.2g conv-eval.kwlist2.xml,
the keyword list provided by NIST for the IARPA Babel Base
Phase evaluation in Spring 2013, and the Babel Tagalog
lexicon release babel106b-v0.2g-sub-train to des-
ignate a subset of the keywords as OOV. The search collection
is the 10 hours of development-test data mentioned above.

Keyword occurrence statistics are shown in Table 1. Note
that 2069 of 3805 keywords (54%) are OOVs w.r.t. the lexi-
con, which is not atypical in a low resource setting. This list
was created for a separate (evaluation) search collection, and
many keywords do not appear in the 10 hour development-
test speech we use as our search collection. Indeed, only 1067
of 1736 in-vocabulary (IV) keywords, and 670 of 2069 OOV
keywords occur in our search collection. Since the ATWV
metric ignores keywords with zero true-positives, our KWS
evaluation is effectively based on 1737 keywords. Yet, 670
(39%) of them are OOV. Ignoring OOV keywords therefore
still significantly degrades the average ATWV.

In our experiments, we search for the IV keywords di-
rectly in the word index. We search for the OOV keywords
by seeking either their word proxies (3) in the word index, or
their phone proxies (2) in the phone index. The phone index
is created, using the same OpenFST tools as the word index,
but from phone lattices that are, in turn, converted from Kaldi
word lattices. We generate and use phone proxies only for
OOV keywords with at least 5 phones; shorter keywords gen-
erate too many false alarms, so it is better to ignore them.

4.2. Keyword Search Results

We conduct KWS experiments using keyword proxies for the
670 OOV keywords in 5 different conditions shown in Table
2. The richness of the proxy set is controlled by pruning in
the ShortestPath step, and may be measured by either the av-
erage number of proxies per OOV keyword, or by the average
number of hits retrieved (correct or false alarms) per OOV
keyword. KWS performance in terms of the average ATWV
over the 670 OOV keywords is plotted in Figures 3 and 4.

Several conclusions may be drawn from these two figures.
Comparing Condition 4 (magenta) with Condition 2 (blue) in
Figure 3 suggests that given a predetermined number of prox-
ies per OOV keyword, searching a word index using word
proxies is more effective than searching a phone index using
phone proxies. Comparing Conditions 4 and 2 in Figure 4
suggests that for any given number of hits returned per OOV,
word proxies are again the better choice. The quick drop
in ATWV for Condition 2 in both Figures 3 and 4 suggest
that even some highly ranked phone proxies cause significant
false alarms. This affirms the value of relying on phone se-
quences that satisfy lexical constraints implicit in the word
proxies. And since we use an expected count based threshold
for YES/NO decisions, reducing the number of false alarms
may indirectly increase the number of true hits marked YES.

Next, contrasting the pair of Conditions 1 & 2 against the
pair of Conditions 3 & 4 in Figure 3 suggests that using a
phone confusion transducer E or E′ greatly improves KWS

Cond. Index source Proxy type Uses E or E′

1 Phone lattice Phone (K ′′) No
2 Phone lattice Phone (K ′′) Yes (E)
3 Word lattice Word (K ′) No
4 Word lattice Word (K ′) Yes (E′)
5 Word lattice w/ Word (K ′) Yes (E′)

no LM scores

Table 2. The numbered experimental conditions in Figures
3 and 4. The first two designate phone-based search without
and with the use of phone proxies (2), the next two designate
word-based search without and with the use of word prox-
ies (3), and the last designates word-based search with word
proxies after ignoring language model scores in the lattices.



Fig. 3. ATWV versus the number of proxies per keyword.

Fig. 4. ATWV versus number of retrieved hits per keyword.

performance with word proxies (comparison of Condition 3
with 4) but does not help much with phone proxies (compari-
son of Condition 1 with 2). In fact, using E hurts performance
in Condition 2 when the number of phone proxies is large.
This too may be explained by the inherent false alarm prob-
lem with phone proxies. Adding the phone confusion trans-
ducer simply aggravates the situation, unless the number of
proxies is severely limited, e.g. to be around 10, as suggested
by Figure 3. On the other hand, the word proxies appear to
have better precision; admitting proxies permitted by phone
confusion therefore further improves the performance. We
thus conclude that phone confusion information is very help-
ful to word proxies (40% improvement in ATWV), but should
be carefully constrained when applying to phone proxies.

Next, compare Condition 4 and Condition 5 in Figure 3.
The index in Condition 5 is built without language model
scores. As explained in Section 2.5, the mismatch between

ATWV for→ IV Kwds OOV Kwds All Kwds
Without Proxies 0.351 0.000 0.216

With Proxies 0.351 0.110 0.258

Table 3. ATWV for searching a word index without and with
the use of word proxies: 50 proxies per OOV keyword.

the proxies and the index may lead to some degradation in the
KWS performance, because the proxies are created merely
based on acoustic confusion while the index incorporates po-
tentially incorrect language model scores. The result in Fig-
ure 3 shows that there is a small degradation by retaining the
language model score in the index, but the degradation is usu-
ally negligible. Therefore, if only a single index must be re-
tained/searched for both IV and OOV keywords, we suggest
retaining the word index with language model scores.

Some clarification may be in order for Condition 1 and
Condition 3, where proxies are generated without a phone
confusion transducer. If only one proxy were possible for
each OOV keyword without the phone edits permitted by E
or E′, then curves for Condition 1 and Condition 3 in Fig-
ure 3 should be horizontal lines. However, multiple proxies
are possible even without phone edits, because the lexicon L1

contains multiple pronunciations for some words, and other
legitimate ambiguities (e.g. homophones) in the phone-to-
word transduction. Therefore, the curves first rise as multiple
proxies are admitted by enlisting alternative shortest paths in
(2) or (3), but quickly become horizontal lines once these lim-
ited alternatives are exhausted.

Finally, in Table 3, we compare the performance of word
proxies on the 670 OOV keywords with search performance
on the 1067 IV keywords, and note that while post-facto
search by proxies is still much poorer than having them in-
vocabulary, the average ATWV on the full NIST evaluation
keyword set improves by 20% — from 0.216 to 0.258.

5. CONCLUSION

We have presented a simple, cheap and effective way to use
word proxies to improve KWS performance for OOV key-
words. Experiments were done with the Babel Tagalog data
and the results suggest that such techniques are reasonably
effective for handling OOV words.
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