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ABSTRACT

Speaker diarization is an important front-end for many speech tech-
nologies in the presence of multiple speakers, but current methods
that employ i-vector clustering for short segments of speech are po-
tentially too cumbersome and costly for the front-end role. In this
work, we propose an alternative approach for learning representa-
tions via deep neural networks to remove the i-vector extraction pro-
cess from the pipeline entirely. The proposed architecture simultane-
ously learns a fixed-dimensional embedding for acoustic segments of
variable length and a scoring function for measuring the likelihood
that the segments originated from the same or different speakers.
Through tests on the CALLHOME conversational telephone speech
corpus, we demonstrate that, in addition to streamlining the diariza-
tion architecture, the proposed system matches or exceeds the perfor-
mance of state-of-the-art baselines. We also show that, though this
approach does not respond as well to unsupervised calibration strate-
gies as previous systems, the incorporation of well-founded speaker
priors sufficiently mitigates this shortcoming.

Index Terms— Speaker diarization, deep neural networks, clus-
tering, end-to-end learning

1. INTRODUCTION

Speaker diarization is the task of grouping segments of speech ac-
cording to the speaker. It is often summarized as “who is speaking
when”. Since many speech processing technologies, such as in au-
tomatic speech recognition or speaker recognition, assume the pres-
ence of only one speaker, diarization can be an important front end
in scenarios where the single-speaker assumption can be violated.

Many recent advances in diarization have involved extracting i-
vectors from short segments of speech [1, 2, 3, 4, 5]. This is a sensi-
ble approach given the success of i-vectors for speaker recognition.
Recent i-vector architectures [5] involve two disjoint generative pro-
cesses: one to extract the i-vectors, and a second one to learn a prob-
abilistic linear discriminant analysis (PLDA) scoring function [6] to
decide whether two i-vectors are from the same speaker or not. The
extraction of i-vectors requires a Gaussian mixture model and a fac-
tor analysis that uses a large projection matrix T. After the i-vectors
are extracted, an independent generative model is used to learn the
PLDA scoring.

In this paper, we propose replacing this two-step generative pro-
cess with a discriminatively trained deep neural network (DNN) that
jointly learns a fixed-dimensional embedding and a scoring metric.
This particular architecture has recently been shown to be effective
for speaker recognition [7]. Furthermore, the results in [7] suggest
that the learned embeddings are more effective relative to traditional
i-vectors for shorter durations of speech. This is highly desirable
for the dense segmentations used in speaker diarization (2 second
segments).

After presenting a brief background on diarization, we will
outline the specific architecture in our proposed diarization system.
Then, we will present the results of experiments on the CALL-
HOME corpus, and compare the proposed system to state-of-the-art
acoustic and senone i-vector diarization algorithms. The results will
show that, in addition to being much simpler, the proposed method
matches or exceeds the performance of the state-of-the-art baselines.

2. BACKGROUND

I-vectors were applied to speaker diarization shortly after their de-
velopment for speaker recognition [8], and progress has been consis-
tent in the years since. Early work utilizing i-vectors for segmented
speech scored similarities between blocks using cosine scoring and
clustered with K-means or spectral clustering [1, 2]. Other cluster-
ing algorithms on i-vectors for diarization have included Variational
Bayesian GMMs [3], mean shift [4], and agglomerative hierarchical
clustering (AHC) [9, 5]. The work that follows will also use AHC.

It has also recently been shown that cosine scoring can be
outperformed by PLDA [5], and that the error of that calibration
estimation can be reduced by incorporating speaker priors into the
AHC clustering [10]. The traditional unsupervised GMM-UBM
was also recently replaced with the senone partitions from a trained
DNN [11], which yielded further improvements.

One shortcoming of the segmentation-based approaches above
is that the resulting diarization marks will be restricted to begin and
end according to the segmentation boundaries. To remedy this, a sec-
ond stage of diarization, often called resegmentation, can be added.
In resegmentation, the results of the clustering are used to initialize a
frame-level diarization system that then iterates to refine the bound-
aries of speaker turns. Previously, most resegmentation was per-
formed in the acoustic feature space with a Hidden Markov Model
(HMM), but recent work has shown that resegmentation can be more
effective using subspace techniques [12].

In this work, we propose a discriminatively trained DNN that
jointly learns a fixed-dimensional embedding and a scoring met-
ric. This strategy was recently applied to speaker recognition with
promising results [7]. A conceptually similar DNN embedding re-
cently showed the value of discriminative training for unsupervised
speech separation of multiple overlapping speakers [13]. Like our
proposed system, a DNN was trained to provide features for unsu-
pervised clustering, resulting in a process called deep clustering. Un-
like our proposed approach, deep clustering operates on each time-
frequency bin with recurrent neural networks (RNNs) and learns
embeddings for those bins with desirable behavior in the Euclidean
space. The following section will describe our proposed system in
detail.
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Fig. 1. System diagram for the diarization system presented here.
This architecture is simpler than that in [5], with the i-vector extrac-
tion and PLDA steps merging into the joint embedding and metric
learning, and with UBM and T entirely removed.

3. DIARIZATION SYSTEM

Our approach begins with a temporal segmentation into 2 second
segments. These segments are embedded into a fixed-dimensional
vector using a DNN. The DNN is trained to jointly learn the em-
beddings and a scoring metric to discriminate between pairs of
embeddings (same-speaker vs different-speaker pairs classifica-
tion). The embeddings and the scoring metric are then projected
into a conversation-dependent space using PCA. The conversation-
dependent PCA adapts the scoring metric to the unique characteris-
tics of the conversation. The projected segment embeddings are then
clustered with the scoring metric using AHC. A threshold learned
on unlabeled data (no speaker labels) is used to stop the clustering
[5]. The resulting diarization is further refined using VB resegmen-
tation [12]. A system diagram laying out this process is shown in
Fig. 1, and each of these modules will be discussed in detail below.

3.1. Temporal Segmentation

We employ 2 second segments with 500ms of overlap with its pre-
ceding and following segment (leading to a total of 1 second of over-
lap). This denser sampling allows for maintaining up to 2 second
segments while providing the same number of samples as segmen-
tation at half that length. In [5] we showed that this denser sampling
improves our clustering.

3.2. Joint Learning of Embedding and Similarity Metric

3.2.1. Overview

The proposed system uses a feed forward DNN with a temporal pool-
ing layer to extract embeddings from variable-length acoustic seg-
ments. The network is based on the architecture recently introduced
in [7] for speaker recognition. It is implemented using the nnet3 neu-
ral network library in the Kaldi Speech Recognition Toolkit [14].

(a) DNN Architecture (b) Scoring schema

Fig. 2. Diagram of the DNN and scoring method.

3.2.2. Features

The features are 40 dimensional MFCCs from 40 mel-spaced filters
with a frame-length of 25ms (normally referred to as high-resolution
MFCCs within Kaldi recipes). To allow the DNN to compensate for
energy variations, volume perturbation was applied to all cuts using
a gain from a uniform distribution between 1/8 and 2. No mean or
variance normalization was applied.

3.2.3. Neural Network Architecture

The network, illustrated in Figure 2a, consists of five hidden layers,
a temporal pooling layer and an affine output layer. Short-term tem-
poral context is incorporated into the first four layers of the network
using a time-delay architecture similar to [15]. Suppose T is the to-
tal number of frames in a segment and t, where 0 ≤ t ≤ T , is the
index of some frame. The input layer splices together feature frames
[t − 1, t + 1]. At layers two, three and four, activations at frames
[t − 2, t + 1], {t − 3, t, t + 3} and {t − 3, t, t + 3} are spliced to-
gether, leading to a total context of [t− 9, t+ 8] at the fourth layer.
The temporal pooling layer aggregates the output of the fourth layer
over the total length of the input segment [0, T ], computes its aver-
age, and propagates it to a fifth hidden layer. Finally, this is passed
to an affine layer that outputs the embedding x (400 dimensions for
our experiments). The symmetic matrix S and offset b are constant
outputs of the network learned jointly with the embeddings, and are
used in the scoring metric in Equation 2.

The hidden layer activations are a type of recently introduced
network-in-network (NIN) nonlinearity [16]. The nonlinearity is a
mapping from a di-dimensional input to a do-dimensional output.
Within the component, n micro neural networks [17] with tied pa-
rameters project the input to a dh-dimensional space. A micro neural
network consists of a stack of three rectified linear units interspliced
with affine layers. The NIN configuration {n = 50, di = 150, dh =
1000, do = 500} is used in this work, which results in a model with
460K parameters.

4931



Unsupervised Calibration Speaker Priors Oracle Calibration
System Clustering +VB Refine Clustering +VB Refine Clustering +VB Refine
Acoustic 13.5 11.5 13.6 11.2 13.3 11.0
Senone 12.9 10.3 13.8 10.9 12.6 10.2
Embeddings 14.9 13.7 12.8 9.9 12.6 10.3

Table 1. DER results for the proposed embeddings as well as the two baselines with several calibration strategies. The results are shown at
the threshold determined with unsupervised calibration, with geometrically decaying speaker priors, and with oracle calibration for optimal
cluster DER. All systems are shown with their clustering DER as well as DER after VB resegmentation [12]. Unlike for the baselines,
unsupervised calibration struggles to find a near-optimal threshold for the embeddings, but the embeddings performs best with priors and
comparably to the best system at oracle calibration. Note that since the oracle calibration optimizes only cluster DER, the resegmentation at
that calibration is not best performing, as resegmentation of the embedding system after applying speaker priors yields an overall best score
of 9.9.

3.2.4. Training

The probability of embeddings x and y belonging to the same
speaker is modeled by the logistic function in Equation 1. Equation
2 defines the distance between two embeddings (Figure 2b illustrates
its use) and is similar to the discriminative PLDA training criteria in
[18, 19]. Let Pdiff and Psame be the set of all different-speaker and
same-speaker pairs, respectively. The objective function (Equation
3) optimizes the two-class cross-entropy to discriminate between
same-speaker and different-speaker pairs. Since there are many
more pairs in the set Pdiff than in Psame, we introduce a constant K
so that each set has the same weight in the objective function.

Pr(x,y) =
1

1 + e−L(x,y)
(1)

L(x,y) = xTy − xTSx− yTSy + b (2)

E = −
∑

x,y∈Psame

ln (Pr(x,y)) −K
∑

x,y∈Pdiff

ln (1− Pr(x,y)) (3)

Training examples are organized as pairs of segments, each be-
longing to the same speaker and extracted from the same recording.
Segments consists of 2 seconds of speech with no overlap. Mini-
batches are formed by picking N pairs, such that no two pairs are
from the same speaker. Combining segments across pairs results
in an additional N(N + 1) different-speaker pairs. In our training
recipe, we use minibatches of size N = 16. All 2N segments in
the minibatch are propagated through the DNN to produce corre-
sponding embeddings x1, x2, ... x2N and constant outputs b and S,
and passed to the objective function. Derivatives are computed with
respect to these quantities and backpropagated to the network for
parallelized stochastic gradient descent [20]. To ensure that a wide
range of speakers and segments are compared, the training examples
are shuffled after each iteration.

3.3. Clustering with Prior Specification

It was recently shown that prior probabilities for the number of
speakers m can be incorporated in AHC diarization [10]. In that
work, the use of a reasonable prior was shown to reduce the neg-
ative effects of calibration error. In the experiments that follow,
for the proposed system and for the two baselines, AHC will use
either no specified prior (which was shown in [10] to correspond
to a geometric growth in number of speakers), or, when explicitly
stated, a geometrically decaying prior p#(m) = 2−m, which was
demonstrated to be a sensible choice with good performance.

4. EXPERIMENTS

4.1. Data

The DNN was trained using approximately 10K cuts taken from
Fisher English, SRE04, and SRE05 data. We make use of the
speaker labels to produce the minibatches. For the two baseline
systems, the UBM and T matrix were trained using 37K cuts from
SRE04, 05, 06 and 08. Their PLDA scoring was trained on the same
10K utterances as the DNN. Also, the senone i-vector system used
1600 hours from Fisher English corpus to train the DNN to classify
senones [11].

We evaluated our systems using the CALLHOME corpus, which
is a CTS collection between familiar speakers. Within each conver-
sation, all speakers are recorded in a single channel. There are any-
where between 2 and 7 speakers (with the majority of conversations
involving between 2 and 4), and the corpus also is distributed across
six languages: Arabic, English, German, Japanese, Mandarin, and
Spanish.

4.2. Performance Metrics

We evaluated our methods with Diarization Error Rate (DER), a
common metric for diarization1. In its purest form, DER combines
all types of error (missed speech, mislabeled non-speech, incorrect
speaker cluster), but, as is currently the practice when reporting on
CALLHOME, we used oracle SAD marks. As a result, only incor-
rect speaker labeling factors into the DER. Also, as is typical, our
DER tolerated errors within 250ms of a speaker transition and ig-
nored overlapping segments in scoring.

System UBM or Extractor Scoring Total
Senone-DNN

Acoustic 0.04 1.3 0.004 1.34
Senone 15.6 9.7 0.004 25.3
Embeddings - 0.38 0.08 0.46

Table 2. Number of parameters per component and their total (units
are in millions).

1The scoring software is available at www.itl.nist.gov/iad/
mig/tests/rt/2006-spring/code/md-eval-v21.pl
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4.3. Results

Table 1 summarizes the DER results for the two baseline systems and
the proposed architecture. The results are shown at the threshold de-
termined with unsupervised calibration, with geometrically decaying
speaker priors, and with oracle calibration for optimal cluster DER.
All systems are shown with their clustering DER as well as DER
after VB resegmentation [12]. Unlike for the baselines, our current
implementation of unsupervised calibration struggles to find a near-
optimal threshold for the new system, and therefore, the overall DER
is worse. However, as seen in the las two columns, the oracle stop-
ping threshold indicates that the DNN embeddings can achieve better
results than the acoustic i-vector system, and match the performance
of the much more computationally expensive senone i-vector system
(see Table 2). Also, initializing the VB resegmentation with these
clusterings results in improved DER for all systems.

In our recent work [10], we have shown that the use of a reason-
able prior can be effective in mitigating the negative effects of cal-
ibration error (i.e., sub-optimal AHC stopping threshold selection).
In particular, a geometrically decaying prior for the number of speak-
ers was shown to be a sensible way to widen the region of optimal
performance (i.e., reduce the sensitivity to sub-optimal threshold se-
lection). Ideally, we would like for this process to result in a system
with optimal performance using an AHC threshold at 0 (which is the
optimal threshold for a perfectly calibrated system, see [5] for more
details). Figure 3 shows the performance of the three systems for a
range of calibration shifts. Although the region of good performance
is quite wide for all systems, the performance of the DNN system
seems to benefit more from this particular use of priors. Moreover,
initializing the VB refinement stage with these clusters produces our
overall best result of 9.9 DER (see the middle columns in Table 1).
Note that since the clustering and VB resegmentation are indepen-
dent processes, it is possible to get a final performance that is better
than when we start from the oracle calibration threshold.

In the future, we plan to study the different behavior of these sys-
tems to prior specification. Also, we plan to modify the unsupervised
calibration approach (currently a 2-mixture GMM with tied covari-
ances) to better fit the scores distribution produced by the DNN.

5. CONCLUSION

In this work, we have presented a discriminatively trained DNN that
replaces the two-step generative process of i-vector based diarization
systems. The proposed architecture simultaneously learns a fixed-
dimensional embedding for acoustic segments of variable length and
a scoring metric. Results on the CALLHOME conversational tele-
phone speech corpus demonstrate that, in addition to streamlining
the diarization architecture, the proposed system matches or exceeds
the performance of state-of-the-art baselines. We also show that,
although this approach does not respond as well to our current unsu-
pervised calibration strategy as previous systems, the incorporation
of well-founded speaker priors addresses this shortcoming. Using
the resulting DNN clustered segments to initialize the VB resegmen-
tation produces our best results.
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