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Abstract

In this paper we describe a method to perform sequence-
discriminative training of neural network acoustic models with-
out the need for frame-level cross-entropy pre-training. We
use the lattice-free version of the maximum mutual information
(MMI) criterion: LF-MMI. To make its computation feasible
we use a phone n-gram language model, in place of the word
language model. To further reduce its space and time com-
plexity we compute the objective function using neural network
outputs at one third the standard frame rate. These changes en-
able us to perform the computation for the forward-backward
algorithm on GPUs. Further the reduced output frame-rate also
provides a significant speed-up during decoding.

We present results on 5 different LVCSR tasks with training
data ranging from 100 to 2100 hours. Models trained with LF-
MMI provide a relative word error rate reduction of ~11.5%,
over those trained with cross-entropy objective function, and
~8%, over those trained with cross-entropy and sMBR objec-
tive functions. A further reduction of ~2.5%, relative, can be
obtained by fine tuning these models with the word-lattice based
sMBR objective function.

Index Terms: neural networks, sequence discriminative train-
ing

1. Introduction

Sequence discriminative training of neural networks for Auto-
matic Speech Recognition (ASR) has been shown to provide
significant reduction in word error rates (WERs), vs. cross-
entropy training ([[1} 12} [3]]). Traditionally this has been done by
training a cross-entropy system, generating word lattices with
a weak language model, and using these lattices as an approx-
imation for all possible word sequences in the discriminative
objective function— as was done when Gaussian Mixture Mod-
els were the state of the art [4]].

Recently, Connectionist Temporal Classification (CTC) [5]
has attracted a lot of attention in speech recognition applica-
tions [6l [7]], although the only reports of its success have been
with huge amounts of data. Our attempts to get CTC to beat
cross-entropy trained systems on mere hundreds of hours of
data were unsuccessful— and beyond the scope of this paper— but
we realized that some ideas recently applied with CTC could
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be used in the context of MMI-based sequence training. Like
MMI, CTC training maximizes the conditional log-likelihood
of the correct transcript; the difference is that in CTC the prob-
abilities are locally normalized but in MMI they are globally
normalized.

The ideas that we apply to MMI-based training are:

¢ Training from scratch without initialization from a cross-
entropy system

¢ The use of a 3-fold reduced frame rate [8] (and a simpler
HMM topology)

* Limiting the range of time frames where supervision la-
bels can appear by using Finite State Acceptors [9)]

Because our method is denominator-lattice-free, we do the sum-
mation over all possible label sequences on the GPU; to keep
this manageable, we use a phone-level, not word-level, lan-
guage model. Overfitting is a problem; we use a combination
of three different regularization techniques.

In Section [2] we discuss various details of the proposed
method. In Section 3] we describe the experimental setup and
present the results in Section 4} Finally we present our conclu-
sions in Section[3]

2. Proposed Method

The basic premise of this paper is to do MMI training directly
on the GPU, without lattices, using the forward-backward algo-
rithm for both numerator and denominator parts of the objective
function. Obviously efficiency is going to be a problem [10].
Because fast GPU-based computations benefit from synchro-
nized memory access across cores, we avoid pruned versions of
forward-backward, and instead focus on making the graph as
small as possible.

We don’t give any equations here, because MMI training is
well known (e.g. see [4]). We interpret the neural net output
as the log of a pseudo-likelihood; there is no acoustic scaling
factor; and there is no division by the prior.

The computation of the derivatives of the objective func-
tion requires us to compute two sets of posterior quantities: one
from the numerator graph, which is specific to each utterance
and which encodes the supervision information; and one for the
denominator graph, which encodes all possible word sequences
and which is the same for all utterances. Both of these can be
viewed as equivalent to HMMs, although we use the Finite State
Acceptor (FSA) format to store both of them (with labels on
arcs, not states).



2.1. Topology and decision trees

The conventional HMM topology in ASR is a 3-state left-to-
right HMM that can be traversed in a minimum of 3 frames.
Here, we use a topology that can be traversed in one frame.
After comparing various topologies, we settled on a topology
where the first frame of a phone has a different label than the
remaining frames (a different pdf-id, in Kaldi terminology, i.e.
it maps to a different output of the neural net), so a single HMM
may emit either a, or ab, or abb, etc. The reader is free to
consider the b as analogous to the blank symbol in CTC (while
bearing in mind that in general each triphone may get its own
version of the b symbol).

We build the phonetic-context decision tree specifically for
this topology and frame rate after converting alignments from a
traditional HMM-GMM system at the normal frame rate; the
decision-tree is then built using the same procedure and the
same features (MFCC+LDA+MLLT) as for our HMM-GMM
system. The optimal number of leaves tends to be a little smaller
than than for a cross-entropy neural network.

2.2. Transition modeling

In our baseline cross-entropy based HMM-DNN framework,
the HMMs use transition probabilities; these are estimated in
the conventional way for HMMs. In this work we just set the
transition probabilities to be a constant value (0.5) that makes
each HMM-state sum to one. For the topologies we use, es-
timating the transition probabilities would add no modeling
power anyway (depending on the exact granularity with which
they are shared).

2.3. Denominator language model

To create the denominator graph we need a language model. In
traditional MMI [4], a unigram or sometimes bigram word-level
language model is used. However, this would be too slow in our
scenario. Instead we use a 4-gram phone level language model,
estimated from phone-level alignments of the training data. It
is constructed in a special way that is designed to minimize the
size of the denominator graph. At and below the trigram level
there is no smoothing or pruning; it can only predict triphones
that were seen in the training data. This limits how much the
addition of phonetic context-dependency can increase the size
of the graph. In addition to the un-pruned trigram language
model, we select a specified number of 4-gram history states
(2000 in experiments reported here), selected so as to maximize
the likelihood of the training data. There is no interpolation or
backoff from history states that exist, e.g. if a 3-phone history is
available we do not interpolate with, or back off to, the 2-phone
history (so test-data perplexity is infinite).

2.4. Denominator graph creation

The construction of the denominator graph from the phone-level
denominator LM can be summarized as follows (see [11] for
notation). First we compose on the left with C to add phonetic
context-dependency. Then we compose on the left with H (and
project on the input) to add the correct HMM topology and to
replace the labels with indexes of context-dependent states; and
we remove epsilons. At this point the graph is usable, but we
want to reduce the number of states and transitions as much
as possible for efficiency. We found that the standard tech-
nique based on determinization (with disambiguation symbols)
and minimization was not effective. Instead we perform the se-
quence (push the weights; minimize; reverse the FSA; push the

weights; minimize; reverse) 3 times, and remove es again (since
reversal adds a few). Most of the minimization happens on the
first one or two iterations. Note: the minimization algorithm of
Hopcroft ([[12])) is applicable to non-deterministic FSAs.

In the Switchboard-1 system described in the experimental
section, with 7115 leaves, the final compiled graph had about
24k states and 220k transitions. Both are important to us be-
cause the number of states dictates memory consumption and
the number of transitions dictates the time taken by the denom-
inator forward-backward. In the setups described here the de-
nominator forward-backward took less than 20% of the time in
the training program, with the rest consisting of neural network
computation.

2.5. Initial and final probabilities in the denominator graph

The denominator graph as created above has an initial state and
final probabilities that reflect the statistics of sentence starts
and ends. This is incompatible with the fact that we train on
fixed size chunks extracted from utterances (typically 1.5 sec-
onds long). So we use modified initial and final probabilities
in the forward-backward computation. The initial probabilities
are obtained by running the HMM for 100 time steps starting
from the initial state, and averaging the distribution of states
over those 100 time steps. The final probabilities are all set
to one. For convenience in creating the numerator graphs (see
Sec. [2.6), we create something that we call the normalization
FSA that is the same as the denominator FSA but with these
modified initial and final probabilities (the initial probabilities
are represented by adding e transitions from a new initial state,
and then removing epsilons).

2.6. Numerator graph creation
2.6.1. Time constraints

The process of numerator graph creation for an utterance begins
with the same process by which we create an utterance-specific
Finite State Transducer (FST) for Viterbi alignment during con-
ventional training. (Note: here, our numerator and denominator
graphs are actually FSAs, and we will use that term from now
on). If we were training on entire utterances rather than fixed-
sized chunks, we could use this directly. However, in order to
make it possible to split up the numerator graphs appropriately,
we need to add time constraints to the alignments.

Prior to training the neural net, we use a GMM-based sys-
tem to dump lattices representing alternative pronunciations of
the training utterances. (We use a modified version of the de-
terminization procedure of [13] in which the phone sequence
as well as the word sequence is encoded in the output sym-
bols, so distinct pronunciations are retained). These lattices are
processed into phone graphs and then compiled into utterance-
specific FSAs as for conventional training. Separately the lat-
tices are also processed into a frame-by-frame mask of what
phones are allowed to appear on what frames: a user-specifiable
tolerance (50 milliseconds by default) allows a phone to appear
slightly before or after where it appeared in the lattice. We ob-
tain the mask at the subsampled frame rate i.e., with a 30ms
frame shift. Suppose the number of subsampled frames is T. We
compose the previously created decoding graph with an FSA
that has T+1 states, with the first state initial and the last state
final, and has a transition from state ¢ to ¢t 4+ 1 with a particular
pdf-id on it, if that pdf-id is from a phone that is allowed on the
t’th frame. This allows us to split up the numerator FSA into
appropriate chunks, because each state of the composed FSA



can now be identified with a frame index. A similar idea was
used in [9]] for CTC training.

2.6.2. Adding weights to the numerator FSA

For diagnostic reasons it is convenient to have an objective
function (expressed as a log-prob per frame) that can never be
greater than zero. We achieve this by adding the weights from
the denominator FSA into the numerator FSA; this includes the
modified initial and final probabilities discussed in Section[2.3]
This is done by composing the numerator FSA with the nor-
malization FSA mentioned above. While creating the numera-
tor FSA we avoid adding in transition probabilities (i.e. they are
all set to 1.0), to prevent counting them twice. At the end, the
numerator FSA can be thought of as containing a subset of the
paths in the denominator FSA.

2.6.3. Forward-backward computation

The forward-backward computation needed to compute the
derivatives w.r.t. the neural net output is implemented on the
CPU for the numerator, which is simpler. The denominator
forward-backward computation is done on the GPU. In order
to avoid the overhead of log and exp operations, we don’t do
the computation in log-space. This requires some care to avoid
underflow or overflow. On each frame we multiply the neural
net outputs by a value chosen to keep the o and 5 quantities
within a reasonable range (we use the inverse of the sum of the
previous frame’s as). The “leaky-hmm” idea discussed below
is helpful for this, as it ensures that if the o values are kept in a
reasonable range, the /3 values cannot overflow.

2.7. Regularization

Sequence level training tends to overfit [3]. We combine three
different regularization methods to reduce this.

2.7.1. Cross-entropy regularization

We add to the network a separate output layer specifically for
training with the cross entropy objective function; and we also
give it its own version of the last hidden layer, so two of the
weight matrices are specific to the cross-entropy training. The
supervision for the cross-entropy objective is a “soft” super-
vision derived from the posteriors in the numerator forward-
backward computation; this is for convenience. We scale the
cross-entropy objective by a user-specified constant (normally
0.1) during training, because its dynamic range per frame is
naturally greater than that of the MMI objective. The param-
eters specific to the cross-entropy output may be discarded after
training.

2.7.2. Output lz-norm regularization

We penalize the squared /2 norm of the output of the neural net-
work (the main output, not the cross-entropy one). This consists
of adding —0.5¢ y - y to the objective function for each output
frame, where v is the neural network output on that frame. We
set ¢ to 0.0005.

2.7.3. Leaky HMM

We allow for transition probabilities from each state in the
HMM to every other state, to ensure gradual forgetting of con-
text. It’s equivalent to stopping and restarting the HMM with
some probability on each frame. It can be described as an €

transition from each state a to each other state b with probabil-
ity equal to leaky-hmm-coefficient times the initial-probability
of state b (except that we only get to traverse one of these €
transitions per frame). For further details see the codeﬂ Here
we set leaky-hmm-coefficient is set to 0.1.

3. Experimental Setup

We report results on several different LVCSR tasks, however
most results are presented on 300 hour subset of the Switch-
board task (SWBD-300Hr). The experimental setup is similar
to [14] and is described here briefly. The experimental setups
for other LVCSR tasks are similar and details are available in
the code repository [15].

The HMM-GMM system, used to generate the alignments
for cross-entropy training of neural network and the numerator
lattices for LE-MMI training (see[2.6); and the language model
used for constructing the decode graph are similar to those de-
scribed in [2]]. We use the speed-perturbation technique ([16])
for 3-fold data augmentation; and iVectors to perform instanta-
neous adaptation of the neural network ([17]). We use an en-
hanced lexicon FST for decoding test utterances, with probabil-
ities for pronunciations of each word and also encodes the prob-
ability of silence before and after each pronunciation explicitly
([180). WER results are reported after 4-gram LM rescoring of
lattices generated using a trigram LM.

3.1. Neural networks

The acoustic models used are sub-sampled time-delay neural
networks (TDNNs, [14]), long short term memory networks
(LSTMs, [19]) and bidirectional LSTMs (BLSTMs).

3.1.1. Time delay neural networks

The TDNNs used for cross-entropy training are similar
to those specified in [14], except with a slightly differ-
ent configuration of splicing indexes. The splicing indexes
used are -1,0,1 -1,0,1,2 -3,0,3 -3,0,3 -3,0,3
-6,-3,0 0. The initial -1, 0, 1 means that the first layer
sees 3 consecutive frames of input; the -3, 0, 3 means that
most hidden layers see 3 frames of the previous layer, sepa-
rated by 3 frames. Since these differ by multiples of 3 and we
only evaluate the output at multiples of 3 frames, most hidden
layers only need to be evaluated every 3 frames, like the out-
put, which is efficient. The final 0 means that the very last
weight matrix does not have spliced input. Our chosen ReLU
dimensions (the output dimensions of the weight matrices) tend
to be smaller than our cross-entropy trained TDNNs, e.g. 576
for the Switchboard-1 system, versus 1024 for the cross-entropy
trained baseline. The cross-entropy baseline for that system had
splicing indexes -2,-1,0,1,2 -1,2 -3,3 -7,2 0.

3.1.2. (B)LSTM networks

We use (B)LSTM layers with recurrent and non-recurrent pro-
jections as suggested in [19]. LSTMs used in cross-entropy
training have a different delay at each layer, which increases
as we go deeper into the network. This is done to reduce the
computation. We use delays of -1, -2 and -3 at layers 1, 2
and 3 respectively. Similarly the BLSTM has increasing delays

'Alll of this is in published Kaldi code at
github.com/kaldi-asr/kaldi; see the chain directory,
and search for ’leaky’ to find code related to this topic



along both directions. The (B)LSTM networks trained with LF-
MMI have the same architecture as above, except for the delays.
These networks use a constant delay of -3 (or +3) at each layer.
This ensures that the amount of computation needed for gener-
ating outputs at a reduced frame rate of 33 Hz is one third of
that required for computing outputs at 100 Hz.

4. Results

Table[I]shows a comparison of different regularization methods
used in LF-MMI. All three provided gains individually (with
leaky-hmm making less difference than the others). The gains
were largely additive. LF-MMI is used with all the three regu-
larization functions in the remainder of the experiments.

Table 1: Comparison of regularization functions with TDNN-B
on the Hub5 ’00 eval set, using SWBD-300 Hr data

Regularization Function WER

Cross- output leaky

entropy l2-norm HMM Total - SWBD
N N N 16.8 11.1
Y N N 15.9 10.5
N Y N 15.9 10.4
N N Y 16.4 10.9
Y Y N 15.7 10.3
Y N Y 15.7 10.3
N Y Y 15.8 104
Y Y Y 15.6 10.4

Table [2| shows a comparison of the training methods. Com-
paring rows 1-3 it can be seen that LF-MMI training leads to
WER improvements relative to both the cross-entropy (CE) and
cross-entropy pretrained SMBR (CE — sMBR) objectives. Fur-
ther the word LM based sMBR objective can provide gains even
over LE-MMI trained models.

TDNN-A has the same configuration as the one described in
[[14]. The parameters in TDNN-A were reduced when training it
with LF-MMI objective. TDNN-B and TDNN-C are uniformly
sampled TDNNs (see [3.1.T) with larger number of layers than
TDNN-A.

Table 2: Comparison of objective functions on Hub5 *00 eval
set, using SWBD-300 Hr data

Objective . WER
furJlCtion Model (Size) Total SWBD
CE TDNN-A (166 M) | 182 125
CE — sMBR TDNN-A (166 M) | 169 114
TDNN-A O8M) | 161 107
LE-MMI TDNN-B 9.9M) | 156 104

TDNN-C (11.2M) | 15.5 10.2
LF-MMI — sMBR | TDNN-C (11.2M) | 15.1 10

Table[3]shows the performance gains due to LF-MMI across
3 models. It can be seen that the relative gains are smaller with
the RNN architectures, compared to the feed-forward DNN ar-
chitecture. The (B)LSTM network has 3 layers each with a cell
dimension of 1024; and recurrent and non-recurrent projections
of size 256 units.

Table [ presents comparison of CE, CE — sMBR and LF-
MMI across datasets of different sizes. It can be see that the
gains are consistent across most datasets. We are currently in-

Table 3: Performance of LF-MMI with different models on the
Hubb5 00 eval set, using SWBD-300 Hr data

WER
Model Total SWBD
TDNN-C + CE 182 125
TDNN-C + LE-MMI | 155 102
LSTM + CE 165  11.6
LSTM + LE-MMI 156 103
BLSTM + CE 149 103
BLSTM + LE-MMI | 145 96

vestigating the relative increase in WER in the TED-LIUM task
([20D.

Table 4: Performance of LF-MMI on various LVCSR tasks with
different amount of training data, using TDNN acoustic models

Database Size WER
CE CE — sMBR LF-MMI

AMI-THM 80 hrs 25.1 23.8 2247
AMI-SDM | 80hrs | 50.9 489 46.17
TED-LIUM | 118 hrs | 12.1 11.3 11.2*
Switchboard | 300 hrs 18.2 16.9 15.5
Librispeech | 1000 hrs | 4.97 4.56 4.28
Fisher + SWBD | 2100 hrs | 15.4 14.5 13.3

T: In AMI LVCSR task adding a data filtering stage to eliminate large oracle-WER

utterances increased the relative gain [21]
*e We used a data cleanup stage to remove parts of training recordings that are
mistranscribed or do not correpsond to the marked speaker.
Note : All these experiments use the same TDNN architecture, except for the hidden layer size

Table [5] compares the results in this paper with those from
[22]] and [23] on the Hub5 *00 and RTO03S eval sets.

Table 5: Comparison with systems in [22] and [23]]

System AM LM Hub5 00 RT03S
Dataset Dataset | SWB  CHM | FSH SWB
Mohd. et al [22] F+S F+S 10.6 - 13.2 18.9
Mohd. et al [22] F+S F+S+0O 9.9 - 12.3 17.8
Mohd. eral [221 F+S+O F+S+0 | 9.2 - 115 167
Saon et al [23] F+S+C F+S+O 8.0 14.1 - -
TDNN+LF-MMI S F+S | 102 205 | 142 235
TDNN+(LF- S F+S 10.0 20.1 13.8 22.1
MMI—sMBR)
BLSTM+LF- S F+S 9.6 193 | 132 208
MMI
TDNN+LF-MMI F+S F+S 9.2 173 | 98 148
BLSTM+LF- F+S F+S 8.5 15.3 9.6 13.0
MMI
F:  Fisher corpus S:  Switchboard corpus
C: Callhome corpus O: Other corpora

5. Conclusion and Future work

In this paper we applied ideas from recent CTC efforts [} 16}
7,19, 18] to MMI sequence discriminative training starting from
randomly initialized neural networks. We showed that using
a denominator-lattice-free version of MMI training, and a re-
duced frame rate, we were able to get ~8% relative improve-
ment compared to the SMBR objective (with cross-entropy pre-
training) and ~11.5% relative improvement compared to cross-
entropy training.

We showed that the gains were consistent across most
datasets and model types. We are currently investigating the
sensitivity of this method to transcription errors (initial results
show that it is more sensitive); and the difference in perfor-
mance across feed-forward and recurrent neural networks.
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