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ABSTRACT
In this study, we investigate an end-to-end text-independent
speaker verification system. The architecture consists of a
deep neural network that takes a variable length speech seg-
ment and maps it to a speaker embedding. The objective func-
tion separates same-speaker and different-speaker pairs, and
is reused during verification. Similar systems have recently
shown promise for text-dependent verification, but we believe
that this is unexplored for the text-independent task. We show
that given a large number of training speakers, the proposed
system outperforms an i-vector baseline in equal error-rate
(EER) and at low miss rates. Relative to the baseline, the end-
to-end system reduces EER by 13% average and 29% pooled
across test conditions. The fused system achieves a reduction
of 32% average and 38% pooled.

Index Terms— speaker verification, deep neural net-
works, end-to-end training

1. INTRODUCTION

Speaker verification (SV) is the task of authenticating the
claimed identity of a speaker, based on some speech signal
and enrolled speaker record. Typically, a low-dimensional
representation rich in speaker information is extracted for
both enrollment and test speech, and is mapped to a verifica-
tion score using some comparison criterion. Variants include
text-dependent, where the speech content is fixed to some
phrase, and text-independent SV. In this study, our interest
is in real-time text-independent SV. To reduce latency, we
try to minimize the amount of speech required to achieve an
accurate verification. Our evaluation follows from this, and
involves full-length enrollment recordings and test speech
ranging from one second to a few minutes.

Speaker representations are commonly based on i-vectors
[1], with a probabilistic linear discriminant (PLDA) backend
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used for scoring [2, 3, 4, 5, 6, 7]. Recently, this paradigm
has been improved by incorporating deep neural network
(DNN) acoustic models [8, 9, 10, 11, 12]. The DNN is
trained for automatic speech recognition and repurposed
to enhance phonetic modeling in the universal background
model (UBM). Ordinarily, the components of an i-vector
system are trained on complementary subtasks, but are not
jointly optimized for verification. In [13], the typically gen-
erative PLDA model was trained to discriminate between
same-speaker and different-speaker trials. The work in [14]
went deeper into the i-vector pipeline to discriminatively train
the i-vector extractor. Although our proposed system is not
i-vector-based, we use a similar training criterion.

An alternative approach is to use neural networks to
model speaker characteristics. Prior work includes frame-
level models that compute probabilities over a fixed list of
speakers [15, 16, 17, 18, 19]. After training, the output layer
is discarded, and additional steps are required to aggregate
frame-level representations and to perform verification. A
popular approach is to train Gaussian mixture models (GMM)
on bottleneck features extracted from the network. This is
followed by binary classification [15, 16, 17] or i-vector ex-
traction [19]. In [18], speaker representations are created by
averaging the final hidden layer activations.

Recently, [20] introduced an end-to-end system trained
to discriminate between same-speaker and different-speaker
utterance pairs. This built on the frame-level approach in
[18], and outperformed an i-vector baseline for a global pass-
word text-dependent SV task. Our framework is similar to the
feed-forward DNN in [20], but handles variable length input
through a temporal pooling layer and is developed for text-
independent verification. Earlier studies in [21, 22, 23] pre-
sented a similar architecture that trains a DNN on a speaker
comparison task and produces frame-level features that cap-
ture speaker characteristics. First and second order statis-
tics are computed from these output features to create single-
Gaussian speaker models. In our proposed system we also



capture speaker characteristics by statistics over the utterance,
but these are computed at a hidden pooling layer of the DNN
and used internally. As in [20], our proposed system is trained
on the same distance metric used during test-time verification.

2. BASELINE I-VECTOR SYSTEM

The baseline is a standard i-vector system that is based on the
GMM-UBM Kaldi recipe described in [11]. The front-end
features consist of 20 MFCCs with a frame-length of 25ms
that are mean-normalized over a sliding window of up to 3
seconds. Delta and acceleration are appended to create 60
dimension feature vectors. A frame-level GMM-based VAD
selects features corresponding to speech frames. The UBM
is a 4096 component full-covariance GMM. The system uses
a 600 dimension i-vector extractor. Prior to PLDA scoring,
i-vectors are centered and length normalized. To compen-
sate for duration mismatch, we use the strategy of truncating
PLDA training data [24]. The training dataset is copied and
randomly cropped to the first 1–20 seconds. The PLDA model
is trained on either the short version alone, or on the combi-
nation of the short and maximum length versions.

3. DIRECT DEEP NEURAL NETWORK

3.1. Overview

(a) DNN Architecture (b) Scoring Schema

Fig. 1. Diagram of the DNN and scoring method.

The proposed architecture is a feed-forward DNN that ex-
tracts statistics over a sequence of stacked MFCCs and maps
it to a speaker embedding. The objective function operates on
pairs of embeddings, and maximizes a same-speaker proba-
bility for embeddings from the same speaker, and minimizes

the same probability for pairs of embeddings from different
speakers. Our system is built using the nnet3 neural network
library in the Kaldi speech recognition toolkit [25].

3.2. Features

The features are 20 dimensional MFCCs with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3
seconds. 9 frames are spliced together to create a 180 dimen-
sional input vector. After splicing, the same frame-level VAD
from Section 2 filters out nonspeech frames.

3.3. Neural Network Architecture

The network, illustrated in Figure 1a, consists of four hid-
den layers, followed by a temporal pooling layer. The pool-
ing layer aggregates the output of the preceding hidden layer
over time and computes its average and standard deviation.
These statistics are concatenated together, propagated to a fi-
nal hidden layer, followed by a linear output that produces the
speaker embedding x. The symmetric matrix S and offset b
are constant outputs (independent of the input) that are used
in the distance metric, Equation 2.

The network activations are a type of network-in-network
(NIN) nonlinearity recently introduced in [26]. The NIN
component maps an input of dimension di to output of di-
mension do. Internally, a set of n micro neural networks
([27]) project the input to a dh-dimensional space. Within
a NIN component, micro neural networks share parameters,
and are composed of a stack of three rectified linear units
connected by affine transformations. Refer to [26] for imple-
mentation details. Our network uses the NIN configuration
{n = 150, di = 600, dh = 2000, do = 3000}, which results
in a model with 6.7 million parameters.

3.4. Training

We model the probability of embeddings x and y belonging to
the same speaker by the logistic function in Equation 1. Equa-
tion 2 is a PLDA-like quantity, similar to [13], that defines the
distance between two embeddings. Let Pdiff and Psame be the
set of different-speaker and same-speaker pairs, respectively.
The objective function (Equation 3) is the log probability of
the correct choice for each pair. Since there are many more
pairs in the set Pdiff than in Psame, we introduce a constant K
so that each set has the same weight in the objective function.

Pr(x,y) =
1

1 + e−L(x,y)
(1)

L(x,y) = xTy − xTSx− yTSy + b (2)

E = −
∑

x,y∈Psame

ln (Pr(x,y)) −K
∑

x,y∈Pdiff

ln (1− Pr(x,y)) (3)



Training examples are organized as pairs of same-speaker
feature chunks. Minibatches are formed by picking N pairs,
such that no two pairs are from the same speaker. Combin-
ing chunks across pairs results in an additional N(N + 1)
different-speaker pairs. To handle channel variability, all
chunks in the minibatch come from different recordings.
Speaker embeddings are extracted from all 2N chunks and
passed to the objective function. The derivatives with respect
to S, b and embeddings x1, x2, ..., x2N are computed, and
backpropagated to the DNN for parallelized stochastic gra-
dient descent [28]. GPU memory limitations in conjunction
with very long features (e.g., 3000 frames) restrict the size
of the minibatches to N = 10 same-speaker pairs. Training
pairs are shuffled after each iteration to ensure that many
different speakers and speech cuts are compared.

In our application, it is important to minimize sensitiv-
ity to speech duration. A straightforward strategy is to train
the DNN on chunks that vary widely in duration. How-
ever, we found that beginning training with the full range of
chunk lengths results in unstable convergence. Our solution
is to separate training into two stages: long duration chunks
are presented first, followed by a mixture of short and long
chunks. In the first stage, we train for two epochs using 10–30
second chunks, followed by another two epochs with 1–20 or
1–30 second chunks in the second stage.

3.5. Speaker Embeddings

Although an embedding can be extracted from a recording of
any length, we found it convenient from a memory standpoint
to extract embeddings from 30 second chunks and average to
get an utterance-level representation. A single embedding is
generated from the entire utterance if it is shorter than 30 sec-
onds. Enrollment embeddings are extracted from one or more
utterances, and averaged to create a speaker-level representa-
tion. As illustrated in Figure 1b, enroll and test utterances are
scored by the distance metric used in the objective function
(Equation 2).

4. DATASET

Table 1. Dataset Statistics
#spkr tot #rec avg #rec/spkr avg. dur

train5k 5k 25k 4.93 81s
train15k 15k 53k 3.53 84s

train102k 102k 226k 2.22 91s
enroll 2419 2915 1.21 91s
test 2419 2419 1 1–92s

The datasets consist of US English telephone speech.
Calls are sampled at 8kHz and compressed using an internal

process. Table 1 lists statistics for the datasets. The full train-
ing dataset, train102k, comprises roughly 102,000 speakers
and more than 5,700 hours of speech. To explore the effect
of training dataset size on performance, we found it useful to
create reduced datasets train5k and train15k, with 5,000 and
15,000 speakers respectively (see Section 5.2).

The evaluation dataset consists of 2,419 speakers that
do not overlap with the training speakers. Trials were con-
structed by randomly pairing up recordings from the evalua-
tion speakers such that roughly 80 percent are nontarget. In
total, there are 12,362 trials. Gender labels are not used, so
our evaluation contains same and cross gender trials. The test
conditions consist of full-length enrollment recordings com-
pared with test segments of various lengths. Test segments
are created by truncating the recordings to the first T seconds
of speech, as detected by our GMM frame-level VAD. The
VAD uses a threshold that corresponds to the equal error-rate
on an in-domain development set. This helps to ensure that,
on average, the test condition labels (e.g., 1s, 2s, etc) faith-
fully report the actual speech duration in the test segments.
The same list of trials is used for all the duration conditions.

5. EXPERIMENTAL RESULTS

5.1. Duration Robustness

Table 2. EER(%) for Duration Robust Models
ivec102k 1s 2s 3s 5s 10s 20s full pool

1–20s 14.1 8.7 6.7 4.9 3.7 3.2 2.8 8.5
1–20s+full 15.0 9.4 7.0 5.1 3.8 3.1 2.6 10.0

full 16.4 9.9 7.3 5.2 3.8 2.8 2.4 10.6

dnn102k 1s 2s 3s 5s 10s 20s full pool
1–20s 12.6 7.5 6.0 4.2 3.4 2.6 2.5 6.0
1–30s 13.8 8.7 6.2 4.6 3.4 2.6 2.4 6.6

Our application requires high accuracy on short test seg-
ments and calibrated scores across test conditions. We there-
fore examine several methods to compensate for duration
variability. The labels on the the first seven columns of Table
2 denote the amount of speech retained in the test segments.
The final column is for pooled results. The row labels de-
scribe how the training data is configured. For i-vectors,
this involves training a PLDA model on randomly truncated
speech as described in Section 2. The end-to-end system
uses the two stage method described in Section 3.4 to handle
duration variability.

We denote i-vector and DNN systems trained on train102k
as ivec102k and dnn102k respectively. For ivec102k, train-
ing the PLDA model on 1–20 second segments results in
the best performance on the shortest five test conditions and
pooled. Adapting dnn102k to 1–20 instead of 1–30 second



chunks produces equivalent or better results on all but the full-
length condition. With respect to systems using 1–20 second
chunks, dnn102k outperforms ivec102k on all conditions, and
achieves a relative improvement of 13% in terms of average
EER and 29% in pooled EER. Since we are more concerned
with the short-duration conditions, we use the 1–20 second
adaptation methods for the remaining experiments.

5.2. Training Data Size

Table 3. EER(%) and Training Dataset Size
1s 2s 3s 5s 10s 20s full pool

ivec5k 14.8 11.4 9.0 7.0 5.4 4.4 3.5 8.6
dnn5k 17.5 12.6 10.7 8.7 7.2 6.4 6.2 10.6

ivec15k 13.8 9.0 7.0 5.1 3.9 3.0 2.7 8.0
dnn15k 14.2 10.7 8.0 6.5 5.4 4.9 4.9 8.3

ivec102k 14.1 8.7 6.7 4.9 3.7 3.2 2.8 8.5
dnn102k 12.6 7.5 6.0 4.2 3.4 2.6 2.5 6.0

In Table 3 we report the effect of training dataset size
on performance. The N in trainNk refers to the number of
speakers, in thousands. All systems use the 1–20 second dura-
tion compensation methods from Section 5.1. Trained on the
smaller datasets, the i-vector system outperforms the DNN on
all conditions. This is especially noticeable on the long dura-
tion conditions: ivec5k is 44% better than dnn5k on the full
condition, but only 15% better on the 1s condition. However,
the average performance seems to stagnate for the i-vector at
15,000 speakers, and additional speakers do not consistently
improve the pooled results. On the other hand, the DNN ap-
pears better able to exploit a substantial increase in the num-
ber of speakers. The average EER improves by 21% from
dnn5k to dnn15k, and 29% from dnn15k to dnn102k.

5.3. System Combination

Table 4. EER(%) of System Fusion
1s 2s 3s 5s 10s 20s full pool

ivec102k 14.1 8.7 6.7 4.9 3.7 3.2 2.8 8.5
dnn102k 12.6 7.5 6.0 4.2 3.4 2.6 2.5 6.0
fusion 10.2 6.1 4.3 3.4 2.4 1.9 1.6 5.3

The DNN performs well by itself, but due to the signifi-
cant architectural differences between it and the i-vector base-
line, we anticipate that the systems are excellent candidates
for fusion. To fuse ivec102k and dnn102k, we first normal-
ize the scores using mean and variance calculated from all
pooled scores and add them together. Relative to the baseline,

the fused system is 32% and 38% better, in terms of average
and pooled EER.

5.4. DET Curves
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Fig. 2. DET curve for the pooled 1s, 2s, 3s, and 5s conditions.

So far, we have compared systems at the EER operating
point, in which the false alarm rate (FAR) equals the miss rate
(MR). However, for many verification applications, avoiding
false alarms is prioritized. Therefore, we plot detection error
tradeoff (DET) curves for the individual and fusion systems.
Relative to the i-vector, the DNN performs better at a low MR
and worse at a low FAR. Figure 2 plots a DET curve for the 1–
5 second test conditions. We see that ivec102k and dnn102k
overlap at 2% FAR and 20% MR. The baseline ivec102k is
better for FAR less than 2%, although the DNN is better ev-
erywhere else. With the exception of extremely low FAR, the
fusion system is the same or better than the individual sys-
tems. Figure 3 shows a similar pattern for the long duration
test conditions, but the cross over occurs at 2% FAR and 4.5%
MR. This indicates that the DNN dominates over a larger set
of operating points for short duration test conditions than for
long.

6. CONCLUSIONS

We studied a deep neural network architecture that extracts
speaker embeddings from variable length speech segments,
and scores them using the distance metric from the objective
function. In [20], it was suggested that neural network-based
end-to-end architectures are generally applicable to verifica-
tion tasks. Our findings agree with this, and show promis-
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Fig. 3. DET curve for the pooled 10s, 20s, and full conditions.

ing results for text-independent speaker verification, given an
adequate number of training speakers. We found that the pro-
posed architecture outperformed our i-vector baseline by 13%
average and 29% pooled EER. The larger relative improve-
ment for the pooled error-rate and a better DET curve on the
short test conditions suggest that the DNN-based embeddings
may be more robust to duration variability, and better at mod-
eling speaker characteristics from small amounts of speech.
In future work, we plan to investigate speaker embeddings
for ASR speaker adaptation and speaker diarization.
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