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Abstract
We propose two adaptation models for recurrent neural network
language models (RNNLMs) to capture topic effects and long-
distance triggers for conversational automatic speech recogni-
tion (ASR). We use a fast marginal adaptation (FMA) frame-
work to adapt a RNNLM. Our first model is effectively a cache
model – the word frequencies are estimated by counting words
in a conversation (with utterance-level hold-one-out) from 1st-
pass decoded word lattices, and then is interpolated with a back-
ground unigram distribution. In the second model, we train
a deep neural network (DNN) on conversational transcriptions
to predict word frequencies given word frequencies from 1st-
pass decoded word lattices. The second model can in principle
model trigger and topic effects but is harder to train. Experi-
ments on three conversational corpora show modest WER and
perplexity reductions with both adaptation models.
Index Terms: ASR, recurrent neural network language model
(RNNLM), neural language model adaptation, fast marginal
adaptation (FMA), cache model, deep neural network (DNN),
lattice rescoring

1. Introduction
Language models are a vital component of an automatic speech
recognition (ASR) system. A simple language model is an n-
gram [1]. In recent years, recurrent neural network language
models (RNNLMs) have consistently surpassed traditional n-
grams in ASR and related tasks [2, 3, 4, 5, 6].

In conversational speech recognition, if a word has been
uttered, the same word and topic-related words are likely to ap-
pear again. For example, if “Korea” appears in a conversation,
the same word and topic-related word “Seoul” is more likely
to appear again. Though RNNLMs can in principle implic-
itly model these phenomena, we believe that in practice they
probably do not model them very well, so there may be value
in combining RNNLMs with explicit models that capture the
same kinds of effects as cache models [7, 8] and trigger mod-
els [9, 10].

In this work, we propose two adaptation models for
RNNLMs to better model these phenomena for conversational
speech recognition. We adopt a fast marginal adaptation (FMA)
framework [11] to adapt a RNNLM, i.e., multiplying the prob-
abilities from the RNNLM by a factor specific to each word,
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and renormalizing. These factors are related to a conversation-
specific estimate of word frequency based on 1st-pass decoded
word lattices. The first adaptation model is a conversational
cache model estimated by counting words in a conversation
(holding out the current utterance) from 1st-pass decoded word
lattices. And then it is interpolated with the background uni-
gram distribution estimated from the training text corpus. In the
second model, we train a deep neural network (DNN) to predict
word frequencies (it is trained with different subsets of training
conversations as input and output, so it does not simply learn
the identity mapping); in test time we give it word frequencies
obtained from word lattices of 1st-pass decoding. This DNN
in principle can model topic effects as well as cache-like ef-
fects, but it requires training, and overfitting can be an issue on
small datasets. Both adaptation models incorporate both past
and future context information from the 1st-pass decoded word
lattices. The adapted RNNLMs are used for 2nd-pass rescoring.

The rest of this paper is organized as follows. Section 2
introduces related prior work. Section 3 describes the FMA
framework, the two adaptation models, and the adaptation and
rescoring pipeline. The experimental setup is briefly explained
in Section 4. Section 5 shows experiments, results, and related
analysis. The conclusion and future work are presented in Sec-
tion 6.

2. Prior Work
In this section, we briefly introduce prior work on LM adapta-
tion. We first introduce LM adaptation to recent history con-
texts. For n-gram models, adding a cache component is a
common approach and has shown success in early ASR re-
search [7, 8]. Jelinek et al. adopted this approach to adapt a
trigram LM [12] and obtained reductions on both word error
rates (WERs) and perplexity (PPL). Kneser et al. [11] proposed
a dynamic marginal adaptation framework for domain and on-
line adaptations. For neural network language model adapta-
tion, Grave et al. [13, 14] adapted RNNLMs to recent history
by a neural cache scheme – storing past hidden activations as
memory and accessing them through dot product with the cur-
rent hidden activation.

For RNNLM adaptation to target domains, Chen et al. [15]
explored multi-genre adaptation task using topic representations
as an additional input feature. Gangireddy et al. [16] inves-
tigated domain adaptation (genre and show levels) by scaling
forward-propagated hidden activations and fine-tuning the pa-
rameters of the whole RNNLM in a broadcast transcription task.
Mikolov et al. [17] utilized learned topic vectors as extra input
features to capture local context for RNNLM adaptation. Ma
et al. [18] explored several domain adaptation approaches in-



cluding fine-tuning for DNN and LSTM based LMs. Singh et
al. [19] adapted RNNLM under the FMA framework [11] and
conducted only one pass decoding with the adapted RNNLM.

3. Methods
3.1. Fast Marginal Adaptation for RNNLM

To generate an adapted version of RNNLM padapt
rnnlm(w|h) which

leverages the conversational context, we apply a FMA frame-
work [11]. We first train a baseline RNNLM prnnlm(w|h) on the
background corpus and then apply the FMA framework yield-
ing:

padapt
rnnlm(w|h) =

1

Z(h)
·
(
padapt(w)

pbg(w)

)α

· prnnlm(w|h) (1)

where padapt(w) is the probability distribution from the adapta-
tion model (conversational cache and DNN models), pbg(w) is
the background unigram distribution estimated from the back-
ground corpus, and Z(h) is a normalization constant. The
hyper-parameter α is for controlling the scaling factor of the
adapted RNNLM. The range of α is [0, 1].

Now we introduce our two modifications based on Equa-
tion (1). We want to choose the adaptive models as close as
possible to the locally estimated unigram distribution while con-
straining them to respect the background estimates. Consider-
ing this, we make the first modification: we use the linear inter-
polation of the conversational adaptation model with the back-
ground unigram model as the numerator of the scaling factor:

β · padapt(w) + (1− β) · pbg(w) (2)

which yielding the following adapted RNNLM:

padapt
rnnlm(w|h) =

1

Z(h)
·
(
β · p

adapt(w)

pbg(w)
+ (1− β)

)α

·

prnnlm(w|h)
(3)

The second modification is to use an empirical location-
based weighting method for estimating the conversational cache
models on the word lattices from the 1st-pass decoding. Our
intuition is that, for decoding an utterance, utterances closer to
it can be more important than those far away. Therefore, we
put more weights on utterances within a window centered at the
current utterance being decoded in the 2nd-pass rescoring.

3.2. Conversational Cache Model

Cache models exploit the unigram distribution of a recent his-
tory context (a fixed number of words or a document) to im-
prove an original LM. After a word is spoken in a conversation,
there is more chances that it is spoken again. For example, the
frequency of the word “pollution” is 0.6% in a environmental
related conversation, compared to 0.008% in the whole Switch-
board training corpus. Thus, cache models that stores recent
history can adapt LMs to local context.

Our conversational cache models are unigram cache mod-
els, i.e., self-trigger models, estimated on conversations from
1st-pass decoded word lattices, and thus can adapt RNNLMs
to conversational context (topic effects and long-distance self-
triggers). Considering both past and future contexts are useful,
our conversational cache models, which are estimated by count-
ing words (holding out the current utterance) in conversations,
contain both contexts for the current utterance to be rescored in
2nd-pass rescoring.
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Figure 1: Adaptation and Rescoring Pipeline

3.3. Deep Neural Network (DNN) Model

Though a cache model can capture the long-distance self-
triggers efficiently, it can not model the co-occurrences or trig-
gers of different words well. As an extension of conversational
cache model, DNN adaptation model [20, 21, 22] in principle
can model these phenomena within conversations.

In our corpus, each conversation contains the utterances of
two sides, corresponding to two speakers, which we call side
A and B. We split both sides into two equal-sized disjoint sub-
sets (A1, A2 and B1, B2), and collect unigram counts of each
subset. We train a DNN model, which takes unigram counts
of one subset as input, and predicts the unigram distribution of
the other subset from the same speaker. The DNN is trained
to minimize the Kullback-Leibler (KL) divergence of the pre-
dicted distribution and the actual distribution.

3.4. Adaptation and Rescoring Pipeline

Figure 1 gives an outline of the overall adaptation and rescor-
ing scheme. We first perform a 1st-pass decoding with a n-
gram LM, and generate word lattices from which we extract
word-posteriors for the two adaptation models. The adap-
tation scheme works by combining a baseline RNNLM and
the word-posteriors from lattices, into an “adapted-RNNLM”.
When rescoring a particular lattice L (corresponding to an ut-
terance) during the 2nd-pass rescoring, we compute a sum of
word-posteriors of all other lattices within the same conversa-
tion as unigram counts for adaptation models, and adjust the
probabilities of the baseline RNNLM.

For the conversational cache model, we use an unnormal-
ized version1 of Equation (3) to adjust the RNNLM probabili-
ties during rescoring. For the DNN model, we pass the unigram
counts computed on 1st-pass decoded word lattices (holding out
the current utterance) in a conversation into the DNN and out-
put a unigram distribution. We use the unnormalized version of
Equation (1) to adjust the RNNLM probabilities during rescor-
ing. Considering DNN models are trained on training corpora
and have a smoothing effect to some extent, we do not interpo-
late the output of DNN with a background unigram distribution
as we do for cache models.

1For efficiency we do not normalize the output word probabilities of
adapted RNNLM for rescoring tasks; the perplexities reported in this
paper are all from normalized RNNLMs after adaptation for a fair com-
parison.



4. Experimental Setup
4.1. Datasets

We conduct experiments on three conversational speech recog-
nition corpora of different languages, namely Switchboard
(SWBD), Callhome Spanish (Spanish) and Callhome Egyptian
(Egyptian). For SWBD and Spanish, we use additional Fisher
data for building language models. For SWBD, we report re-
sults on the full HUB5’00 evaluation set (“eval’00 (all)” in all
tables) and its “SWBD” subset (“eval’00 (swb)” in all tables).
We also report results on the RT03 test set (LDC2007S10) of
SWBD corpus. The sizes of these corpora are shown in Table
1.

Table 1: Sizes of Different Corpora

Corpus Acoustic data (hours) Text (words)

SWBD 2040 24.4 M
Spanish 167 1.74 M
Egyptian 14 0.5 M

4.2. Setups

We use the open source ASR toolkit Kaldi [23] to build all
our ASR systems. For acoustic models, we use the lattice-
free MMI systems described in [24], with explicit pronunciation
and silence probability modeling [25]. Backstitch optimization
method [26] is used during acoustic model training on SWBD.
We use Kaldi-RNNLM [27] to train TDNN-LSTM [28, 29]
based RNNLMs as baselines, and adapt them using cache and
DNN models respectively. We use a pruned rescoring method
proposed in [30] to perform a 2nd-pass lattice rescoring with
the adapted RNNLMs on the 1st-pass decoded lattices.

5. Experiments
5.1. Evaluation

We evaluate our two adaptation models by rescoring and lan-
guage modeling tasks on the three corpora. Table 2 shows

Table 2: WERs from Cache and DNN adapted RNNLMs

Corpus Test set Baseline Cache DNN

SWBD eval’00 (all) 10.6 10.3 10.2
eval’00 (swb) 7.1 6.8 6.8

rt03 10.0 9.7 9.8

Spanish dev 24.9 24.6 24.6
test 21.5 21.3 21.3

Egyptian dev 44.8 43.8 44.5
test 46.4 45.2 46.1

the WERs by adapted RNNLMs and the baseline, which is an
RNNLM rescored system without adaptation, on the three cor-
pora. We can see that both adaptation models improve WERs
consistently on all the datasets. For the two relatively large cor-
pora (SWBD and Spanish), the conversational cache and DNN
models obtain comparable improvements. While for the small
Egyptian corpus, cache models outperform the DNN models. It

is expected since the small amount of training text is insufficient
to train a well generalized DNN model.

Table 3: Perplexities from Cache and DNN adapted RNNLMs

Corpus Test set Baseline Cache DNN

SWBD eval’00 (all) 60.9 54.5 56.0
rt03 51.6 47.2 47.7

Spanish dev 74.7 65.6 71.2
test 71.7 63.5 69.4

Egyptian dev 48.5 48.8 50.4
test 47.0 47.2 48.5

Table 3 shows PPLs of adapted and baseline RNNLMs on
the three corpora. The adaptation with conversational cache
models obtains better PPLs on SWBD and Spanish, compared
with DNN models. While for Egyptian, both models give simi-
lar PPLs.

5.2. Analysis of FMA and Modifications

In this section, we compare the standard FMA and its modifica-
tions using conversational cache and DNN models on the three
corpora. The hyper-parameter α for WER and PPL results in
Tables 4 and 5 are separately tuned on dev datasets. We use
smoothing weight β = 0.5 for interpolating a cache model and
the background unigram distribution. β = 1 means no smooth-
ing. “Weight” means the weighting method described in section
3.1. We use a wighting window with size 8 centered at the cur-
rent decoding utterance. The weight ratio for utterances inside
and outside the window is 6. “1spk” means estimating cache
models from (or applying DNN models on) utterances of one
speaker instead of two.

WERs and PPLs in Table 4 show that standard FMA gives
better WERs and PPLs (except for PPLs on Egyptian corpus)
compared with baseline. FMA with smoothing makes both
WERs and PPLs better. The weighting method further improves
WERs and PPLs under the two speaker mode. And for the one
speaker mode in the last row of Table 4, the WERs and PPLs
are comparable to those under the two speaker mode.

Table 5 presents WERs and PPLs from DNN adpated
RNNLMs. Compared with cache models, the standard FMA
with DNN models gives larger performance improvements on
SWBD and Spanish. With the weighting trick, adaptation with
DNN models obtains better WERs and PPLs on most datasets,
compared with no weighting. Similar to cache models, DNN
adapted RNNLMs under one or two speakers mode yield com-
parable results. This indicates that both models can be applied
to real scenario when only one speaker’s utterances exist.

We also conducted experiments on SWBD using only his-
tory context to estimate the cache models. Results show that
the performance of FMA adaptation with no weighing remains
the same on swbd subset and rt03, and WER only drops abso-
lute 0.1 on eval2000 fullset, compared with using both past and
future context.

5.3. Comparison of Word-Poseriors and 1-best Hypotheses

In all the experiments above, the two adaptation models are
based on word-posteriors of 1st-pass decoded lattices. An al-
ternative approach is to use the 1-best hypotheses of 1st-pass
decoding.



Table 4: WERs and PPLs of Cache based FMA and Modifications

Method
WER Perplexity

SWBD Spanish Egyptian SWBD Spanish Egyptian

eval’00(all) eval’00(swb) rt03 dev test dev test eval’00(all) rt03 dev test dev test

Baseline 10.6 7.1 10.0 24.9 21.5 44.8 46.4 60.9 51.6 74.4 71.7 48.5 47.0

FMA β = 1 10.5 7.1 9.9 24.8 21.4 44.2 45.7 62.0 52.4 73.3 71.0 50.9 49.2
FMA β = 0.5 10.3 6.9 9.8 24.7 21.4 44.0 45.3 55.8 48.0 68.1 65.8 49.0 47.4

FMA+Weight β = 0.5 10.2 6.9 9.7 24.6 21.3 43.8 45.2 54.5 47.2 66.5 64.3 48.8 47.2
FMA+Weight (1spk) β = 0.5 10.3 6.8 9.7 24.7 21.3 44.0 45.5 56.5 48.8 66.3 64.3 49.4 47.6

Table 5: WERs and PPLs of DNN based FMA and Modifications (β = 1)

Method
WER Perplexity

SWBD Spanish Egyptian SWBD Spanish Egyptian

eval’00(all) eval’00(swb) rt03 dev test dev test eval’00(all) rt03 dev test dev test

Baseline 10.6 7.1 10.0 24.9 21.5 44.8 46.4 60.9 51.6 74.4 71.7 48.5 47.0

FMA 10.3 6.7 9.9 24.6 21.3 44.5 46.2 57.2 48.4 71.2 69.4 50.5 48.5
FMA+Weight 10.2 6.8 9.8 24.6 21.3 44.5 46.1 56.0 47.7 71.3 69.5 50.4 48.5

FMA+Weight (1spk) 10.3 6.9 9.8 24.7 21.3 44.5 46.2 56.5 48.2 71.9 69.9 50.6 48.7

Table 6: WERs from Cache and DNN adapted RNNLMs based
on Word-posteriors vs. 1-best Hypotheses

Corpus Test set Baseline Cache DNN

Posts 1-best Posts 1-best

SWBD eval’00(all) 10.6 10.2 10.3 10.2 10.3
eval’00(swb) 7.1 6.8 7.0 6.8 6.9

rt03 10.0 9.7 9.7 9.8 9.8

Spanish dev 24.9 24.6 24.6 24.6 24.6
test 21.5 21.3 21.2 21.3 21.3

Egyptian dev 44.8 43.8 43.8 44.5 44.5
test 46.4 45.2 45.2 46.1 46.2

We compare WERs using word-posteriors with those using
1-best hypotheses on the three corpora in Table 6. In general,
for both cache and DNN models on most test sets, performances
using lattice posteriors are better than (or on par with) those
using 1-best hypotheses. For Spanish test set, adaptation using
1-best hypotheses for estimating the cache model gives a better
WER than using word-posteriors. The adaptation methods for
cache and DNN models are the FMA with the two modification
methods and the FMA with the weighting method, respectively.
Both are under two speakers mode.

5.4. Correlation between PPLs and WERs

Although perplexity is a good measure for language modeling
performance, a common observation is that there is not a strong
correlation between PPLs and WERs [31] in speech recogni-
tion tasks. In particular, small improvement in PPLs does not
necessarily translate to improvement in WERs, and vice versa.

We have observed this phenomenon in Egyptian corpus,
and one explanation is the following: the direct effect of our
adaptation method is to boost the probability of a word that is
observed to be more frequent in conversations compared to its

background unigram probability. This guarantees that, if such
word appears in the current lattice, it has a very high likelihood
to appear in the final decoded result. If a wrong word is boosted,
little negative effect would take place if the word is not in the
lattice. However, in the PPL computation, since adapted prob-
abilities are renormalized, a strong boost of a wrong word can
have a much larger negative effect on probabilities of correct
words, thus the PPLs as well.

6. Conclusion and Discussion
In this work, we propose conversational cache and DNN adap-
tation models for RNNLMs to capture topic effects and long-
distance triggers for conversational speech recognition. Exper-
iments on SWBD and Spanish corpora show consistent WER
and PPL improvements by both models. We observe 3.9%
relative WER reduction and 10.5% PPL reduction on the full
eval2000 dataset of SWBD, and obtain 5.6% relative WER re-
duction on the subset of eval2000. For Egyptian corpus, both
adaptation models obtain WER improvements. In general, com-
pared with DNN models, conversational cache models yield
comparable improvement on SWBD and Spanish corpora while
perform better on Egyptian corpus.

To extend the application of the two adaptation methods,
we also conducted experiments on non-conversational speech
datasets: the AMI meeting corpus and TED-LIUM (a corpus
from English TED talks), and observed consistent WER reduc-
tions. This indicates that the application of our approaches is
not restricted to conversational speech recognitions.

In the future, we plan to explore higher order cache and
trigger models. We also would like to further investigate into
DNNs to better model long-distance trigger effects.

7. References
[1] J. T. Goodman, “A bit of progress in language modeling,” Com-

puter Speech & Language, vol. 15, no. 4, pp. 403–434, 2001.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khu-
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