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ABSTRACT

Recently, deep neural networks (DNN) have been in-
corporated into i-vector-based speaker recognition systems,
where they have significantly improved state-of-the-art per-
formance. In these systems, a DNN is used to collect suf-
ficient statistics for i-vector extraction. In this study, the
DNN is a recently developed time delay deep neural network
(TDNN) that has achieved promising results in LVCSR tasks.
We believe that the TDNN-based system achieves the best
reported results on SRE10 and it obtains a 50% relative im-
provement over our GMM baseline in terms of equal error
rate (EER). For some applications, the computational cost of
a DNN is high. Therefore, we also investigate a lightweight
alternative in which a supervised GMM is derived from the
TDNN posteriors. This method maintains the speed of the
traditional unsupervised-GMM, but achieves a 20% relative
improvement in EER.

Index Terms— speaker recognition, deep neural net-
works, time delay neural networks, i-vector

1. INTRODUCTION

Modern speaker recognition systems are based on i-vectors
[1]. In this paradigm, a universal background model (UBM) is
used to collect sufficient statistics for i-vector extraction, and
a probabilistic linear discriminant analysis (PLDA) backend
computes a similarity score between i-vectors [2, 3, 4, 5, 6, 7].
Until recently, the state-of-the-art UBM was based on GMMs.

Recent speaker recognition systems have improved per-
formance by replacing the GMM with a DNN to collect
sufficient statistics (SS) for i-vector extraction [8, 9]. Usu-
ally, this DNN is trained as the acoustic model in an auto-
matic speech recognition (ASR) system and is repurposed for
speaker recognition. The output layer of a DNN provides soft
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alignments for phonetic content, often tied triphone states
(or senones). These DNN posteriors are used in conjunction
with features extracted using a standard approach for speaker
recognition, to create the sufficient statistics for i-vector ex-
traction [1]. The advantage of the DNN over the GMM may
be due to its ability to directly model phonetic content, rather
than an arbitrary acoustic space [8, 9, 10]. In [9] it was found
that improvements to DNNs in terms of ASR word error rate
(WER) may translate into improvements in speaker recogni-
tion performance. Recently, recurrent neural networks (RNN)
and TDNNs [11] have outperformed traditional DNNs for a
variety of LVCSR tasks [12, 13, 14]. In particular, the multi-
splice TDNN [14] had an 11% WER on Switchboard, better
than RNN systems on the same task. Our DNN is based on
[14].

The DNN-based speaker recognition methods achieve
excellent results, but the performance comes at the cost of
increased computational complexity. During i-vector extrac-
tion, the role of the UBM is to produce frame-level posteri-
ors. For a DNN, the computation is nontrivial. In a resource
limited application that nonetheless requires realtime perfor-
mance, the DNN-based system may be impractical. Ideally,
a supervised-GMM could be created with the speed of the
traditional GMM-based UBM but with heightened phonetic
awareness. In [15] a GMM-based ASR acoustic model re-
placed the usual GMM-UBM to create a phonetically aware
GMM, but the improvements were only consistent during
model combination [15].

Usually, DNN-based speaker recognition systems employ
a supervised-GMM derived from the DNN posteriors and
speaker recognition features (often not the same as the DNN
features) [8, 9, 10]. However, this GMM is not typically used
to collect SS; it has a minor role during i-vector extractor
training. Promoting this supervised-GMM to the role of the
UBM was explored in [8], but it did not improve on their base-
line. It was speculated that this is due to the GMM’s limited
ability to model phonetic information. However, that GMM
was diagonal, which possibly reduced its modeling capacity.
In this paper we reexamine the value of this supervised-GMM
as a lightweight alternative to the DNN-based speaker recog-
nition system, and find that it consistently outperforms the
baseline.



2. EXPERIMENTAL SETUP

2.1. Datasets

We evaluate our systems on the condition 5 extended task of
SRE10 [16]. The test consists of conversational telephone
speech in enrollment and test utterances. In total there are
416,119 trials, over 98% of which are nontarget comparisons.

The UBM and i-vector extractor training data consists of
male and female utterances from SWB and NIST SREs prior
to 2010. The SWB data contains 1,962 speakers and 20,905
utterances of SWB Cellular and SWB 2 Phases II and III. The
SRE dataset consists of 3,805 speakers and 36,614 utterances.
To create in-domain systems, the PLDA backends are trained
only on the SRE data. About 1,800 hours of the english por-
tion of Fisher [17] is used to train the TDNN.

2.2. DNN Recipe

The system is based on the multisplice time delay DNN
described in [14]. This architecture is currently the recom-
mended recipe in the Kaldi toolkit [18] for large-scale speech
recognition. In the multisplice system, a narrow temporal
context is provided to the first layer and increasingly wide
contexts are available to the subsequent hidden layers. The
result is that higher levels of the network are able to learn
greater temporal relationships.

The features are 40 MFCCs without cepstral truncation
and with a frame-length of 25ms. These features are equiva-
lent to filterbanks, but are more compressible. Cepstral mean
subtraction is performed over a window of 6 seconds.

The TDNN has six layers, and a splicing configuration
similar to those described [14]. Suppose t is some frame.
At the input layer (layer 0) frames [t − 2, t + 2] are spliced
together. At layers 1, 3, and 4 we splice together frames {t−
2, t + 1}, {t − 3, t + 3}, and {t − 7, t + 2}, respectively. In
total, the DNN has a left-context of 13 and a right-context of
9. The hidden layers use the p-norm (where p = 2) activation
function [19]. The hidden layers have an input dimension of
350 and an output dimension 3500. The softmax output layer
computes posteriors for 5297 triphone states. No fMLLR or
i-vectors are used for speaker adaptation.

2.3. GMM-UBM Baseline

Fig. 1: GMM-based speaker recognition schema.

The UBM in our baseline system (illustrated in Figure

1) is a full-covariance GMM with several thousand mixture
components. We compare systems with 2048, 4096, and 5297
components. The front-end consists of 20 MFCCs with a
25ms frame-length. The features are mean-normalized over a
3 second window. Delta and and acceleration are appended to
create 60 dimensional frame-level feature vectors. The non-
speech frames are then eliminated using energy-based voice
activity detection (VAD).

The GMM-UBM is trained on SWB and SRE datasets. It
is initially trained for 4 iterations of EM using a diagonal co-
variance matrix and then for an additional 4 iterations with
a full-covariance matrix. A 600 dimensional i-vector extrac-
tor is also trained on SWB and SRE for 5 iterations of EM.
The backend consists of i-vector mean subtraction and length
normalization, followed by PLDA scoring. To create an in-
domain system, we estimate the i-vector mean m and the
between-class and within-class covariance matrices Γ and Λ
of the PLDA backened using just the SRE dataset described
in Section 2.1.

2.4. Supervised GMM-UBM

The goal of the supervised-GMM (shortened to sup-GMM)
is to model phonetic content in a lightweight model. This is
achieved by creating a GMM based on DNN posteriors and
speaker recognition features. In contrast to the similar model
in [8], our sup-GMM is full-covariance. The supervised and
unsupervised GMMs differ only in the UBM training procee-
dure; during i-vector extraction, both systems follow the dia-
gram in Figure 1.

We use the TDNN described in Section 2.2 to generate tri-
phone posteriors on the SWB and SRE training data. Speaker
recognition features (described in Section 2.3) are also com-
puted on this training data. An energy-based VAD removes
features and posteriors corresponding to nonspeech frames.

The mixture weights wk, means µk and covariances Sk

are initialized according to Equation (1). The DNN parame-
ters are collectively labeled Θ and Pr(k | yi,Θ) is the prob-
ability of triphone k at frame i given the DNN features yi.
The corresponding speaker recognition features are denoted
xi.
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Since the DNN output layer has 5297 senones, the sup-
GMM also has 5297 components. Training of the T matrix



and PLDA parameters Γ and Λ are unchanged from Section
2.3.

2.5. TDNN-UBM

Fig. 2: TDNN-based speaker recognition schema.

This system uses the TDNN of Section 2.2 to create a
UBM which directly models phonetic content. This is based
on the in-domain system described in [9] and is similar to
those in [8] and [10]. The primary difference between this and
earlier work is our utilization of the time delay DNN architec-
ture. The supervised-GMM (Section 2.4) fills the role of the
ancillary GMM of [9]. Parameters of the supervised-GMM
are needed to initialize the i-vector extractor. However, the
sup-GMM plays no further role, and training of the T matrix
requires only TDNN posteriors and the speaker recognition
features of Section 2.3 on the SRE and SWB datasets.

During i-vector extraction, the only difference between
this and the preceding GMM-based systems is the model used
to compute posteriors. In conjunction with the speaker recog-
nition features, the TDNN posteriors create the sufficient
statistics for i-vector extraction. As in the other systems, the
speaker recognition features are filtered using a frame-level
VAD. However, in order to maintain the correct temporal
context, we cannot remove frames from the TDNN input
features. Instead, the VAD results are reused to filter out pos-
teriors corresponding to nonspeech frames. As in Sections
2.3 and 2.4, the i-vectors are 600 dimensional and the PLDA
backend is trained just on the in-domain SRE data.

2.6. System Design

Experiments used ASR and speaker recognition modules in
the Kaldi speech recognition toolkit [18]. Recipes for the
systems described here are available in the SRE10 exam-
ple of the Kaldi code repository (https://github.com/kaldi-
asr/kaldi/tree/master/egs/sre10).

3. RESULTS

We compare gender independent and gender dependent ver-
sions of the baseline GMM, sup-GMM and TDNN systems.
The gender independent systems each have a single pipeline
which evaluates all of the SRE10 extended condition 5. The

System EER(%) DCF10−3 DCF10−2

Sup-GMM-5297 1.94 0.388 0.213
TDNN-5297 1.20 0.216 0.123
GMM-2048 2.49 0.496 0.288
GMM-4096 2.56 0.468 0.287
GMM-5297 2.42 0.484 0.290

Table 1: Performance comparison of gender independent
models on SRE10 C5.

System EER(%) DCF10−3 DCF10−2

Sup-GMM-5297 1.65 0.354 0.193
TDNN-5297 1.09 0.214 0.108
GMM-2048 2.16 0.417 0.239
GMM-4096 1.96 0.414 0.227
GMM-5297 2.00 0.410 0.241

Table 2: Performance comparison of gender dependent mod-
els on SRE10 C5.

gender dependent systems share most of the same compo-
nents with the gender independent systems. The SRE data
is partitioned into male and female sets and two PLDA back-
ends are trained. Accordingly, we evaluate the gender depen-
dent models on just the male or female portions of SRE10.
To avoid overly large tables we only report the performance
for pooled gender dependent and independent scores. We
evaluate recognition performance at three operating points:
equal error-rate (EER) and normalized detection cost func-
tion (DCF) [16] with the probability of the target speaker set
to 10−2 and 10−3.

In Tables 1 and 2 we see that there isn’t much of a per-
formance difference between the unsupervised GMMs with
2048, 4096 and 5297 components. We choose GMM-5297 as
our primary baseline, since it has, by a small margin, the best
gender independent EER of the baseline models.

Figures 3, 4, and 5 compare the performance among the
GMM-5297, sup-GMM-5297 and TDNN-5297 systems. The
DNN-based systems achieve the best results, with TDNN-
5297 obtaining 1.20% and 1.09% gender independent and
gender dependent EERs respectively. Figure 6 illustrates the
relative improvement of the TDNN and sup-GMM over the
GMM-5297 baseline. Across the three operating points with
the gender independent and dependent systems we see a rel-
ative improvement of 13.65%-26.55% by the sup-GMM and
47.80%-57.59% by the TDNN. Although the performance of
the sup-GMM isn’t as good as the TDNN, it nevertheless
outperforms the baseline by a significant margin. In similar
methods such as [8] and [15] the supervised-GMM did not
result in a significant improvement by itself. Perhaps the un-
derlying reason lies in the high quality of the TDNN which
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Fig. 4: Comparison of DCF10−2.

the sup-GMM is based on. Additionally, full-covariance may
allow the sup-GMM to retain modeling capacity.

The primary advantage of a GMM-based method lies in
its efficiency during i-vector extraction. Using the sum of the
usr and sys portions of the Linux tool time we recorded
the duration of different parts of the system pipelines. In Ta-
ble 3 and Figure 7, we represent this in terms of real-time fac-
tors. Ten 5 minute utterances were selected at random from
the SRE10 test data and these were processed and timed from
feature extraction to i-vector extraction 30 times. In Table
3 and Figure 7, i-vector extraction includes all computation
needed to generate an i-vector after posteriors and features
have been computed. The experiment was performed on an
Intel x86-64 machine with 48 2000Mhz CPUs. The real-time
factors were obtained by taking the average durations In CPU
and dividing by the total utterance length.

The GMM-2048 system is about twice as fast as the
larger GMMs with 4096 or 5297 components during poste-
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Fig. 5: Comparison of DCF10−3.
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Fig. 6: Relative improvement over the GMM-5297 baseline.

rior and i-vector extraction. Even without parallelization the
GMM-based systems are at least ten times faster than real-
time. Since the TDNN system needs to compute features for
both the DNN and for speaker recognition, this stage of the
pipeline is about twice as slow as the GMM-based systems.
Without parallelization, the vast majority of the DNN-based
system is spent in the posterior calculation. This results in a
system which is nearly 36% slower than real-time, and more
than ten times slower than the sup-GMM-5297.

In practice we would perform the DNN posterior matrix
calculations in CUDA to obtain faster than real-time perfor-
mance. However, by comparing the total CPU time between
the systems, we expose the overall computational load of the
DNN, and facilitate a comparison of compute-cost vs. perfor-
mance of the three systems.
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Table 3: CPU time relative to utterance length for primary
stages of the system pipelines.

System Feat.(%) Post.(%) i-Vec.(%)
Sup-GMM-5297 1.02 3.46 5.44
TDNN-5297 2.15 128.02 5.77
GMM-5297 1.03 3.44 5.01
GMM-4096 1.01 2.67 4.27
GMM-2048 1.01 1.68 2.28

4. CONCLUSION

We explored the use of TDNNs for speaker recognition on
the SRE10 task. We found that this DNN yields a large rel-
ative improvement over the unsupervised GMM baseline on
EER and DCF operating points. With the TDNN-UBM we
also achieve a 1.20% gender independent EER, which we be-
lieve is the best reported on the task. We also highlighted the
computational advantages of the GMM over the DNN, and
showed that there is a significant cost for computing DNN
posteriors. While GPU parallelization is commonly used to
obtain real-time performance, it may not be feasible for all
applications. We found that the supervised-GMM, normally
of minor use in the DNN-based system, can be used on its
own as a fast alternative to the DNN with better performance
than the baseline.
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