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ABSTRACT

In this paper we describe an extension of the Kaldi software
toolkit to support neural-based language modeling, intended
for use in automatic speech recognition (ASR) and related
tasks. We combine the use of subword features (letter n-
grams) and one-hot encoding of frequent words so that the
models can handle large vocabularies containing infrequent
words. We propose a new objective function that allows for
training of unnormalized probabilities. An importance sam-
pling based method is supported to speed up training when
the vocabulary is large. Experimental results on five corpora
show that Kaldi-RNNLM rivals other recurrent neural net-
work language model toolkits both on performance and train-
ing speed.

Index Terms— language modeling, recurrent neural net-
works, importance sampling, automatic speech recognition

1. INTRODUCTION

The language model is a vital component of the speech recog-
nition pipeline. For many years, back-off n-gram models
were the dominant approach [1]. However they are limited in
their ability to model long-range dependencies and rare com-
binations of words. In [2], a neural network based language
model is proposed. By modeling the language in continuous
space, it alleviates the data sparsity issue. Its effectiveness has
been shown in its successful application in large vocabulary
continuous speech recognition tasks [3].

Recurrent neural network language models (RNNLMs)
were proposed in [4]. The recurrent connections enable the
modeling of long-range dependencies, and models of this type
can significantly improve over n-gram models. More recent
work has moved on to other topologies, such as LSTMs (e.g.
see [5] for a recent example). We use the term RNNLMs
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here as a general term for such recurrent topologies, includ-
ing LSTMs, GRUs etc.

However, the better performances brought by RNNLMs
come at a cost - compared with regular n-gram language mod-
els, RNNLMs take several orders of magnitude more time to
run, both for training and decoding. A key reason for its in-
efficiency is the softmax normalization at the output layer,
which mean that all words’ probabilities need to be computed
in order to compute any single word’s probability. To achieve
good performance with RNNLMs, it is common to have a
vocabulary of hundreds of thousands of words, and this in-
evitably leads to poor efficiency of the computation, both in
training time and at test time (e.g. when rescoring lattices).

In this paper, we describe Kaldi-RNNLM, an extension
of the Kaldi [6] speech recognition toolkit to support neural
network language models. We use a novel training criterion
that acts like the cross-entropy objective but allows training
of unnormalized probabilities, and we use importance sam-
pling during training to avoid having to access the represen-
tations of all the words on each minibatch. This design al-
lows for fast run-time for both training and testing. Kaldi-
RNNLM incorporates subword-level features for representing
words and makes predictions at word-level. The subword-
level features can better represent rarely-seen or even out-of-
vocabulary (OOV) words.

2. PRIOR WORK

There has been prior work on neural-based language models,
in general or specifically for ASR tasks. Mikolov’s toolkit
RNNLM [4] combines a simple vanilla RNNLM with direct-
connection layers and a hashing mechanism to cluster histo-
ries to achieve then state-of-the-art performances on language
modeling. In [7], RNNLM performance is improved by pro-
viding a contextual real-valued input vector, which conveys
contextual information about the sentences being modeled,
in association with each word. CUED-RNNLM [8] supports
2 additional training criteria, i.e. noise contrastive estima-



tion [9] and variance regularization [10], which allows train-
ing unnormalized probabilities for fast testing. Hierarchical
RNNLMs [11] uses a hierarchical structure for the last layer,
clustering words into groups which allows the computation
of softmax normalization term to be on a smaller number of
word-groups instead of the vocabulary size.

Recently subword-level language models that make word-
level prediction gain growing interest because of their supe-
rior performance compared with word-level models. In [12],
subword features e.g. syllables and characters is combined
in the feature to improve performance evaluated by perplexity
and word error rate (WER) in ASR tasks. In [13], a convolu-
tional neural network based character-level language model
is proposed which achieves the state-of-the-art perplexities
on Penn Treebank dataset with fewer parameters. In [14], a
weighted combination of character-level and word-level fea-
tures is used, obtaining better perplexities on several English
corpora.

3. FEATURE REPRESENTATION OF WORDS

Inspired by [15], we propose a simple but effective represen-
tation of words that can incorporate subword information and
thus deal with OOV words. Given a word (e.g., nice), we
break it into a combination of letter n-grams (e.g "n, "ni,
nic, ice, ce$, e$). We then optionally append two aug-
mented features: the unigram probability in log space and
the word-length of each word to its corresponding letter n-
gram vector. The former is for better generalization when
a neural language model trained on in-domain dataset is ap-
plied to out-of-domain data. In sum, besides a one-hot rep-
resentation for the most frequent words, each word has addi-
tional representation as a vector of counts of its letter n-grams
and two extra augmented features, and the word-level embed-
ding vector is a sum over terms corresponding to each feature.
This can be represented as a subword level embedding matrix,
which is trained jointly with the neural language model.

Kaldi-RNNLM shares the input and output embeddings
for the neural-network, following [16]. Combined with using
subword features, this allows using very large vocabularies in
Kaldi-RNNLM without having to use a shortlist to avoid the
data-sparsity issues.

4. ANEW OBJECTIVE FUNCTION FOR TRAINING
UNNORMALIZED PROBABILITIES

In the standard cross-entropy training, if we write z as the
layer of the neural network before the final softmax operation,
and j as the index for the correct word, then the objective for
one data point is

z; — log Z exp(z;) (1)

We note that log x < x —1, and define the following objective
function,
zj+1-— Z exp(z;) 2)
K3

Note that (2) < (1), with equality iff ) . exp(z;) = 1, i.e.
our objective is a lower bound on the cross-entropy objective,
with equality when the output is a well-normalized probabil-
ity distribution.

Therefore, when the new objective is maximized, it is
similar to cross-entropy training plus a penalty term that
makes the output of the network sum to a value close to 1
(O, exp(z;) ~ 1).

During test time, instead of computing quantities (1) or
(2), we simply use z; as the computed “probability” as an ap-
proximation since we know the expectation of 1 - . exp(z;)
is 0. This can greatly speed up the computation in tasks
where the label for which we want to compute a probability is
known, including lattice and n-best list rescoring for speech
recognition and machine translation.

4.1. Stability of Training

One potential problem of using (2) as the objective function
is potential instabilities during training, especially in the be-
ginning stages. Instabilities happen here because of the exp
terms, which could result in very high derivatives computed.
We propose two methods to deal with such problems and en-
sure convergence in training.

The 1% method is careful weight initialization. Instead
of initializing the weights of the output embedding layer
with 0 mean, empirically, having a mean value of around
— log(vocab-size) would prevent instabilities from happen-
ing.

The 2™ method is to transform z’s with the following
function, and compute the objective on f(z)’s instead of 2’s!.

fz) = {Z neso G)
log(z+1) ifz>0
Function f keeps the output of the network from getting too
large, ensuring the derivatives computed to have reasonable
values, thus keeping the training stable.
Kaldi-RNNLM uses method 2 to prevent training instabil-
ities. Method 1 is used in Kaldi’s TensorFlow RNNLM setup
described in [17].

5. SAMPLING ALGORITHMS

To compute the new objective function, the term ), exp(z;)
still requires looping over all vocabulary words. In Kaldi-
RNNLM, we use a sampling-based method to compute an
unbiased estimate of this quantity.

I'This is equivalent to having an “element-wise f function” layer in the
neural network before the output but we implemented this in the function
where it computes the objective function



Note that it is always possible to compute such sum terms
using sampling-based methods, with the guarantee that the
sum is an unbiased estimator. However, such guarantee does
not carry through a nonlinear operation like log, and thus
in the standard cross-entropy systems, using an importance-
sampling based method will inevitably add bias in the esti-
mate. In Kaldi-RNNLM, using the new objective function
(2), taking the sum out of the log operation makes an unbi-
ased importance-sampling based training possible.

The interaction between the training and sampling is as
follows: say the set of vocabulary words is W, we have a
minibatch of k£ sequences, and we use a sample size of m.
In each minibatch, we have k data-points to train on, includ-
ing k (or fewer) histories (a set H) and k or fewer “correct
words” (a set Y'). We first generate for each word w in our
vocabulary an inclusion probability p(w), which is the prob-
ability we will include word w in our sample of size m. For
words that must be included (words in Y'), this is 1, and in
any case p(w) < 1. The inclusion probabilities must sum to
the number of samples m (we do not allow duplicates).

On each minibatch we randomly sample a set of words 5,
of size m (e.g. 512). The summations in the objective func-
tion are limited to those for words w € .S, but weighted by the
inverse of the inclusion probabilities p(w). This is the stan-
dard approach used in importance sampling, and it ensures
that the objective function and its derivatives are distributions
with mean equal to that they would be in the unsampled case.

5.1. Sampling distribution

For importance-sampling methods the only hard constraint on
the distribution that we sample from is that the probabilities
should be bounded away from zero; it is best to have p(w)
be larger for words that are expected to have a higher pre-
dicted probability, as this will minimize the variance of the
computed derivatives?.

In our work, in each minibatch in training, we sample the
words from a distribution that is computed by averging the
n-gram distributions of all histories in the minibatch. These
distributions come from an n-gram backoff model trained on
our training corpus, estimated and pruned in a way that makes
it efficient to sample from.

5.2. 2-stage sampling

We follow the unequal probability systematic sampling algo-
rithm described in [18] to sample the subset of words. One
issue arises because the original algorithm needs to loop over
all words once, and this could be quite costly for large vo-
cabularies. Because we do not require independence in the
selected samples, we follow a “2-stage” sampling procedure,
where in order to sample m words from all words, we first

2This is a complicated topic, and a proper analysis is beyond the scope of
this paper

divide the words into groups in a way that, the sum of the
inclusion probabilities of words in each group is less than 1.
In the 1% stage, we sample m groups from all the groups; in
the 2"¢ stage, from each group, we sample exactly one word
according to their probabilities. This allows that only a small
subset of words needs to be considered and greatly speed up
the sampling procedure.

6. EVALUATIONS

We report the performance on 4 datasets in English, i.e.
AMI-IHM, SWBD, WSJ and TED-LIUM, as well as Hub4 in
Spanish. We compare Kaldi-RNNLM with CUED-RNNLM
(CUED) and TensorFlow[19] based RNNLMSs (TF) in terms
of perplexities, as well as performance in ASR tasks, where
we will compare the WERs after performing lattice-rescoring
with different RNNLMs. We will also include stats for train-
ing speed for different toolkits.

6.1. Perplexities

Table 1 compares the perplexity (PPL) results of different
RNNLM toolkits. For Kaldi-RNNLM, we train models on
the full vocabulary, and normalize the output of the neural
network in order to compute valid perplexities. For CUED-
RNNLM and TensorFlow, we train language models on a
shortlist of most frequent unigrams, and report the perplex-
ities after adding a correction term (by distributing the prob-
ability predicted for the “[0o0s]” symbol according to the un-
igram count of words, with smoothing). We see that overall,
Kaldi-RNNLM achieves better perplexities than other toolk-
its, and we hypothesize it is the result of having subword fea-
tures making the model more robust to rarely seen words in
corpora.

PPL dataset CUED TF  KALDI
N
HUB4 tgfvn 19997',75 13;(2) 17836.77
swep Ut D0 W1 W
Wi W &2 aas s
TEDLiuM S e e

Table 1: Perplexities of Different RNNLMs



6.2. Lattice-rescoring

Table 2 reports the WER performance in different recipes,
where we give the un-rescored baseline numbers, as well as
WERs after lattice-rescoring with different RNNLMs. The
acoustic models are trained with the nnet3 setup of Kaldi, and
we use its latest developments including pronunciation and
silence probability modeling [20], TDNN models [21], lattice-
[free maximum mutual information models [22] and backstitch
optimization method [23]. For the SWBD acoustic model,
speed perturbation [24] is used. For lattice-rescoring, we use
the pruned lattice-rescoring algorithm described in [17], and
a 4-gram approximation is used in all the experiments.

PPL dataset Baseline CUED TF KALDI
dev 24.2 23.0 232 22.8
AMI eval 25.4 23.9 24.2 23.9
HUB4 test 14.4 12.8 13.1 12.6
SWBD swbd 8.0% 7.0 7.1 7.0
dev93 7.1% 6.1 6.0 5.8
WSJ eval92 5.0% 3.9 3.8 3.9
dev 10.7% 10.3 10.4 9.9
TED-LIUM ot o+ 93 93 90

Table 2: WER of Lattice-rescoring of Different RNNLMs;
the baseline numbers with * means it is rescored by a (count-
based) 4-gram model; all RNNLM numbers used a 4-gram
approximation in rescoring.

6.3. Training Speed

We report the training speed of different RNNLMs, in terms
of number of words per second, when training a simple 1
hidden-layer LSTM model for the AMI corpus. The hidden
dimensions are fixed to be 200 and we use the same short-
list with 10000 words; we fix minibatch-sizes to be 64 and
chunksizes to be 20 for all the experiments. The evaluation is
done on a Tesla K10.G2.8GB GPU. Table 3 shows the speed
of different toolkits in number of thousands-of-words per sec-
ond. We can see that with sampling, Kaldi-RNNLM achieves
the best speed among all the toolkits.

7. CONCLUSION AND FUTURE WORK

We introduce Kaldi-RNNLM, which uses an importance-
sampling based method to speed up training, and applies a
new method to train unnormalized probabilities. Subword
level information such as letter n-gram features and two aug-
mented features are utilized in generating word-embedding
for better representing rare or out-of-vocabulary words. Ex-
perimental results show that Kaldi-RNNLM achieves better

RNNLM Speed (words/second)
CUED-RNNLM, CE 8.30K
CUED-RNNLM, NCE 12.8K
TensorFlow-RNNLM 23.3K
Kaldi-RNNLM, no sampling 18.3K
Kaldi-RNNLM, 512 samples 31.0K

Table 3: Training Speed of Different RNNLMs

perplexities and comparable performance in ASR tasks when
rescoring decoded lattices.

In the future, we plan to investigate more into how to in-
corporate other types of subword information for word rep-
resentation to improve language modeling performances. We
are also going to investigate more flexible ways to generate
embedding matrices.
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