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ABSTRACT

It is common in applications of ASR to have a large amount
of data out-of-domain to the test data and a smaller amount
of in-domain data similar to the test data. In this paper, we
investigate different ways to utilize this out-of-domain data to
improve ASR models based on Lattice-free MMI (LF-MMI).
In particular, we experiment with multi-task training using a
network with shared hidden layers; and we try various ways
of adapting previously trained models to a new domain. Both
types of methods are effective in reducing the WER versus
in-domain models, with the jointly trained models generally
giving more improvement.

Index Terms: Transfer learning, weight transfer, LF-MMI,
multi-task learning, Automatic Speech Recognition

1. INTRODUCTION

Transfer learning is the general machine learning approach
of transferring knowledge from one model to another model,
that can be used in a different, but related task or domain and
it can be regarded as a superset of unsupervised adaptation,
domain adaptation, model compression and many other re-
lated problems. There is a rich survey of transfer learning
methods in the literature [1, 2, 3]. In this work, we investi-
gate the use of transfer learning in automatic speech recog-
nition (ASR) tasks for adapting neural networks to different
domains or datasets

One of the advantages of deep learning is to particularly
learn a hierarchy of feature representations from low-level
features to more abstract higher-level features [4, 3], con-
sequently it can be useful in transfer learning. Multi-task
learning [5] has been adopted to explicitly learn intermediate-
level features in the neural network that are useful for several
different tasks. In an alternate paradigm, pretraining [6, 7]
has been used to implicitly learn intermediate representations
that are useful for different tasks. The intermediate layers
in neural networks trained on speech data appear to be not
specific to any particular task, while the higher layers are
task-specific [8]. This has been demonstrated in [8], where

unsupervised pretraining using Deep Belief Networks (DBN)
has been shown to learn representations useful for phoneme
recognition and audio classification tasks. Unsupervised pre-
training has also been applied to multilingual speech recogni-
tion [9]. Supervised training using out-of-domain data is also
a form of pretraining and it has been used to learn multilingual
bottleneck features in [10, 11].

Transfer learning methods have been applied to speech
processing in various settings. Wang et. al [12] gives a good
overall survey of methods used in speech processing. Do-
main adaptation by adapting network parameters, and in par-
ticular speaker adaptation, has been attempted using simple
Linear Input Network (LIN) [13]. This has inspired more
advanced methods like fDLR [14] and linear transforms at
various stages of the network [15] using Liner Hidden Net-
work (LHN). The weight transfer method described in this
work is similar to LHN-based adaptation, but we re-initialize
an affine layer instead of training a newly added layer. LHN-
based adaptation is compared with multi-task learning in [16].
A speaker adaptive training (SAT) type approach is investi-
gated for speaker adaptation of DNN by learning hidden unit
contributions (LHUC) [17]. In [18], several transfer learn-
ing approaches for speaker adaptation are compared including
multi-task learning. Multi-task architectures with hidden lay-
ers shared across languages have been used successfully for
multilingual training [19, 20]. Not only the amount of data,
but also the similarity of the languages i.e. the relatedness of
the task is found to be important for effective transfer learning
[21, 22].

In this work, we investigate 2 different approaches to
transfer knowledge between networks. For this work, we
circumvent the side-effect of language similarity (or dissimi-
larity) seen in multilingual training and focus only on English
datasets, albeit in different language domains and environ-
ments (channels). We find that generally multi-task training
performs better than weight transfer. However weight transfer
is still effective compared to the unadapted model and might
be preferable as it does not require training on both source and
target data as in the multi-task training approach. We investi-



gate weight transfer approaches and show that a single-stage
training of transferred layers in weight training is better than
a two-stage one that includes a final fine-tuning. We also find
that even a weak model can be a good seed model for transfer
learning, and thus we do not need to train the seed model to
convergence on the source data. We also apply transfer learn-
ing across datasets with different sampling rates. Contrary to
the popular approach of down-sampling data, we show that
up-sampling the data is the better approach. We investigate
the effect of i-vector mismatch across domains and conclude
that it is best to train the i-vector on the combined source
and target data. We investigate whether the transfer learning
approaches are as applicable to sequential objectives as they
are frame-level cross-entropy objective, and conclude that
they are.

This paper is organized as follows.Section 2 discusses the
transfer learning approaches investigated in this paper; multi-
task learning 2.1 and weight transfer 2.2 . In section 3, we in-
vestigate weight transfer approach as a function of number of
transferred layers from source model, performance of source
model on source domain, amount of target data and different
mismatch conditions. Section 3.3 analyzes the effectiveness
of two proposed approaches and section 3.4 studies the effect
of sequence level versus frame-level objectives in transferring
knowledge across datasets using two methods.

2. MODEL DESCRIPTION

In this section, we investigate 2 different approaches to trans-
fer knowledge between data sets for automatic speech recog-
nition. Section 2.1 describes joint multi-task approach for
transfer learning and Section 2.2 describes the weight transfer
approach.

2.1. Joint multi-task learning

In this approach, we used the setup where the initial layers
of the network are shared across all tasks and each task has a
specific final layer. This approach has been previously used
in the several works including [5, 20, 19]. If tasks are known
to have different importance, then they can be weighted pro-
portionally as in [22]. Unlike [22], which uses model averag-
ing (typically after training over 400000 frames), we train for
different tasks in different mini-batches, which averages over
a minibatch (typically 10000 frames). Training the network
this can reduce optimization difficulty due to co-adaptation.
Another issue is over-training to a specific task, which might
degrade performance in other tasks as seen in [21] when trans-
ferring from Fisher English to other languages. To reduce
such over-training effect, the gradients are scaled for each
task by a factor inversely proportional to the square root of
the number of training samples in that task.

2.2. Weight Transfer

The main idea here is that the internal layers of DNN learn
intermediate-level representations of input, which can be pre-
trained on one dataset (or task) and re-used on the other tasks.
A typical weight transfer approach is to first train the model
on a large dataset, retain only n layers and add new task-
specific adaptation layers over those.

The usual strategy is to do a two-stage training by freezing
the transferred layers and train task-specific layers in the 1%
training stage and then fine-tune the whole network in the 2"
stage of training using a smaller learning rate [23]. However,
we show in Section 3.1.1 that it is better to do a single-stage
training — train the transferred layers with a smaller learning
rate while training the task-specific layers with a larger learn-
ing rate.

3. RESULTS AND DISCUSSION

In this section, we discuss transfer learning experiments to in-
vestigate the effectiveness of our two transfer learning meth-
ods — weight transfer and multitask learning — under various
source and target conditions. For the experiments, we use
time-delay neural networks [24] (TDNN) with i-vectors [25]
for speaker adaptation [26]. For the details about the train-
ing of TDNN with lattice-free maximum mutual information
(LF-MMI) objective, the reader is directed to [27]. As in that
work, we train the network with LF-MMI objective and cross-
entropy regularization. We use several different corpora for
our experiments — Switchboard (SWBD), Librispeech [28],
WSJ and AMI [29] in both individual headset microphone
(IHM) and single distance microphone (SDM) conditions.

This section is organized as follows. In section 3.1, var-
ious training strategies and amount of transferred layers in
weight transfer approach are discussed. Moreover the ef-
fectiveness of the weight transfer approach is investigated as
function of the amount of data in the source vs target domains
and the performance of source model on the source domain.
In section 3.2, we discuss how transfer learning is affected by
various mismatch conditions. In section 3.3, we compare the
weight transfer method and the multi-task learning method
for transfer learning. In section 3.4, we answer the question
whether the transfer learning gives more improvement when
using frame-level or sequence-level objectives.

3.1. Weight Transfer method
3.1.1. Single-stage vs two-stage training

Table 1 shows results using two different weight transfer
strategies. In these experiments, 5 layers of the source model
trained on Switchboard dataset are transferred to AMI-SDM
dataset and 2 randomly initialized layers are added on top of
transferred layers. The global learning rate is the same in all
stages of experiments and the learning rate for each layer is



Table 1. single-stage vs. two-stage WER Results on
SWBD—AMI-SDM.
# Model LR factors  # epochs WER%
@ B $1 so dev eval
1 Baseline 1 - 4 45.3 50.0
two-stage (s1) 50.6 55.0
2 two-stage (s2) 025 1 4 2 46.5 51.2
two-stage (s1) 51.8 563
3 two-stage (s2) 0.25 1 2 2 46.4 515
4  single-stage 0.02 - 4 - 454 503
5 single-stage 0.1 - 4 - 445 497
single-stage ) 445 494
6 single-stage* 0.1 2 ! 443 495
7 single-stage 025 - 2 - 440 489
*: fine-tune whole net

the global learning-rate scaled by its learning rate factor. In
two-stage training, the transferred layers are fixed and only
the task-specific layers are trained in the first stage with a
learning rate factor o for s; epochs. Then, in the second
stage, the whole network is fine tuned using a smaller learn-
ing rate factor 3 for s, epochs. In single stage training, the
transferred layers are trained with a learning rate factor a,
while newly added layers are trained with the global learning
rate, all for s; epochs.

As shown in the table, single-stage training gives better
results than the conventional two-stage training with a smaller
number of epochs. The single-stage results improve as we
increase the learning rate factor a.

In addition, fine-tuning the single-stage trained model by
training whole model with smaller learning rate, does not im-
prove the results as shown in experiment 6 in table 1. In
single-stage™ model, the single-stage trained model is fine-
tuned for so = 1 epoch.

3.1.2. Effect of number of transferred layers

The initial layers in the deep neural networks are “generic”
and final layers are task-specific; so there must be a transi-
tion boundary from generic to specific in some layer. To in-
vestigate this, we conduct two weight transfer experiments to
target corpus AMI in IHM condition, one with Librispeech
as the source corpus and the other with Switchboard as the
source corpus. The number of layers in the Librispeech and
SWBD neural networks were 6 and 7 respectively. The neural
networks all had TDNN architectures with the same overall
input context.

In the first case with Librispeech as the source, the results
in Figure 1 show that the largest WER reduction was achieved
by transferring half of the layers (3 or 4 layers out of 7). On
the other hand, for the case of Switchboard as the source cor-
pus, the largest WER reduction was achieved by transferring
a larger proportion of layers (5 layers out of 6).

The reason for a larger proportion of transferred layers

being better in the case of SWBD might be that SWBD and
AMI-THM senones are more similar compared to Librispeech
and AMI-IHM. This might be expected because Switchboard
and AMI-IHM are both spontaneous speech corpora, while
Librispeech is a read speech corpus.
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Fig. 1. WER(%) vs Number of transferred layers for Switch-
board to AMI

In the weight transfer approach described above, the last
layer is not usually transfered due to the fact that the phone set
and the tree in the source and the target domain are different.
However, in some cases we can use the same phone set for
both the source and the target data, and hence share the tree
and the senones. In these cases, we can transfer the whole
network, including the last layer. This is particularly useful in
cases where the target corpus is very small compared to the
source corpus, as found in the case of MGB-3 challenge [30].

We share the phone sets for Librispeech and WSJ and
do weight transfer from Librispeech to WSJ by transferring
all the layers. Figure 2 shows the results of weight transfer
for different number of transferred layers including the whole
network transfer of 7 layers. Here transferring all the layers
gives the best WER performance.
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Fig. 2. WER(%) vs Number of transferred layers for Lib-
rispeech to WSJ

(all-layers)



3.1.3. Effect of amount of target data

To investigate the effect of the amount of data in the target
corpus in transfer learning, we conduct an experiment with
transfer learning from 1000 hours Librispeech corpus to 80
hours WSJ. The amount of data in the target WSJ corpus is
varied by using subsets containing 84 (15h), 144 (40h) and
284 (80h) speakers respectively. For comparison, the results
on training directly on WSJ data subsets i.e. without transfer
learning, are shown as "Baseline”. In all these experiments,
the i-vector extractor is trained on only Librispeech data.

Figure 3 shows the WER results for Baseline WSJ and
transferred model trained using the WSJ subsets. As seen
in the figure, the improvement using transfer learning is the
largest with 84 speakers and it reduces as we add more data
to the target corpus. The results show that weight transfer is
most effective when the amount of data in the target corpus is
small and insufficient to train a good model. Interestingly, we
can see that the improvement to the 84-speaker WSJ model
due to weight transfer from the Librispeech model trained on
another domain is more than the improvement gained by us-
ing the rest of 200 in-domain speakers in WSJ data (i.e. extra
65 hrs in-domain data).

As explained before, the phone sets and lexicons in Lib-
rispeech and WSJ are similar which allows us to transfer the
final layer too. Therefore, we tried whole network transfer
with varying amount of target data. Since the final layer in
DNNs is usually a large transformation with dimensionality
of hidden layer size by number of senones, training this layer
from scratch can be more difficult when there is less amount
of training data in the target domain. As a result we expect
transferring already-trained final layer to be more helpful in
such cases. This can be observed in figure 3.
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Fig. 3. WER(%) vs size of target WSJ corpus (in number
of speakers) for baseline and transferred model from Lib-
rispeech

3.1.4. Effect of power of source model

In this section, we investigate the effectiveness of weight
transfer method as a function of the number of parameters
used in source model and the number of epochs used to train
it. We answer whether a weak source model (as measured on
source test set performance) can still be useful as a seed for
weight transfer. Table 2 shows the WER results for weight
transfer from SWBD to AMI in both IHM and SDM condi-
tions. The baseline source model in SWBD was trained for
4 epochs. The first column of the table shows WER results
on eval2000 test set for Switchboard using different source
model. The results using the baseline model for weight trans-
fer is shown in row 1 of the table. If instead, we train a model
that has only 30% the number of parameters as the baseline
model, the performance on eval2000 test set drops by 0.8%
to 17.8%. Using this as seed for weight transfer, we get a
WER performance that is clearly worse as shown in row 2.
However, if we train the same model as in the baseline, but
for fewer epochs like 1 or 2 instead of 4 epochs, and use it
as seed for weight transfer, the WER performance is closer
to that of the fully-trained baseline model. This is in spite of
the seed model having a WER (17.9%) on the source domain
as poor as the model that has 30% number of parameters
17.8%).

These results suggest that the source model can learn
some generic features from the source data in the initial
stages of training that are useful for the target data. But the
later stages of training learn features specific to the source
data that are not very useful for the target data.

Table 2. WER(%) results for different source models: SWBD
— AML

240 280 320

Source Target corpus

SWBD AMI-SDM  AMI-IHM
Model eval2000 | dev eval dev eval
4 epochs 17.0 435 487 225 228
4 epochs 30% Params 17.8 45.6 503 233 236
1 epoch 17.9 438 489 228 233
2 epochs 17.1 435 488 226 23.1

3.2. Transfer learning in mismatch conditions
3.2.1. Transfer learning in sampling rate mismatch condition

One of the main difficulties in transfer learning for ASR
is that of sampling rate mismatch of the recordings (e.g.
8kHz, 16kHz, etc). Transferring information across datasets
with different sampling rate requires down-sampling of data,
which results in some loss of high-frequency information and
degrades ASR performance. To verify this, we trained two
separate TDNNs — one using MFCC features extracted from
16kHz data and the other from down-sampled 8kHz data—



on AMI corpus in SDM condition. The WER results are in
the first two rows of table 3, which show that removing high-
frequency information results in 3 to 4% WER degradation.
We used the transfer learning approach, to adapt the 8kHz
trained network to the 16kHz features on AMI-SDM dataset.
Here, we retrain the first affine transform after input features
with some learning rate and fine-tune the rest of the network
with much smaller learning rate. In the experiment indicated
by (*), a new affine transform is added before LDA layer of
the 8kHz trained network and this transform is initialized to
regress the 16kHz features to 8kHz features. The results are
in rows 3 and 4 of table 3. They show that that the information
loss due to pretraining on down-sampled data as opposed to
the full-band 16kHz data can only be partially recovered us-
ing a simple learning new adaptation layer at the initial layer.

Table 3. WER (%) results on AMI-SDM

Model WER
dev  eval
16kHz 40.5 444
8kHz 43.6 48.6
8 =16 kHz Transfer 419 46.2
8 =16 kHz Transfer* 424 472
16kHz SWBD=-AMI 394 439

Mixed-bandwidth ASR training, which combines narrow-
band (inserting zeros for high-frequency bands) and wide-
band speech signal can improve ASR performance on narrow-
band test domain [31]. The second transfer learning approach
is to train the source model using MFCC features extracted
from up-sampled 16kHz data and transfer the layers from up-
sampled source model using the weight transfer approach in
section 2.2. We tried this by using a source model trained
on up-sampled 16kHz Switchboard data as seed model for
weight transfer to AMI-SDM. As shown in the row 4 of table
3, this approach gives 1% absolute WER improvement over
the baseline that uses only 16kHz AMI-SDM data.

3.2.2. Effect of i-vector extractor

We use i-vector based speaker adaptation of neural networks.
In the weight transfer learning approach, we have to use the
same i-vector extractor for both training on source data as
well as adaptation to target data. In this section, we investi-
gate the effect of using different i-vector extractors. We con-
duct weight transfer experiments from Switchboard to AMI
in SDM condition (down-sampled to 8kHz) using i-vector ex-
tractors trained in 3 different ways — one trained only on the
source (SWBD) data, one trained on 25% subset of data from
source and target, and one trained only on the target (AMI)
data. The “Baseline” columns of table 4 reports results on di-
rectly training the neural network on the AMI data i.e. with-
out transfer learning. Comparing the last three rows with the
first row showing WER without i-vector adaptation, we can

see that any of the 3 extractors gives 3 — 4% absolute im-
provement. This suggests that even an out-of-domain i-vector
extractor is suitable for speaker adaptation in ASR. These are
also 1-2% better than CMVN normalization results shown in
row 2 of the table. The “Weight transfer” columns in table 4
shows that using the extractor trained on combined data (row
4) gives more than 1% absolute improvement over using i-
vector extractor trained only on the source data (row 3).

Table 4. Speaker adaptation: 8kHz SWBD — 8kHz AMI-
SDM WER(%) results

Extractor Baseline Weight Transfer
dev eval dev eval

No adaptation 49.5 5377 457 50.0

CMVN adaptation 48.0 527 458 50.7

iVector adaptation

SWBD extractor 46.2 51.1 446 49.5

Combined extractor 45.8 50.8 43.5 48.7

AMI-SDM extractor 45.3 50 - -

3.2.3. Transfer learning in environment mismatch

In this section, we discuss experiments showing transfer
learning from Librispeech to AMI in IHM and SDM condi-
tions. The results are in table 5. The weight transfer model
gives 1% absolute improvement in WER in the case of SDM
condition, and 2% absolute improvement in WER in the case
of IHM condition. This might suggest that having the source
and target data from a similar environment condition (like
Librispeech and AMI IHM) is better for the weight transfer
scenario.

Table S. WER results: Librispeech to AMI Transfer.

WER(%)
Target Data  System dev eval
Baseline 41.0 452
AMI-SDM Weight Transfer 39.9 44.2
Baseline 222 224
AMI-THM Weight Transfer 20.6  20.5

3.3. Weight transfer vs Multi-task training

In this section, two transfer learning approaches are investi-
gated for transferring information from 300 hrs Switchboard
dataset to AMI-IHM, AMI-SDM and WSJ datasets. As dis-
cussed in Section 3.2.1, down-sampling the data degrades per-
formance on AMI dataset. So we report results on the 8kHz
baseline for all the corpora. The results in Table 6 show good
improvement over baseline using both weight transfer and
multi-task training.



We also tried a multi-task approach, where data is pooled
from all 3 target datasets and all layers except last layer are
shared across all datasets. This is reported in the Multi-task-
pool row and shows slight improvement over Multi-task us-
ing just source and target data in the cases of AMI-SDM and
AMI-IHM.

Table 6. WER results: SWBD to AMI and WSJ Transfer.

WER Rel. WER(%)
AMI-SDM dev eval dev eval
Baseline 453 50 -

Weight Transfer | 43.9 493 3.1 1.4
Multi-task 45 49.2 0.66 1.6
Multi-task-pool | 44.9 49.6 0.9 0.8

AMI-IHM dev eval dev eval
Baseline 23.6 24.6 - -
Weight Transfer | 22.7 23.2 3.8 5.7
Multi-task 224 22.7 5.1 7.7

Multi-task-pool | 22.1 22.6 6.4 8.2

WSJ dev93  eval92 | dev93 eval92
Baseline 5.49 3.15 - -
Weight Transfer | 5.32 2.84 3.1 9.8
Multi-task 4.8 2.57 12.5 18.5

Multi-task-pool | 4.99 2.53 9.1 19.7
Multi-task-pool: Trained on pooled speed-perturbed SWBD,
AMI-SDM, AMI-IHM, WSJ datasets.

3.4. Transfer learning using different objectives

The state-of-the-art neural networks in ASR are trained with
sequence-level objectives like LF-MMI [27]. Frame-level ob-
jectives used in model transfer such as using soft-targets [32,
33] are not naively applicable to LF-MMI objective as the
neural network outputs are not frame-level posteriors. Re-
gressing information too close to the output may not be ap-
plicable as the outputs are not specifically trained for good
frame-wise predictions. Furthermore, output nodes in the LF-
MMI networks operate at a lower (one-third) frame rate.

Table 7 shows transfer learning results using frame-level
cross entropy versus sequence-level LF-MMI objective. The
i-vector extractor is trained on 25% of the combined data
from all the datasets for all the experiments, and all datasets
are down-sampled to 8kH z. In the multi-task training ex-
periments, the TDNN models are trained on pooled speed-
perturbed datasets of Switchboard, AMI-SDM, AMI-IHM
and WSJ using cross-entropy and LF-MMI objectives. In
weight transfer experiments, both source and target models
are trained using same objective function i.e. both Cross-
entropy or both LF-MMI. Switchboard is used as the source
dataset for the weight transfer experiments. The results show
that transfer learning is as effective for LF-MMI objective as
is for frame-level cross-entropy objective.

Table 7. Transfer Learning for frame-level CE vs. sequence-
level LF-MMI objective

Cross-Entropy LF-MMI
WSJ dev93 eval92 dev93 eval92
Baseline 6.38 3.38 5.49 3.15
Multi-task* 5.85 3.47 4.99 2.53
AMI-IHM dev eval dev eval
Baseline 26 27.6 23.6 24.6
Multi-task* 23.7 25.1 22.1 22.6

Weight Transfer 25.2 26.3 22.7 23.2
*: Trained on pooled speed-perturbed SWBD, AMI-SDM,
AMI-IHM, WSJ datasets.

4. CONCLUSIONS

We have investigated two transfer learning approaches —
weight transfer and multi-task training — in ASR using
sequence-trained neural network based on Lattice-free MMI
in different acoustic conditions. We present results on differ-
ent small-sized LVCSR tasks with 80-100 hours of data by
transferring knowledge from larger corpora with 300-1000
hours. Generally we found that multi-task training performs
better than weight transfer. However weight transfer is still
effective compared to the unadapted model, and hence it
might be preferable over multi-task training as it does not
require re-training on the pooled data. The results for weight
transfer show that single-stage training of transferred layers
with very small learning rate, while training target-specific
layers is better than 2-stage training by freezing the transfered
layers at the 1%¢ stage and fine-tuning the whole network at
274 stage. Our experiments show that even a model trained
on source data for half or quarter the number of epochs is as
effective a seed model for weight transfer as a fully-trained
model. We found from our experiments on SWBD and AMI
that the most effective way of dealing with sampling rate
mismatch across datasets used for transfer learning is to up-
sample the data. It was best to train the i-vector extractor
on the combined source and target data, although even an
i-vector extractor trained only on the out-of-domain source
data was quite effective. We finally found that transfer learn-
ing is equally applicable to sequence-level objectives like
LF-MMI as it is to frame-level cross entropy objective.
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