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Abstract
Maximum Mutual Information (MMI) is a popular discrim-

inative criterion that has been used in supervised training of
acoustic models for automatic speech recognition. However,
standard discriminative training is very sensitive to the accu-
racy of the transcription and hence its implementation in a semi-
supervised setting requires extensive filtering of data. We will
show that if the supervision transcripts are not known, the nat-
ural analogue of MMI is to minimize the conditional entropy
of the lattice of possible transcripts of the data. This is equiv-
alent to the weighted average of MMI criterion over different
reference transcripts, taking those reference transcripts and their
weighting from the lattice itself. In this paper we describe ex-
periments where we applied this method to the semi-supervised
training of Deep Neural Network acoustic models. In our exper-
imental setup, the proposed method gives up to 0.5% absolute
WER improvement over a DNN trained with sMBR only on
the transcribed part of the data. This is 37% of the improve-
ment that we would get from doing sMBR training if we had
the transcripts for the untranscribed part of the data.
Index Terms: Semi-supervised Learning, Lattice Entropy,
Deep Neural Network, Acoustic Modeling, Speech Recognition

1. Introduction
A discriminative criterion encourages the model to be maxi-
mally discriminative of the reference transcript against the com-
peting hypotheses. A number of discriminative criteria such
as MMI [1], MCE[2], MPE [3], sMBR [4, 5] and bMMI [6]
have been developed and used in HMM-based speech recogni-
tion [7, 8, 9, 10].

Of late, there has been an lot of effort devoted to semi-
supervised learning due to the availability of large amount
of acoustic data and emphasis on speech recognition on low-
resource languages. One of the most common appoaches to
semi-supervised learning of DNN-based acoustic models is
self-training [11, 12, 13] , where a seed system trained with
only transcribed data is used to decode the untranscribed data
and the predicted hypotheses are selected as the training tran-
scripts, usually based on confidence-based filtering schemes. In
[11], lattice posterior probabilities are used as frame-confidence
measure for filtering frames during the Cross-Entropy training
of DNN. Although that work demonstrates improvements for
the Babel [14] languages, we could not replicate that work in
our setup. However, we were able to get improvements from
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untranscribed data for cross-entropy training using a slightly
different method which we will described here. We avoid the
untranscribed data “polluting” the last layer of the network by
giving it a separate final layer, using ideas inspired by multilin-
gual DNN training [15, 16].

Discriminative training is very sensitive to the accuracy of
the transcripts [17, 18, 19]. Therefore sequence-discriminative
self-training methods do not work well without some form of
confidence-based filtering, as used in [20, 21, 17, 22]. How-
ever, we show in this paper that by using an alternative objective
function, Negative Conditional Entropy (NCE) on the untran-
scribed portion of the data, we can obtain improvements from
untranscribed data without filtering. Entropy minimization has
previously been used as an objective for semi-supervised learn-
ing in a facial recognition problem [23] and for sequence-
discriminative training of GMM acoustic models for speech
recognitinon [24]. In this paper, we apply the idea to semi-
supervised training of DNN acoustic models for speech recog-
nition. We also introduce a multilingual-inspired training ar-
chitecture for semi-supervised training, which is more effective
than the normal approach with or without confidence filtering.

This paper is organized as follows. Section 2 introduces the
problem of semi-supervised training of acoustic models and de-
scribes the proposed sequence-discriminative training method
for DNN acoustic models. Section 3 describes the experiments
we conducted. Section 4 discusses the results of the experi-
ments. Section 5 presents the conclusions.

2. Semi-supervised Training via Lattice
Entropy

In the following sections, we show why minimization of lattice
entropy is the natural extension of the MMI objective to the
semi-supervised setting (Section 2.1); and we describe efficient
ways to compute the objective and its gradients using lattices
(Section 2.2). We then describe how these gradients are used to
update the parameters of the DNN acoustic models in Section
2.3 and propose a multilingual architecture for semi-supervised
training of DNN in Section 2.4.

2.1. Conditional Maximum Likelihood training and lattice
entropy

The Condition Maximum Likelihood (CML) objective [25] is
the conditional log-likelihood of the transcript W given the
acoustic features O, summed over the training examples. For
historical reasons this is known in the speech recognition com-
munity as Maximum Mutual Information (MMI) estimation, or



MMIE [1]:

FMMI(λ) =
∑
r

log P(W (r) | O(r);λ) (1)

where the index r ranges over all training utterances, and λ is
the parameters of the model. In the semi-supervised learning
setting, we propose to take a weighted average of the above
expression for all possible reference transcriptsW (r), weighted
by their probability in the lattice:

FNCE(λ) ,
∑
r

∑
W

P(W | O(r);λ) log P(W | O(r);λ)

= −
∑
r

H(W | O(r);λ), (2)

where H(W | O;λ) is the conditional entropy of the transcript
W given the acoustic feature sequence O(r) and the acoustic
model parameters λ. This criterion was defined as “Negative
Conditional Entropy (NCE)” in [24].

2.2. Lattice Entropy Computation

Lattice-based methods for discriminative training have been de-
veloped for many discriminative objective functions including
MMI [7, 8]. The conditional entropy in (2) and its gradients can
be computed using an algorithm reminiscent of the forward-
backward algorithm. Our approach for computing the lattice
entropy and its derivatives is based on the ideas in [26], but we
present it in a form that does not require the concept of a semir-
ing.

We generate lattices in the WFST framework using the “ex-
act lattice” procedure. [27]. Each path π in such a lattice L rep-
resents the best (lowest-cost) state-level alignment of the utter-
ance for a distinct word sequence. Each arc a in the lattice has
an associated probability score pa, which is a suitably weighted
combination of the acoustic likelihood, language model proba-
bility and transition and pronunciation probabilities (we use an
acoustic scale of κ = 0.1 throughout). Each path π through the
lattice has a probability score P (π) =

∑
a∈π pa.

The entropy of the lattice HL = H(W | O;λ) can be
computed as follows:

HL = −
∑
π∈L

P (π)

Z
log

P (π)

Z

= logZ − r̄

Z

(3)

where Z =
∑
π∈L P (π) and r̄ =

∑
π∈L P (π) logP (π). Its

gradient wrt to pa can be computed as:

∂HL

∂pa
=

1

Z

∂Z

∂pa
− 1

Z

∂r̄

∂pa
+

r̄

Z2

∂Z

∂pa
. (4)

Algorithm 1 shows how to compute these quantities effi-
ciently over a lattice. The αp and αr quantities correspond
to the Z and r̄ quantities for sub-lattices starting at the start
node and ending at each node, and the βp and βr are the same
thing for sub-lattices starting at each node and ending at the end
node of the lattice. Due to the limited dynamic range of floating
point, the αp and βp must be stored in log form; and αr and βr ,
which may be positive or negative, must be stored in log form
with their sign stored separately. To explain the notation: s(a)
refers to the starting node of arc a, e(a) refers to the end node
of arc a, pre(n) refers at arcs ending in node n, post(n) refers
to arcs following node n and ra , pa log pa.

Algorithm 1 Forward-Backward Algorithm over lattice L
Require: L is topologically sorted.
Require: L has a single start-state and a single end-state.

1: procedure FORWARD-BACKWARD(L)
2: N ← |L|
3: Initialize αp(1 . . . N), αr(1 . . . N), βp(1 . . . N),
βr(1 . . . N), Z, r̄ to all 0s

4: αp(1)← 1, βp(N)← 1
5: for n← 2 to N do
6: αp(n)←

∑
a∈pre(n) αp(s(a))pa

7: αr(n)←
∑
a∈pre(n) αp(s(a))ra + paαr(s(a))

8: end for
9: Z ← αp(N), r̄ ← αr(N)

10: for n← N − 1 to 1 do
11: βp(n)←

∑
a∈post(n) βp(e(a))pa

12: βr(n)←
∑
a∈post(n) βp(e(a))ra + paβr(e(a))

13: end for
14: for each arc a ∈ L do
15: ∂Z/∂pa ← αp(s(a))βp(e(a))
16: ∂r̄/∂pa ← αr(s(a))βp(e(a)) +

αp(s(a))βr(e(a)) + αp(s(a))βp(e(a))(1 + log pa)
17: end for
18: end procedure

2.3. Optimization of DNN Acoustic Model parameters

Since the objective function value depends on the neural net-
work weights only through the DNN outputs yt(j), it is enough
to find the gradients of the objective function with respect to the
DNN outputs. The rest of this section describes this process.

In a HMM-DNN hybrid system, the DNN is used to pro-
vide the emission probability or the pseudo-likelihood [28] of
an acoustic feature vector ot at time t from a pdf j:

p(ot | j) =
yt(j)

P (j)
, (5)

where yt(j) = P (j | ot) is the DNN output at jth node of
output layer and P (j) is the prior probability of pdf j.

To compute the gradients of the objective function w.r.t. the
DNN outputs, we define an “NCE posterior” for each arc a of
the lattice as γa , ∂HL

∂ log pa
, which can be computed using (4).

The derivative w.r.t. the log DNN-outputs log p(ot | j), is just
the sum of the γa quantities over all arcs in the lattice at time
t that have the pdf j. We call these quantities state-level “NCE
posteriors” γNCE

t (j); they are analogous to “MBR posteriors”
[29]1. The derivative w.r.t. the DNN outputs can then be com-
puted as:

∂FNCE

∂y
(r)
t (j)

=
γNCE
t (j)

y
(r)
t (j)

, (6)

These derivatives are backpropagated to find the gradients
w.r.t. all the weights in the neural network, and the weights
are updated using stochastic gradient descent (SGD). The ran-
domization for SGD is performed at the part-of-lattice level:
where we find “pinch points” in the lattice to split them up

1Actually, what we said about the derivative being the sum of se-
lected γa quantities is not quite true. The factor κ should appear here,
and we ignore it. This is just for consistency with prior work in discrim-
inative training [9], in which that factor is ignored. It is absorbed into
the learning rate



into the smallest possible pieces, discarding parts of lattices that
would only produce zero gradients. As for our implementation
of cross-entropy training, we update with a Natural Gradient
extension of Stochastic Gradient Descent (NG-SGD) and paral-
lelize over multiple machines via model averaging [30].

The prior probability P (j) in (5) is usually computed from
alignments [28]. Here, we use an alternate method that com-
putes the priors by marginalization of DNN posteriors over all
acoustic feature vectors, assuming they are drawn from an em-
pirical distribution:

P (j) =
1

N

N∑
i=1

p(j | oi). (7)

We found this to give better WERs than the usual approach.

2.4. Multilingual training architecture

In the multilingual training architecture [15, 16], two (or more)
DNNs are trained sharing all the layers except the last one. We
can use this architecture for semi-supervised training by view-
ing the untranscribed data as the “second language”. One of
the final layers is used for transcribed training examples, and
the other is used for untranscribed training examples. At the
end of training, we discard the final layer that was trained on
the untranscibed examples. The gradients arising from the un-
transcibed data can be scaled down to give that data less weight
in the optimization. This architecture even allows a different
context-dependency trees for the different final layers ; but this
is not considered in this paper. In addition, filtering of untran-
scribed data frames using say, frame-level confidence [11], can
be incorporated easily.

3. Experiments
In this paper, we report experiments on a subset of the Fisher
English corpus [31] and several Babel languages in the Limit-
edLP condition. We compare our method with several base-
line systems. These include cross-entropy and sMBR trained
DNNs with only the transcribed data, in addition to self-training
methods. All experiments2 are conducted using Kaldi Speech
Recognition toolkit [32].

3.1. Experimental Setup

The Fisher English corpus has a total of 1600 hours of telephone
speech. The first 5000 utterances (about 3.3 hours) in the cor-
pus was selected as the dev set for tuning hyperparameters and
the next 5000 utterances (about 3.2 hours) was selected as the
test set for evaluation. Out of remaining data, 100 hours was
selected as transcribed data and the remaining part was selected
as untranscribed data by ignoring the corresponding transcripts.
In this paper, we show results with only a 250 hour subset of
untranscribed data.

The Babel languages under the LimitedLP condition have
10 hours of transcribed data and 50-65 hours of untranscribed
data after automatic segmentation. In this paper, we show re-
sults on four of the Babel languages – Assamese, Bengali, Zulu
and Tamil. We use the fixed lexicon provided under the Limit-
edLP condition. We evaluate our systems on the 10 hour dev10h
set, while tuning on a 2 hour subset dev2h. But we don’t tune
hyperparameters for different languages separately.

2The recipe used for these experiments can be found at https://
github.com/vimal-manohar91/kaldi-unsupervised/
commit/137f0f12726a382529552ee68d75092f939413c3

The language models used for the experiments are trained
only on the transcripts of respective transcribed data. For sMBR
training, we use a weak language model (unigram) to increase
the number of alternative hypotheses for discrimination. But
for NCE training, we use a trigram language model to produce
a compact lattice with only the most likely hypotheses. This is
in line with the empirical results in [33] that show that a stronger
model is better for semi-supervised learning. The decoding of
the test sets is also done using the same trigram language model.

3.2. System Description

All our experiments use the p-norm DNN with p = 2 and
the same basic architecture as in [34]. For Fisher, the DNN
had 4 hidden layers of p-norm nonlinearity with input and out-
put dimensions of 3000 and 300 respectively. For Babel, the
DNN had 3 hidden p-norm layers with input and output di-
mensions 2000 and 200 respectively. The features used are
the Type IV acoustic features defined in [35], i.e. fMLLR fea-
tures spliced over±4 frames and then decorrelated and globally
mean-subtracted with a matrix transform. For the experiments
on Fisher English, we use MFCC as the base features. For the
Babel experiments, we use PLP as the base features, but we
additionally append pitch features [36]. The neural networks
are trained using Natural Gradient SGD [30]. The alignments
and context-dependency tree for the Cross-Entropy DNN train-
ing are obtained using a HMM-GMM model trained using only
transcribed data.

In Fisher, we found the prior adjustment (7) to improve per-
formance of the DNNs over the traditional method of prior es-
timation from alignments [28]. We used a subset (3 hours) of
transcribed data for prior adjustment. In Babel, the sMBR ob-
jective is modified to penalize insertions [37].

3.2.1. Supervised baseline systems
The baseline DNN system nnet2 CE is trained with Cross-
Entropy as objective for 20 epochs with an exponentially de-
creasing learning rate. The baseline discriminative system
nnet2 sMBR is initialized with nnet2 CE and trained with
sMBR as objective for 4 epochs.

3.2.2. Self-training systems
For the self-training systems, the untranscribed data was de-
coded using the nnet2 CE system and the best paths through
the lattices were chosen as the transcripts. The system
nnet2 CE semisup has the same architecture as nnet2 CE and
is trained from scratch using Cross-Entropy as objective with
transcribed and untranscribed data frames combined together.
The system nnet2 CE semisup:0.8 is as nnet2 CE semisup but
only selecting frames with confidences [11] greater than 0.8.

The systems multilang2 CE and multilang2 CE:0.8 use the
multilingual architecture (Section 2.4). The DNN is initialized
from from a partially trained (after the mix-up stage) nnet2 CE
neural network. The final layer corresponding to the untran-
scribed data is initialized randomly. The system is trained
with an exponentially decreasing learning rate for 20 epochs as
measured on transcribed data3. In multilang2 CE:0.8, frame-
confidence-based selection is additionally done.

The system multilang2 sMBR is the sMBR self-training
system in the multilingual architecture. The DNN is initialized

3 It roughly corresponds to the same number of epochs on tran-
scribed and untranscribed datasets because the number of parallel jobs
for each dataset is varied in proportion to the amount of data available.
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with the final nnet2 CE model; the last layer is cloned to make
separate copies for transcribed and untranscribed training exam-
ples. The system is trained with sMBR criterion for 4 epochs3

with a fixed learning rate. The learning rate on untranscibed
data was reduced by a factor of 10 in order to give less weight
to the corresponding gradients. Using equal learning rate for
both datasets worsened the results.

3.2.3. Proposed system
The system multinnet2 sMBR+NCE uses the multilingual ar-
chitecture just like multilang2 nnet2 sMBR; it is trained using
sMBR objective on the transcribed data, but FNCE as objective
on the untranscribed data. The training is done for 4 epochs3

with a fixed learning rate. The learning rate on untranscribed
data was reduced by a factor of 3. The resulting parameter up-
dates using untranscribed data were found to be about 10 times
smaller than those using transcribed data; this is because of
NCE gradients being smaller than sMBR gradients in general.

We also show an oracle system nnet2 sMBR oracle as an
upper bound on the performance of the semi-supervised sys-
tems. This oracle system is similar to the nnet2 sMBR sys-
tem, but does sMBR training using true transcripts of the un-
transcribed data. For the purpose of comparision with multin-
net2 sMBR+NCE, the language model for the oracle system is
trained using only the LimitedLP data.

4. Results and Discussion
The results on Fisher English with 250 hours of untranscribed
data are given in Table 1. The self-learning CE system
nnet2 CE semisup has a WER worse than the baseline CE sys-
tem nnet2 CE even with frame-filtering. This might be because
we did not add multiple copies of supervised data as suggested
in [11]. In contrast, self-learning in the multilingual architecture
multilang2 CE gives nearly 1.4% absolute improvement over
supervised CE system nnet2 CE with and without frame filter-
ing. This suggests that the multilingual architecture is an effec-
tive framework for doing semi-supervised training of DNN.

Table 1: WER (%) results on Fisher English (100 hrs tran-
scribed + 250 hrs untranscribed) for DNN acoustic models

System dev test

nnet2 CE 31.98 31.18
nnet2 sMBR 29.58 28.49
nnet2 CE semisup 32.40 −
nnet2 CE semisup:0.8 32.46 −
multilang2 CE 30.61 29.84
multilang2 CE:0.8 30.53 29.81
multilang2 sMBR 29.87 28.77
multinnet2 sMBR+NCE 29.44 28.11
nnet2 sMBR oracle 28.50 27.46

Table 2: WER (%) results on Fisher English (100 hrs tran-
scribed + 250 hrs untranscribed) for GMM acoustic models

System dev test

gmm ML 39.58 38.33
gmm MMI 38.97 36.88
gmm MMI+NCE 38.15 35.84
gmm ML oracle 38.67 37.33
gmm MMI oracle 37.47 35.47

But even the best CE system (multilang2 CE:0.8) is more
than 1% worse than the system with supervised discriminative
training, nnet2 sMBR. This shows that in order to compete with
a discriminatively trained system, the semi-supervised learning
must involve discriminative training. The discriminatively self-
trained system, multilang2 sMBR, in the multilingual architec-
ture is shown to be slightly worse than the supervised base-
line nnet2 sMBR even though the learning rate of nnetU was
reduced by a factor of 10. This suggests that discriminative
self-training might require filtering of untranscribed data as was
suggested in several works in the literature.

On the other hand, our proposed system multin-
net2 sMBR+NCE gives 0.16% and 0.38% absolute improve-
ments on dev and test sets respectively without any explicit
filtering of data. Comparing with the oracle system results
(nnet2 sMBR oracle), we see that these results of the proposed
system correspond respectively to a recovery of 15% and 37%
of the possible improvements if we had the true transcripts. We
believe that the loss in accuary is due to a combination of inac-
curacy in the decoding, mismatch in features because of using
unsupervised speaker adaptation for untranscribed data and the
choice of MMI as the criterion over sMBR.

Table 2 presents analogous results with GMM acoustic
models This demonstrates that the method is not restricted to
only DNN acoustic models.

We got similar WER improvements from 0.1% absolute on
Zulu to 0.6% absolute on Assamese. Improvements in Bengali
and Tamil are also in this range as detailed in Table 3.

Table 3: WER (%) results on Babel

Language System dev2h dev10h

Assamese nnet2 sMBR 63.9 62.2
Assamese multinnet2 sMBR+NCE 63.4 61.6
Bengali nnet2 sMBR 66.3 64.1
Bengali multinnet2 sMBR+NCE 65.8 63.8
Zulu nnet2 sMBR 65.9 67.3
Zulu multinnet2 sMBR+NCE 65.7 67.2
Tamil nnet2 sMBR 76.3 74.8
Tamil multinnet2 sMBR+NCE 76.1 74.6

5. Conclusions
In this paper, we proposed a semi-supervised sequence-
discriminative training method for DNN acoustic models using
conditional entropy as the criterion in a multilingual-inspired
DNN architecture. We show through experiments on Fisher
English and Babel that the method gives improvements over
sequence-discriminatively trained supervised DNN systems.
Without needing explict filtering of data, the method can also
outperform self-training methods. On Fisher English, the pro-
posed method is shown to recover 37% of the WER improve-
ment possible if the transcripts were available for the untran-
scribed data.

We also described a multilingual-inspired method of semi-
supervised training, where the untranscribed portion of the data
has its own version of the final layer, not shared with the final
layer used for the supervised part, and which is discarded after
training. We found this to work better than simply combining
transcribed and untranscribed data, whether or not confidence
filtering was used.
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