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ABSTRACT

Multi-style training, using data which emulates a variety of possible
test scenarios, is a popular approach towards robust acoustic model-
ing. However acoustic models capable of exploiting large amounts
of training data in a comparatively short amount of training time are
essential. In this paper we tackle the problem of reverberant speech
recognition using 5500 hours of simulated reverberant data. We use
time-delay neural network (TDNN) architecture, which is capable
of tackling long-term interactions between speech and corrupting
sources in reverberant environments. By sub-sampling the outputs
at TDNN layers across time steps, training time is substantially re-
duced. Combining this with distributed-optimization we show that
the TDNN can be trained in 3 days using up to 32 GPUs. Further,
iVectors are used as an input to the neural network to perform in-
stantaneous speaker and environment adaptation. Finally, recurrent
neural network language models are applied to the lattices to further
improve the performance. Our system is shown to provide state-of-
the-art results in the IARPA ASpIRE challenge, with 26.5% WER
on the dev test set.
Index Terms: far field speech recognition, time delay neural net-
works, iVectors, recurrent neural network language models

1. INTRODUCTION

Reverberant speech is assumed to be composed of direct-path re-
sponse, early reflections and late reverberations. Early reflections,
viz., reflections within a delay of 50ms of the direct signal, can be ef-
fectively dealt with using DNN architectures which operate on com-
paratively short temporal contexts. However in order to tackle late
reverberations, with reverberation time from 200 to 1000 ms in typi-
cal office environments [1], DNNs should be able to model temporal
relationships across wide acoustic contexts.

In this paper we use a time delay neural network [2], which is a
feed forward network architecture that is effective in modelling long
term temporal contexts. In [3] it was shown that TDNNs can be
trained with training times competitive with those of standard feed-
forward DNNs, by sub-sampling the TDNN layer outputs. In this
paper we use the TDNN architecture suggested in [3] for learning
reverberation robust representations. The TDNN was able to benefit
from increasing the input context up to 280 milliseconds. The ability
to process such a wide temporal context enables the network to deal
with late reverberations.

This work was partially supported by NSF Grants No IIA 0530118 and
IIS 0963898, and DARPA BOLT Contract No HR0011-12-C-0015.

iVectors which capture both speaker and environment specific
information have been shown to be useful for rapid adaptation of
the neural network [4, 5, 6]. iVector based adaptation has also been
shown to be effective in reverberant environments [7]. In this paper
we use this adaptation technique.

We show experimental results on the ASpIRE far-field speech
recognition challenge held by IARPA [8]. This challenge uses the
English portion of the Fisher database [9] for acoustic and language
model training. We show that in this large data scenario the proposed
network architecture, combined with a distributed optimization tech-
nique [10], can train on multi-condition training data of ∼ 5500
hours, using up to 32 GPUs, in 3 days.

Using the TDNN architecture helps us to achieve results close
to those of the best combined system submitted to the ASpIRE chal-
lenge, while using only a single system. Our system was able to
achieve 26.5% WER on the dev-test set, while the next best system
achieved 27.2% WER 1.

The paper is organized as follows, Section 2 describes the acous-
tic model, Section 3 describes the language model, Section 4 analy-
ses the results, and conclusions are presented in Section 5.

2. ACOUSTIC MODEL

2.1. Input Features

Mel-frequency cepstral coefficients (MFCCs) [11], without cepstral
truncation, were used as input to the neural network i.e., 40 MFCCs
were computed at each time step. Readers are recommended to see
[10] for a more detailed discussion on input data representation used
here and its comparison with log mel features. MFCCs over a wide
asymmetric temporal context were provided to the neural network.
Different contexts were explored in this paper.

In this paper we use a iVector adapted neural network acoustic
model. On each frame we append a 100-dimensional iVector [12] to
the 40-dimensional MFCC input. The MFCC input is not subject to
cepstral mean normalization; the intention is to allow the iVector to
supply the information about any mean offset of the speaker’s data,
so the network itself can do any feature normalization that is needed.
In order for the mean-offset information to be encoded in the iVector,
we estimate the iVector on top of features that have not been mean-
normalized. However, the Gaussian posteriors used for the iVector
estimation are based on features that have been mean normalized
using a sliding window of 6 seconds.

1At the end of the evaluation our system had 27.7% WER on dev-test



2.2. Neural Network Architecture
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Fig. 1: Computation in TDNN with sub-sampling (red) and without
sub-sampling (blue+red)

In this paper we use the sub-sampled TDNN architecture which
was shown to be effective for modelling long term temporal depen-
dencies in close-talk microphone speech, telephone speech and re-
verberant speech [3, 13].

The transforms in the TDNN architecture are tied across time
steps and for this reason they are seen as a precursor to the convolu-
tional neural networks. During back-propagation, due to tying, the
lower layers of the network are updated by a gradient accumulated
over all the time steps of the input temporal context. Thus the lower
layers of the network are forced to learn translation invariant feature
transforms [2].

The hyper-parameters which define the TDNN network are the
input contexts at each layer required to compute an output activation,
at one time step. A sample TDNN network is shown in Figure 1.
The figure shows the time steps at which activations are computed,
at each layer, and dependencies between activations across layers. It
can be seen that the dependencies across layers are localized in time.

2.2.1. Sub-sampling

In a normal TDNN all the hidden activations in the input context
are all spliced together into a larger vector, which goes through an
affine transformation. This process is then repeated to compute hid-
den activations at all time-steps. However there are large overlaps
between input contexts of activations computed at neighboring time
steps. Under the assumption that neighboring activations are corre-
lated, they can be sub-sampled.

In the sub-sampled TDNN, we select non-contiguous temporal
frames, at each layer. In fact, in the hidden layers of the network, we
generally splice no more than two frames to compute hidden activa-
tions at a time step.

Empirically we identified that splicing together activations sep-
arated by increasingly wide context, as we go to higher layers of
the network leads to better results. The configuration in Figure 1,
which is fairly typical, splices together frames t− 2 through t+2 at
the input layer (which we could write as context {−2,−1, 0, 1, 2}
or more compactly as [−2, 2]); and then at three hidden layers we
splice frames at offsets {−1, 2}, {−3, 3} and {−7, 2}2.

2The notation {−7, 2} means we splice together the input at the current

With the current sub-sampling scheme the overall necessary
computation is reduced during the forward pass and backpropaga-
tion, due to selective computation of time steps. The training time of
TDNN in Figure 1, without sub-sampling, is∼10x compared to that
of DNN with same number of layers. With proposed sub-sampling
it is ∼2x the training time of DNN. Thus the sub-sampling process
speeds up the TDNN training by ∼5x. Another advantage of using
sub-sampling is the reduction in the model size. Splicing contiguous
frames at hidden layers would require us to either have a very large
number of parameters, or reduce the hidden-layer size significantly.

We use asymmetric input contexts, with more context to the left,
as this reduces the latency of the neural network in online decod-
ing, and also because this seems to be more optimal from a WER
perspective.

A major difference in the current architecture compared to [2]
is the use of the p-norm nonlinearity [14], which is a dimension re-
ducing non-linearity. p-norm units with group size of 10 and p = 2
were used across all neural networks in our experiments, based on
the observations made in [14].

2.3. Data Augmentation

Speech from the English portion of the Fisher corpus [9]
(LDC2004S13, LDC2005S13) was used to train the acoustic mod-
els. Multi-condition training data was created by distorting speech
with real world room impulse response (RIR) and noise record-
ings available from three different databases viz., the RWCP sound
scene database 3 [15], the REVERB challenge database [16] and the
Aachen impulse response database [17]. 325 muti-channel record-
ings of RIRs were selected from the three databases. Noise record-
ings, containing stationary background noise caused mainly by air
conditioning systems in a room and measured with the same micro-
phone arrays as used for RIR measurement were available for 51
RIRs. The first channel from the multi-channel recordings of noise
or RIR, was used for corruption.

Three different copies of each recording in the Fisher corpus
were created by randomly sampling three different RIRs. When
available the noise recordings were added to the RIR convolved
speech data to have resultant SNR of 20, 15, 10, 5 and 0 dB.

Overall ∼ 5500 hours of training data was created, based on
these copies. Another version of the acoustic model was trained
on data that was processed as above, but also then speed perturbed
as in [18]. We still produced 3 copies of each original recording,
by combining a random RIR with each different speed of the data.
Speed perturbation, which emulates pitch and tempo variations in
speech, was shown to provide on average 4.3% relative gain in a va-
riety of LVCSR tasks. However this did not help in the current task,
possibly because we already had enough training-data variation from
the reverberation and noise.

2.3.1. Volume Perturbation

The iVector based TDNN system relies on the neural network to
learn the necessary normalization, based on mean shifts captured in
the iVector. However in well curated audio databases there is low
variance in audio volume, leading to low variance in iVector w.r.t.
mean shifts. Performing volume perturbation of the training data,
where each recording in the training data was scaled with a random
variable drawn from a uniform distribution over [ 1

64
, 8], emulates

frame minus 7 and the current frame plus 2.
3We would like to thank Mitsubishi Electric Research Laboratories

(MERL), for providing the RWCP database.



mean shifts in the MFCC domain. The volume perturbation was
done on the reverberated speech audio. Results pertaining to volume
perturbation are tagged as such in Section 4.

2.4. iVector Extraction

In this section we describe the iVector estimation process adopted
during training and decoding. We discuss issues in estimating iVec-
tors from noisy unsegmented speech recordings, and in using these
noisy estimates of iVectors as input to neural networks.

We noticed that the iVector adaptation was not sufficiently effec-
tive in adapting to test signals that had substantially different energy
levels than the training data. For the results reported here, this issue
was resolved by normalizing the test-signal energies to be the same
as the average of the training data. We compare this approach with
volume perturbation approach (2.3.1) in Section 4.

2.4.1. iVector Extraction during training

The iVector estimator was trained on a 100 hour subset of training
data: this includes the training of the Gaussian mixture model used
for the UBM, and the estimation of the total-variability (T ) matrix.
Then, for the entire training data, iVectors were estimated. In order
to ensure sufficient variety of the iVectors in the training data, rather
than estimating a separate iVector per speaker we estimate them in an
online fashion, where we only use frames prior to the current frame
(for some arbitrary ordering of the utterances). We reset this history
every two utterances, so that we still have some training-data variety
even when there are only a few speakers.

2.4.2. iVector extraction during decoding

During decoding, the constraints of online extraction were not en-
forced and iVectors were estimated in an offline fashion from statis-
tics accumulated over fairly large portions of the speaker’s data (at
least 60 seconds).

The prior term in the iVector extraction is quite important when
applying these iVector based methods to data that is dissimilar to
the training data. In our iVector estimation we always scale the per-
frame posteriors by 0.1 (equivalent to scaling the prior term up by
10). For the ASpIRE challenge we made a further modification: if
the total count of (scaled) statistics for iVector extraction exceeds a
predefined limit (75 for these experiments), we scale the statistics
down to that value, which again is equivalent to scaling the prior
term up. Due to the posterior scale of 0.1, this effect kicks in after
we exceed 750 frames of features.

2.4.3. iVectors from reliable speech segments

In the current LVCSR task (see Section 4), audio recordings 5-10
minutes in length were provided without speech end-point informa-
tion. The recordings had long duration of contiguous silence, similar
to single channel recordings of conversational telephone speech. We
found empirically that excluding the silence from the statistics for
iVector estimation was very helpful. Even keeping a small amount
of silence around every speech segment (similar to the amount we
saw in training) was harmful; possibly the nature of the silence in
the ASpIRE test data was so different from what was seen in the ar-
tificially reverberated and noise-added training data, that it affected
the iVector in unexpected ways. Hence only feature vectors from the
speech segments were used for iVector estimation. We explored two
techniques to detect speech segments, which are described below.

1. iVectors using two-pass decoding
In the first method, we perform a first-pass decode of the audio data
using iVectors derived from both speech and non-speech regions.
Reliable speech segments are identified from this first-pass decode.
Audio segments corresponding to words with confidence measures
of 1.0 (derived from lattice posteriors) and with durations less than
one second were considered reliable (over half the words recognized
had a confidence of at least 1.0). We also excluded the words “mm”
and “mhm”. A second pass decode was then performed using the
iVectors estimated from these reliable speech segments. This led to
8.9% relative improvement in WER, versus using all the data for
iVector estimation.

2. iVectors using Voice Activity Detection (VAD)
As two-pass decoding is computationally expensive, we attempted
a GMM-based Voice Activity Detection (VAD) to detect regions of
speech. The VAD method used is a hybrid feature and model-based
method inspired by [19]. It works by training a HMM-GMM sys-
tem with 3 GMMs - Silence, Speech and Noise on approximately 10
minute long chunks of the audio recordings. The features used with
the GMMs are 12 (excluding C0) mean-normalized MFCCs along
with their deltas and delta-deltas and zero-crossing rates along with
its delta and delta-delta. The GMMs are initially bootstrapped us-
ing frame-alignments of the augmented training set described in the
previous section. For this, the phones are mapped into 3 classes –
silence, speech and noise. The GMMs are iteratively trained using
Viterbi decoding followed by re-estimation.

For the first few iterations of training, only the low-energy and
high zero-crossing rate frames from the non-speech frames are se-
lected for Silence GMM and Noise GMM training respectively. The
later iterations use all the frames of the respective classes. We have
used the same training procedure as in [19]. The number of Gaus-
sians in each model is increased every iteration until the number of
Gaussians for Silence, Noise and Speech are 7, 18 and 16 respec-
tively.

A Bayesian information criterion (BIC) is used to determine if
the Noise GMM is to be retained. If the Noise GMM is to be re-
moved, then the entire process is repeated using only the Silence and
Speech GMMs bootstrapped from the augmented training data.

The regions selected as speech by the VAD are used for iVector
estimation and a single-pass decode is performed using these iVec-
tors. With this method, we were able to improve the speed over the
two-pass decoding system by a factor of ∼ 2, while keeping the
WER degradation on the dev set to 1.2%, relative.

2.5. Training

The paper follows the training recipe detailed in [14]. It uses greedy
layer-wise supervised training, preconditioned stochastic gradient
descent (SGD) updates, an exponentially decreasing learning rate
schedule and mixing-up. Parallel training of the DNNs using up to
18 GPUs was done using the model averaging technique in [10].

Sequence training was done on the DNN, based on a state-level
variant of the Minimum Phone Error (MPE) criterion, called sMBR
[20] . The training recipe mostly follows [21], although it has been
modified for the parallel-training method.

In the sMBR objective function insertion errors are not penal-
ized, which could lead to larger number of insertions when decoding
with sMBR trained acoustic models. Correcting this asymmetry in
the sMBR objective function, by penalizing insertions, was shown to
improve performance of sMBR models by 10% WER, relative [13].
This modified objective function was used in this paper.

To compute the context-dependent state pseudo-likelihoods



from the posteriors estimated by the neural network, the posteriors
are divided by a prior. We found that the method of using the mean
posterior (computed over a subset of the training data) as the prior
[22] gave an improved performance when decoding with sMBR-
trained models, so we used this method.

A speaker-adapted GMM-HMM acoustic model similar to the
one described in [21] was used to generate context-dependent state
alignments for training neural networks. Alignments for clean
speech were generated using the GMM-HMM system, using clean
data as recommended in [23, 24].

3. LANGUAGE MODEL

3.1. Lexicon

CMUdict (0.7a) was used as training lexicon in our experiments, and
the vocabulary was restricted to the words that appear in the training
transcripts. CMUdict comes with multiple pronunciations for some
words, therefore we estimate the pronunciation probabilities during
the training. We also model inter-word silence probabilities as de-
scribed in [25]. The statistics for modeling pronunciation and silence
probabilities were estimated from training data alignment, and they
were later encoded into the lexicon finite state transducer during the
decoding.

We estimate pronunciation probabilities for a word with multiple
pronunciations via simple relative frequency, with proper smoothing
techniques [26, 27, 28]. Directly using the simple relative frequency
however has an undesirable consequence that a word with several
equiprobable pronunciations is unfairly handicapped w.r.t words that
have a single pronunciation: e.g. the past tense of “read” w.r.t the
color read “red”. Max-normalization, whereby the pronunciation
probabilities are scaled so that the most likely pronunciation of each
word has “probability” 1, has been found helpful in speech recogni-
tion [29] We therefore applied max-normalization for pronunciation
probabilities in our work.

For a given sequence of words, we assume there is either a si-
lence or non-silence event between two consecutive words. Since
such an event usually depends on the neighbouring words, we fur-
ther assume that it only depends on the two surrounding words, i.e.,
we model the event using P (s |w.pi, w

′.pj) and P (n |w.pi, w
′.pj),

where w.pi and w′.pj are the surrounding pronunciations, s and n
represent silence and non-silence event. For computation simplic-
ity, we decompose this into two parts: (i) probability of inter-word
silence (or non-silence) following the pronunciation, and (ii) proba-
bility of inter-word silence (or non-silence) preceding the pronunci-
ation. Details of how we compute those probabilities can be found
in [25].

3.2. N-gram LM

N-gram language models were used in the decoding to generate word
lattices. A trigram language model (LM) was first trained on the 3M
words of the training transcripts, which was later interpolated with
another trigram LM trained on 22M words of the Fisher English tran-
scripts (LDC2004T19 and LDC2005T19). The same process is re-
peated for building a 4gram LM. We used SRI’s language modeling
toolkit SRILM [30] for building our LMs, with Kneser-Ney smooth-
ing. The final trigram LM has 1.6M trigrams and the 4gram LM has
1.7M 4grams.

We directly used the trigram LM for decoding. The 4gram LM,
however, was only used for rescoring the lattices generated by the
trigram LM. We did not use the 4gram LM for lattice generation

for reasons of memory efficiency. We implemented an efficient in-
memory representation of the ngram LM, with which we can build
grammar FST on the fly when rescoring, the same technique as de-
scribed in [31].

3.3. RNN-LM rescoring

3.3.1. training

We used the RNNLM toolkit (0.3e) [32] to train our recurrent neu-
ral network language models (RNN-LMs). We first selected the
most frequent 40k words from training transcripts as the language
model vocabulary. We then took 10k utterances from the training
transcripts as a heldout set, and used the rest training transcripts for
RNN-LM training. We used 200 hidden units for the neural network,
and set the number of word classes to 350. The 40k vocabulary
words were assigned to the 350 word classes according to their un-
igram frequency in the training corpus. The maximum order of the
n-gram features [33] was set to 4, and truncated back-propagation
through time (BPTT) [34] was performed during training with a step
size of 2.

Words from the training transcripts that were not selected
in the RNN-LM vocabulary were mapped to a special word
“<RNN UNK>” before training. The unigram probabilities of
those words were also collected from training transcripts which later
served as penalties when we compute the likelihood of sentences
containing those words. For words that were not in the training tran-
scripts nor in the RNN-LM vocabulary, a fixed unigram probability
of 1e− 7 was used instead.

3.3.2. N-best rescoring

We followed the conventional N-best RNN-LM rescoring procedure.
N-best hypotheses were first extracted from lattices, with their asso-
ciated acoustic score, original language model score, graph cost as
well as frame level alignments. The RNN-LM likelihood was then
computed for each hypothesis, with out-of-vocabulary words prop-
erly penalized as described in Section 3.3.1. In our experiments, we
found interpolating the RNN-LM likelihood with the original lan-
guage model did not help much in our particular setup, so we simply
replaced the original language model score with the RNN-LM score.
The acoustic score, RNN-LM score, graph cost and the frame level
alignment of all the hypotheses were then packed back to create a
new lattice, with which we ran the decoding. It worth mentioning
that it is important to generate the N-best hypotheses with the opti-
mal acoustic scale.

3.3.3. Lattice rescoring

One drawback of applying RNN-LMs on N-best list is the N-best
list only covers a subset of the hypotheses from the original lattice.
Therefore if the original language model is not powerful enough,
and the correct word falls out of the N-best list, there is no way for
RNN-LM to recover it. A simple solution is to generate as many
hypotheses as possible, which of course will increase the decoding
cost.

Applying RNN-LM rescoring directly on the lattice however can
increase the lattice size exponentially since the number of distinct
RNNLM context states will grow exponentially. A generally solu-
tion is to derive appropriate equivalence classes for context states. In
[35], two different methods to cluster the context states were evalu-
ated: (i) clustering context states using n-gram history, and (ii) clus-
tering context states based on the context vector distance. The au-



thors were able to get the same performance from these two methods.
In this work, we cluster the context states using n-gram history since
this is computationally cheap.

We implemented our lattice based RNN-LM rescoring within
the weighted finite state transducer (WFST) framework. During the
rescoring, a grammar WFST is generated on-the-fly, whose states
each correspond to a unique n-gram sequence. The weight of the arc
given the states is given by P (wn|w1, . . . , wn−1), where wn is the
word on the arc, and w1, . . . , wn−1 is the n-gram history that the
state corresponds to, which can be computed from RNN-LM. In the
actual implementation we store the RNN-LM context vector instead
the word sequence, so that the RNN-LM can compute P (wn|h) di-
rectly, where h is the context vector of the word sequence whose
latest n − 1 words are w1, . . . , wn−1. Ideally, we would like h to
correspond to the best possible sequence in the lattice entering the
state. Our preliminary results however shows that we may not ben-
efit a lot from using the context vector from the best possible word
sequence entering the state. Therefore in our current implementa-
tion we simply use the context vector from the first word sequence
we see whose latest n− 1 words correspond to the state.

4. RESULTS

Two data sets dev of 5 hrs and dev-test of 10 hrs were provided as part
of ASpIRE challenge. Each set is composed of 10 minute record-
ings. The end points for the speech portions of the recording were
also provided for the dev set. However in order to emulate the decod-
ing scenario of dev-test, we report performance on dev set without
the knowledge of segment information.

Decoding the entire 10 minute recording as one segment is not
possible due to round-off error in the decoder. We segmented the
recordings into 10 seconds long chunks, shifted by 5 seconds each
time. There was no attempt to make the chunk boundaries coincide
with silence. We reasoned that if a recording is cut in the middle,
only the part of the transcript near the cut point will be affected,
so we filtered the transcripts by removing words whose midpoints
were within 2.5 seconds of the edge of its chunk of origin, before
combining them into a single long transcript. We tuned the optimal
acoustic scale on dev set, which typically falls between 0.08 and 0.1.

4.1. Neural network architecture and data augmentation

The TDNN had 6 layers, of which 3 layers (not counting the in-
put layer) were subject to frame splicing across multiple time off-
sets. Three different systems TDNN-A, TDNN-B and TDNN-C cor-
responding to the three different input contexts of [t − 13, t + 9]
frames, [t − 16, t + 12] frames and [t − 22, t + 12] were used in
the comparison. The splicing configuration of the TDNN-A system
was [−2, 2], {−1, 2}, {0}, {−3, 3}, {−7, 2}, {0} (where the {0}
layers are conventional, non-splicing hidden layers). The TDNN-B
and TDNN-C systems were as TDNN-A except replacing {−7, 2}
with {−10,−7, 2, 5} and {−16,−7, 2, 5} respectively. In all hid-
den layers the p-norm input and output dimensions were 4000 and
400 respectively.

Results corresponding to this comparison are presented in Table
1. Comparing the TDNN-A systems trained on clean and reverber-
ant data it can be seen that multi-condition training data is critical.
Comparing TDNNs A, B and C with different input contexts it can
be seen that input context of [t− 16, t+ 12], was optimal for train-
ing on reverberant speech. This result can be compared with the
input context of [t − 13, t + 9] found optimal for recognition of
non-reverberant speech in [3]. This additional context could be nec-
essary when training on reverberant data to compensate for the late

Table 1: Comparison of input contexts and training data augmenta-
tion, used for training the TDNNs

Acoustic Model context training data dev WER
TDNN A [-13, 9] clean 47.6
TDNN A [-13, 9] rvb 31.7
TDNN B [-16, 12] rvb 30.8
TDNN B [-16, 12] rvb + sp 31.0
TDNN C [-22, 12] rvb + sp 31.1
DNN [-16, 12] rvb 33.1

rvb : reverberation of training data using real world RIRs
sp : speed perturbation of data prior to reverberation

reverberations. The use of even larger temporal contexts (TDNN-
C) did not lead to better results. However it was interesting to note
that use of larger contexts was not detrimental to the same extent
as seen in other speech recognition tasks with non-reverberant data
[3]. Further a 6-layer DNN with input context of [−16, 12], and with
the same p-norm input/output dimensions was trained on reverber-
ant data. Using the DNN architecture, in place of TDNN, led a 7%
relative increase in WER.

These systems were trained on data generated from two different
types of data augmentation techniques which are reverberation (rvb)
and speed perturbation (sp). Speed perturbation which was shown to
be advantageous across several LVCSR tasks [18], was not helpful
in the current task. Training for more epochs improved the perfor-
mance of the TDNN-B (rvb+sp) system; however, it just matched
the TDNN-B (rvb) system.

Table 2 shows the impact of volume normalization of test data on
system performance. It can be seen that even with volume perturbed
training data the acoustic model was not able to tackle the volume
mismatch observed in ASpIRE test data. However volume perturba-
tion training led to a relative improvement of 13% when dealing with
non-normalized test data. Volume normalization of the test data led
to a relative improvement of 19.5% in WER when using the TDNN-
B system trained on non-volume perturbed data.

Table 2: Comparison of systems w/ & w/o volume perturbed train-
ing data and w/ & w/o volume normalized test data

Acoustic Model Training Data Test Data dev WER
TDNN B rvb 38.3
TDNN B rvb vol. norm. 30.8
TDNN B rvb +vp 33.3
TDNN B rvb +vp vol. norm. 30.9
rvb : reverberation of training data using real world RIRs
vp : volume perturbation of data after reverberation

Figure 2 shows the reduction in WER for the TDNN-B (rvb)
system during different stages of training. It can be seen that even
with 100 iterations4, which corresponds to ∼ 8 hours of training
time (wall-clock time) the WER error is 33.4%. (See [10] for greater
detail on distributed optimization technique used here).

4.2. iVectors

Table 3 compares systems trained with and without iVectors, and
different types of iVector extraction methods. We tried four different
ways to extract iVectors: (i) extracting iVectors from both speech
and non-speech frames, (ii) extracting iVectors from speech frames,
but in a online mode (i.e., for the current frame, only use speech

4each iteration corresponds to 40,000 training examples per distributed
optimization instance
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Table 3: Comparison of systems with and without iVectors

Acoustic Model dev WER
TDNN B w/o iVectors 34.8
TDNN B + iVectors1 33.8
TDNN B + iVectors2 33.1
TDNN B + iVectors3 30.8
TDNN B + iVectors4 31.2

1 estimated on speech and non-speech frames
2 estimated on speech frames online
3 estimated on speech frames offline
4 estimated on speech frames from VAD

frames before the current frame) (iii) extracting iVectors from speech
frames, but in a offline mode (a first pass decoding was used to
identify the speech regions) and (iv) extracting iVectors from speech
frames computed from VAD. From the table it’s clear that it is ben-
eficial to use iVectors in our system, and it is also critical to extract
iVectors only from speech frames.

4.3. Pronunciation and Silence Probabilities

Table 4: Impact of pronunciation and silence probabilities

Model dev WER
TDNN B∗ 32.1
TDNN B∗ + pronprob 31.6
TDNN B∗ + pronprob + silprob 30.8
∗ without pronunciation and silence probabilities.

Table 45 shows performance of using pronunciation and inter-
word silence probabilities in the lexicon FST during decoding. As
it’s shown in the table, it is generally helpful to model pronunciation
and silence probabilities in the lexicon FST.

4.4. RNN-LMs

Our RNN-LM rescoring results are shown in Table 5. We do the
rescoring on both N-best lists and lattices. For N-best list rescoring,
we tried to keep 100, 500 and 1000 best paths respectively, and we
found it was enough to keep 500 best paths. For lattice rescoring,
we used the RNN-LM to compute likelihood over a fixed number of
context and it’s shown in the table that keeping context of 5gram is
sufficient in this particular case.

5All the other results shown in this paper are with pronunciation and si-
lence probabilities

Table 5: Impact of RNN-LM rescoring on TDNN B model

Model dev WER
4gram LM Baseline 30.8
RNN-LM N-best top 100 30.2
RNN-LM N-best top 500 29.9
RNN-LM N-best top 1000 29.9
RNN-LM lattice max 4gram 29.9
RNN-LM lattice max 5gram 29.8
RNN-LM lattice max 6gram 29.8

4.5. Sequence Training

Table 6: Results with sequence training of TDNN models

Acoustic Model dev WER
TDNN A 31.7
TDNN A + sequence training1 34.0
TDNN A + sequence training2 30.6
TDNN B 30.8
TDNN B + sequence training2 29.5
TDNN B + sequence training2,3 29.1

1 with sMBR criterion
2 with modified sMBR criterion
3 prior-adjustment

Table 6 shows results of TDNNs using sequence training. The
standard sMBR criterion was detrimental to the performance; but
using the modified sMBR criterion, gains were observed on dev set.
However these did not translate to dev-test set. With sequence train-
ing there was 4.2% relative improvement on dev set and 4.3% rela-
tive decrease on dev-test set. Further it can be seen that using priors
computed from mean posteriors led to an improvement in the per-
formance. TDNN-B with modified sequence training and modified
prior computation is used in the next section.

4.6. Comparison across test-sets

From Table 7 it can be seen that sMBR training has mixed results.
On careful analysis of the results on evaluation set it was observed
that the sMBR system outperformed cross-entropy system for 70%
of the 120 speakers. However the WER drastically increased for the
other 30%. It was also observed that the sMBR system was prone
to insertion errors, despite the use of the modified-sMBR objective
function.

Table 7: Comparison across test-sets

Model dev test eval
TDNN B* 30.8 27.7 44.3
TDNN B + RNN-LM 29.8 26.5 43.4
TDNN B + sMBR 29.1 28.9 43.9
TDNN B + sMBR + RNN-LM 28.3 28.2 43.4

∗ submitted to the evaluation

5. CONCLUSIONS

Using a combination of simulated multi-condition training data,
TDNN acoustic models with wide temporal contexts, iVector adap-
tation and RNN-LMs we were able to build a state-of-the-art sys-
tem which was able to tackle mismatch conditions in far-field speech
recognition task.
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