
Spoken Language Recognition using X-vectors

David Snyder, Daniel Garcia-Romero, Alan McCree, Gregory Sell,
Daniel Povey, Sanjeev Khudanpur

Center for Language and Speech Processing
Human Language Technology Center of Excellence

The Johns Hopkins University, USA
david.ryan.snyder@gmail.com, dgromero@jhu.com, alan.mccree@jhu.com, gsell@jhu.com,

dpovey@gmail.com, khudanpur@jhu.com

Abstract

In this paper, we apply x-vectors to the task of spoken
language recognition. This framework consists of a deep
neural network that maps sequences of speech features to
fixed-dimensional embeddings, called x-vectors. Long-
term language characteristics are captured in the network
by a temporal pooling layer that aggregates information
across time. Once extracted, x-vectors utilize the same
classification technology developed for i-vectors. In the
2017 NIST language recognition evaluation, x-vectors
achieved excellent results and outperformed our state-of-
the-art i-vector systems. In the post-evaluation analysis
presented here, we experiment with several variations of
the x-vector framework, and find that the best performing
system uses multilingual bottleneck features, data aug-
mentation, and a discriminative Gaussian classifier.

1. Introduction
The National Institute for Standards and Technology
(NIST) organized its 8th language recognition evalua-
tion (LRE) in 2017, with an ongoing goal of promot-
ing development in language recognition technology and
measuring its performance. Like the previous evaluation
in 2015, the NIST LRE 2017 focused on distinguishing
between dialects and closely related languages. It was
separated into an unconstrained open training condition
and a fixed training condition, in which only a specified
set of training resources were permitted. In addition to
conversational telephone speech and broadcast narrow-
band speech data, this evaluation also included wideband
speech extracted from videos.

Most modern language recognition systems are based
on i-vectors [1]. The standard approach consists of a uni-
versal background model (UBM), and a large projection
matrix T that are trained to maximize the training data
likelihood. The projection maps high-dimensional statis-
tics from the UBM into a low-dimensional representa-
tion, known as an i-vector. Once extracted, i-vectors are
commonly classified using Gaussian models, logistic re-

gression, or cosine scoring. State-of-the-art i-vector sys-
tems incorporate deep neural networks (DNN) trained as
acoustic models for automatic speech recognition (ASR).
This is generally done in one of two ways: either pos-
teriors from the ASR DNN replace those from a Gaus-
sian mixture model (GMM) or the i-vector system is
trained on bottleneck features extracted from the DNN
[2, 3, 4, 5, 6].

Using DNNs to directly capture language or speaker
characteristics is currently a very active area of research.
In language recognition, a popular approach is to train
the neural network to classify languages at the frame-
level [7, 8, 9, 10]. At test-time, utterance-level scores
are computed by averaging log-posteriors across time. In
this work, we adapt the x-vector framework we devel-
oped recently for speaker recognition [11] to language
recognition. This framework consists of a discrimina-
tively trained DNN that maps variable-length speech seg-
ments to embeddings called x-vectors. Once extracted,
x-vectors are used like i-vectors. This allows for lever-
aging the classification and backend technology that has
been developed for i-vector-based language recognition
systems.

2. X-vector System
2.1. Overview

The x-vector system is based on a framework that we de-
veloped for speaker recognition [11]. The system is com-
prised of a feed-forward DNN that maps variable-length
speech segments to embeddings that we call x-vectors.
Once extracted, the x-vectors are classified by the dis-
criminatively trained Gaussian classifier in Section 4.

The network is implemented using the nnet3 neu-
ral network library in the Kaldi Speech Recogni-
tion Toolkit [12]. The recipe is based on the
SRE16 v2 recipe available in the main branch
of Kaldi as https://github.com/kaldi-asr/
kaldi/tree/master/egs/sre16/v2. The train-
ing classes and features have been modified for language



recognition.

2.2. Architecture

Layer Layer context Tot. context In x out
frame1 [t− 2, t+ 2] 5 5Fx512
frame2 {t− 2, t, t+ 2} 9 1536x512
frame3 {t− 3, t, t+ 3} 15 1536x512
frame4 {t} 15 512x512
frame5 {t} 15 512x1500

stats pooling [0, T ) T 1500Tx3000
segment6 {0} T 3000x512
segment7 {0} T 512x512
softmax {0} T 512xL

Table 1: The standard x-vector DNN architecture. X-
vectors are extracted at layer segment6, before the non-
linearity. The input layer accepts F -dimensional features.
The L in the softmax layer corresponds to the number of
training languages.

The DNN configuration is outlined in Table 1. The
input to the DNN is a sequence of T speech frames. The
first 5 layers process the input at the frame-level, with a
small temporal context centered at the current frame t.
For example, the input layer, frame1, splices together the
F -dimensional features at frames t − 2, t − 1, t, t + 1
and t + 2, which gives it a total temporal context of 5
frames. The input to the next layer, frame2, is the spliced
output of frame1 at t − 2, t and t + 2. This builds on
the temporal context established by the previous layer, so
that frame2 sees a total context of 9 frames. This process
is continued in the following layers, and results in frame5
seeing a total context of 15 frames.

The statistics pooling layer aggregates information
across the time dimension so that subsequent layers oper-
ate on the entire segment. The input to the pooling layer
is a sequence of T 1500-dimensional vectors from the
previous layer, frame5. The output is the mean and stan-
dard deviation of the input (each 1500-dimensional vec-
tors). These statistics are concatenated together (to pro-
duce a 3000-dimensional vector) and passed through the
segment-level layers and finally the softmax output layer.
The nonlinearities are rectified linear units (ReLUs). The
networks studied in Section 6 have between 4.2 and 4.6
million parameters.

2.3. Training

The network is trained to classify languages using a mul-
ticlass cross entropy objective function (Equation 1). The
primary difference between training here and in [8, 9, 10]
is that our system is trained to classify languages from
variable-length segments, rather than frames. Suppose
there are L languages in N training segments. Then

P (langl | x
(n)
1:T ) is the probability of language l given

T input frames x
(n)
1 ,x

(n)
2 , ...x

(n)
T . The quantity dnl is 1

if the language label for segment n is l, otherwise it’s 0.

E = −
N∑

n=1

L∑
l=1

dnl logP (langl | x
(n)
1:T ) (1)

Training examples are constructed by picking speech
chunks from the training data that are 2–4 seconds long.
The corresponding target is the language label. The net-
work is trained for several epochs using stochastic natural
gradient descent [13].

2.3.1. Data Augmentation

We use augmentation to increase the amount and diver-
sity of the x-vector DNN training data. Our strategy
uses speed perturbation, additive noises and reverbera-
tion. Reverberation involves convolving room impulse
responses (RIR) with audio and is performed with the
multicondition training tools in the Kaldi ASpIRE recipe
[12]. Speed perturbation alters the speed of the speech
signal using a specified speed factor [14]. The augmenta-
tion datasets we used are described in Section 5.2.3.

We use a 6-fold augmentation strategy that combines
the original “clean” training list with 5 augmented copies.
To augment a recording, we randomly choose between
one of the following:

• speed perturbation: Apply a speed factor of 0.9 or
1.1 to slow down or speed up the original record-
ing.

• music: A single music file (without vocals) is ran-
domly selected from MUSAN (see Section 5.2.3),
trimmed or repeated as necessary to match du-
ration, and added to the original signal (5-15dB
SNR).

• noise: MUSAN noises are added at one second in-
tervals throughout the recording (0-15dB SNR).

• reverb: The training recording is artificially rever-
berated via convolution with simulated RIRs.

2.4. Embeddings

At test time, 512-dimensional x-vectors are extracted at
layer segment6 of the network (see Table 1), before the
nonlinearity. Since the pooling layer aggregates across
the input frames, we are able to extract a single x-vector
from each speech segment.

Alternatively, the x-vector DNN could be used to
classify languages directly. This possibility is explored
in Section 6.4. However, we find that extracting embed-
dings is more flexible, as it facilitates integration with the



backend technology developed for i-vectors. Also, it al-
lows expanding to new languages without needing to re-
train the x-vector extractor. The latter option is explored
in Section 6.5.

2.5. Features

We experiment with acoustic features and two types of
bottleneck features. Before being fed into the x-vector
DNN, features are mean-normalized over a 3-second slid-
ing window, and nonspeech frames are removed using an
energy-based speech activity detection system.

2.5.1. Acoustic Features

The acoustic features are 23 MFCCs with a frame-length
of 25ms.

2.5.2. Fisher English BNFs

For the fixed training condition of LRE17, 60-
dimensional linear bottleneck features (BNF) are ex-
tracted from an ASR DNN trained on the Fisher English
corpus. The DNN is a time-delay acoustic model built
using the nnet2 library in Kaldi. Besides the bottleneck
layer, it uses the same architecture and training recipe as
the system described in Section 2.2 of [15].

Its input features are 40 MFCCs with a frame-length
of 25ms. Cepstral mean subtraction is performed over
a sliding window of 6 seconds. The DNN has six layers,
and a total left-context of 13 and a right-context of 9. The
hidden layers use the p-norm (where p = 2) nonlinearity
and have an input dimension of 3500 and an output di-
mension 350. The penultimate layer is a 60 dimensional
linear bottleneck layer. The softmax output layer com-
putes posteriors for 5297 triphone states. No fMLLR or
i-vectors are used for speaker adaptation. Excluding the
output layer, which is not needed to compute BNFs, the
DNN has 9.2 million parameters.

2.5.3. Multilingual BNFs

For the open training condition, we use 60-dimensional
BNFs extracted from an ASR DNN trained on multiple
languages. Up to and including the bottleneck layer, the
DNN has the exact same architecture as Section 2.5.2. It
also uses the same features.

The DNN is trained on 23 languages from the IARPA
Babel dataset (Amharic, Cebuano, Guarani, Javanese,
Lao, Tagalog, Tokpisin, Zulu, Assamese, Dholuo,
Haitian, Kazakh, Lithuanian, Pashto, Tamil, Turkish,
Cantonese, Igbo, Kurmanji, Mongolian, Swahili, Telugu,
and Vietnamese). Each language is given a separate out-
put layer that computes posteriors over 4300 to 4900 tri-
phone states, depending on the language. The hidden
layer parameters are shared across languages.

3. I-vector Baseline
Our baselines consist of two state-of-the-art joint i-vector
systems introduced by McCree et al., in [6]. These sys-
tems were part of our LRE17 submission, and are de-
scribed in greater detail in [16]. The joint system differs
from the classical i-vector system in that both the means
and the weights of a GMM for a recording are permit-
ted to differ from the UBM. This allows it to model both
acoustic and phonotactic variability.

The first joint i-vector system is a senone system,
which uses posteriors from an ASR acoustic model
trained on Fisher English. The second system uses BNFs
extracted from a separate acoustic model, also trained on
Fisher English.

4. Classifier
We use the same classifier for x-vectors and i-vectors.
Prior to classification, embeddings are whitened, length
normalized [17], and dimensionality is reduced using lin-
ear discriminant analysis (LDA). Classification is per-
formed by a discriminatively-trained Gaussian classifier
[18]. Fusing scores from multiple systems was performed
by learning a weight for each system, and averaging
weighted scores.

The whitening matrix, LDA, and classifier were
trained on an augmented version of the LRE17 training
data (Section 5.2). A held-out portion was used for fu-
sion. Training recordings were segmented to durations
of 3-60 seconds of speech. In addition to applying aug-
mentation similar to what is described in Section 2.3.1,
we also simulate GSM-AMR phone encoding, add bab-
ble noise from Fisher, and add synthetic, low-frequency
modulated noise.

5. Corpora
5.1. NIST LRE 2017

Cluster Languages
Arabic Egyptian Arabic, Iraqi Arabic, Levantine

Arabic, Maghrebi Arabic
Chinese Mandarin, Min Nan
English British English, General American English
Slavic Polish, Russian
Iberian Caribbean Spanish, European Spanish,

Latin American Continental Spanish,
Brazilian Portuguese

Table 2: NIST LRE 2017 language clusters and lan-
guages.

We evaluate performance on the 2017 NIST language
recognition evaluation (LRE) [19]. It consists of 14 lan-



guages in 5 language clusters, as illustrated in Table 2.
The data came from conversational telephone speech and
broadcast narrowband speech data from the LDC MLS14
corpus, as well as wideband speech extracted from videos
(VAST corpus). The focus of the evaluation is differenti-
ating between closely related languages/dialects within a
cluster.

Training conditions were broken down into fixed and
open training conditions. The fixed condition permits use
of past LREs, Fisher English, Switchboard corpora and
LRE17 development data, as well as publicly available
noise corpora. The open condition lifts these restrictions.

5.2. Training Data

This section describes the training data used by both the
i-vector baselines and x-vector systems. The ASR DNNs
were trained on additional corpora, as described in Sec-
tion 2.5.

5.2.1. NIST LRE 2017 Training and Development

This dataset consists of about 18,000 training segments
and 4,000 development segments provided by NIST for
the evaluation participants. It is comprised of narrowband
and broadband data collected by LDC for the MLS14 and
VAST corpora and contains speech from the 14 target
languages/dialects in Table 2. Due to the small amount
of broadband training data, it was downsampled to 8kHz
before training.

5.2.2. 2015 NIST IVC

This dataset consists of audio from the ivector challenge
(IVC) [20]. This dataset is composed primarily of pre-
vious NIST LREs. It consists of data collected over the
telephone channel. In total, there are 177,000 speech seg-
ments with an average duration of 35 seconds from 57
languages. This dataset is used only in Section 6.5.

5.2.3. Augmentation Datasets

We use the simulated room impulse responses (RIRs) de-
scribed by Ko et al. in [21] for reverberation. Additive
noises come from the MUSAN dataset, which consists of
over 900 noises, 42 hours of music from various genres
and 60 hours of speech from twelve languages [22]. To
comply with the requirements of the fixed training condi-
tion of the evaluation, we only used the noises and music
without vocals. Both MUSAN and the RIR datasets are
freely available from http://www.openslr.org.

6. Results
Results are reported in terms of the Cprimary metric de-
scribed in [19]. This is the average of the actual detec-
tion costs using Ptarget = 0.1 and Ptarget = 0.5. In the
following tables, the Overall results have been equalized

by the NIST scoring tool. As a result, scores from each
data source (VAST or MLS14) or language have been bal-
anced and contribute equally to the metric.

6.1. Baseline

In this section, we compare performance of two state-of-
the-art joint i-vector systems described in Section 3 with
the x-vector system. The system ivec senone uses pos-
teriors from an ASR DNN trained on Fisher English and
ivec bnf is trained on Fisher English BNFs. The system
xvec bnf is an x-vector system trained on the Fisher En-
glish BNFs from Section 2.5.2.

System MLS14 VAST Overall
1 ivec senone 0.193 0.217 0.205
2 ivec bnf 0.170 0.206 0.189
3 xvec bnf 0.148 0.178 0.163
1,2 fusion 0.151 0.183 0.167
1,3 fusion 0.130 0.168 0.150
2,3 fusion 0.125 0.164 0.145
1,2,3 fusion 0.124 0.163 0.144

Table 3: Comparison with i-vectors on LRE17 evaluation
set. All systems conform to the fixed training condition.

In Table 3 we see that xvec bnf achieves lower
Cprimary than either i-vector system on both the MLS14
and VAST parts of the evaluation. Overall, xvec bnf
outperforms ivec senone by about 20% and ivec bnf by
about 14% relative.

The last 4 rows of Table 3 report score fusion results.
By itself, xvec bnf achieves a Cprimary roughly equal to
the fusion of the two i-vector systems. Moreover, the x-
vector and i-vector systems appear to be very comple-
mentary when fused; the fusion of ivec bnf and xvec bnf
is 23% better than our best baseline, and 13% better than
the fusion of the two i-vector systems.

6.1.1. Duration analysis

NIST LREs typically include test segments with dura-
tions clustered around 3, 10 and 30 seconds. This facil-
itates the analysis of performance as a function of dura-
tion. For LRE17 only the MLS14 portion of the data was
provided with these duration patterns. The VAST data
had a continuous distribution over 10 seconds or longer.

Table 4 shows results by duration. It is clear that the
shorter segments are harder to classify by all systems.
Also, even though the VAST data had longer duration
segments, the domain shift with respect to the majority of
our training data results in performance that is worse than
the 3 second MLS14 subset. Since the x-vector system
was trained on examples that are on average 3 seconds
long, it was expected that it might achieve its largest gains
(compared to the baselines) on the shortest test segments.



MLS14 VASTSystem 3s 10s 30s
1 ivec senone 0.216 0.178 0.084 0.217
2 ivec bnf 0.194 0.156 0.064 0.206
3 xvec bnf 0.169 0.135 0.061 0.178
1,2 fusion 0.171 0.140 0.062 0.183
1,3 fusion 0.148 0.125 0.055 0.168
2,3 fusion 0.143 0.119 0.050 0.164
1,2,3 fusion 0.142 0.117 0.052 0.163

Table 4: Results split by test segment durations. The
VAST subset is 10s or longer.

However, Table 4 demonstrates no clear relationship be-
tween the x-vector’s relative performance and duration:
compared to the baselines, xvec bnf is 13–22% better on
the 3 second segments, 13–24% better on the 10 second
segments, and 5–27% better on the 30 second segments.

6.2. X-vector Features

It has been well documented that i-vector-based lan-
guage recognition systems improve greatly by incorpo-
rating ASR DNNs. In this section, we see how this ob-
servation generalizes to x-vectors, by comparing systems
trained on MFCCs (xvec mfcc), Fisher English BNFs
(xvec bnf), and multilingual BNFs (xvec mlbnf). See
Section 2.5 for a description of these these features.

System MLS14 VAST Overall
xvec mfcc 0.209 0.203 0.206
xvec bnf 0.148 0.178 0.163
xvec mlbnf 0.130 0.149 0.140

Table 5: X-vector performance using MFCCs, Fisher En-
glish BNFs and multilingual BNFs.

In Table 5 we see that x-vector performance echoes a
similar trend observed in i-vectors: monolingual BNFs
perform much better than acoustic features alone, but
multilingual BNFs are the best choice [5]. Using just
MFCCs, xvec mfcc achieves performance comparable to
ivec senone from the previous section. However, replac-
ing MFCCs with Fisher English BNFs improves perfor-
mance by 21%. Finally, substituting MFCCs with mul-
tilingual BNFs improves performance even further, by
32%.

6.3. Data Augmentation

In this section, we test the importance of augmenting the
x-vector DNN training data. In either system, the fea-
tures are multilingual BNFs and the Gaussian classifier
still uses the same augmentation strategy as described in

Section 4.

System MLS14 VAST Overall
xvec mlbnf no aug 0.152 0.179 0.166
xvec mlbnf 0.130 0.149 0.140

Table 6: Comparison of performance with or without
augmenting the x-vector DNN training list. In either case,
the classifier (Section 4) uses the same augmented list.

In Table 6 we observe that removing augmentation
significantly degrades performance. This is likely due to
augmentation increasing the limited amount of training
data, as well as making the system more robust against
degraded audio. This result parallels our observations
training x-vectors for speaker recognition in [11].

6.4. Direct Classification vs. Embeddings

The x-vector framework is based on our work in speaker
recognition [11] where the goal is to produce embeddings
that generalize to unseen speakers. However, in a closed-
set language recognition task, the x-vector DNN can be
used directly for classification, provided it is trained on
the same language classes as required for deployment. In
this section, direct classification is compared with using
embeddings extracted from the same system.

System MLS14 VAST Overall
xvec mlbnf direct 0.155 0.256 0.206
xvec mlbnf 0.130 0.149 0.140

Table 7: Comparison of performance using the x-vector
DNN for direct classification, or as features for the Gaus-
sian classifier from Section 4.

In Table 7 we see that using embeddings to train
the Gaussian classifier achieves much better performance
than using the system directly for classification. In par-
ticular, the direct system appears to suffer from the lim-
ited amount of VAST training data. While xvec mlbnf is
only 16% better than xvec mlbnf direct on MLS14 it is
42% better on VAST. Although it’s likely the direct re-
sults could be improved with hyper-parameter tuning and
calibration in the backend, this underscores the flexibil-
ity of our standard x-vector approach. Once extracted,
x-vectors can be fed into the same pipeline used for i-
vectors, taking advantage of existing classifier and back-
end technology that assists in domain adaptation and cal-
ibration.

6.5. Adding New Languages without Retraining

Another advantage of extracting embeddings from a
DNN, rather than using it for direct classification, is



that it opens up the possibility of deploying the system
with a different set of languages without having to re-
train the x-vector extractor. Given a multilingual train-
ing list with sufficient diversity, it may be possible to
train the DNN to produce embeddings that generalize
to languages or dialects not present in the training data.
In this section, we simulate this by training an x-vector
DNN called xvec mlbnf 57lang using the 57 languages
of the IVC dataset (see Section 5.2.2). Although differ-
ent training data is used, the same augmentation strategy
(see Section 2.3.1) we used for xvec mlbnf is applied to
xvec mlbnf 57lang. It is important to note that the IVC
dataset may contain a significant acoustic domain mis-
match with the LRE17 evaluation data as it is from a dif-
ferent collection.

System MLS14 VAST Overall
xvec mlbnf 57lang 0.153 0.183 0.168
xvec mlbnf 0.130 0.149 0.140

Table 8: Performance with an x-vector DNN trained on
the IVC dataset (Section 5.2.2) or on the LRE17 develop-
ment data (Section 5.2).

In Table 8 we see that xvec mlbnf 57lang lags be-
hind the system trained on completely in-domain data and
matching languages. Nonetheless, it achieves similar per-
formance as xvec mlbnf no aug. In the future, we plan to
expand the number of languages as well as the domains
represented in the x-vector training data to further explore
this approach.

7. Conclusions
In this paper, we adapted the x-vector framework, which
was originally developed for speaker recognition, to
the task of language recognition. We found x-vectors
achieved excellent performance on the NIST LRE 2017,
outperforming several state-of-the-art i-vector systems.
We explored several variations to the basic x-vector
framework. We found that, like in i-vector systems,
bottleneck features greatly improved performance over
acoustic features. Echoing similar results in speaker
recognition, our experiments showed that augmenting the
x-vector DNN training data was a good choice. Finally,
although the framework permits direct classification, we
found that extracting x-vectors from the DNN and using
them as features for a Gaussian classifier produced much
better results.

8. References
[1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and

P. Ouellet, “Front-end factor analysis for speaker
verification,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 19, no. 4, pp. 788–
798, 2011.

[2] Y. Song, B. Jiang, Y. Bao, S. Wei, and L. Dai, “I-
vector representation based on bottleneck features
for language identification,” Electronics Letters,
vol. 49, no. 24, pp. 1569–1570, 2013.

[3] P. Matějk, L. Zhang, T. Ng, H. Mallidi, O. Glembek,
J. Ma, and B. Zhang, “Neural network bottleneck
features for language identification,” Proc. Odyssey,
pp. 299–304, 2014.

[4] F. Richardson, D. Reynolds, and N. Dehak, “Deep
neural network approaches to speaker and language
recognition,” Signal Processing Letters, IEEE, vol.
22, no. 10, pp. 1671–1675, 2015.

[5] R. Fér, P. Matějka, F. Grézl, O. Plchot, and
J. Černockỳ, “Multilingual bottleneck features for
language recognition,” in Sixteenth Annual Con-
ference of the International Speech Communication
Association, 2015.

[6] A. McCree, G. Sell, and D. Garcia-Romero, “Aug-
mented data training of joint acoustic/phonotactic
dnn i-vectors for nist lre15,” in Proc. Odyssey:
Speaker Lang. Recognit. Workshop, 2016, pp. 204–
209.

[7] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Pl-
chot, D. Martinez, J. Gonzalez-Rodriguez, and
P. Moreno, “Automatic language identification us-
ing deep neural networks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 5337–5341.

[8] J. Gonzalez-Dominguez, I. Lopez-Moreno, H. Sak,
J. Gonzalez-Rodriguez, and P. Moreno, “Automatic
language identification using long short-term mem-
ory recurrent neural networks,” in Fifteenth Annual
Conference of the International Speech Communi-
cation Association, 2014.

[9] J. Gonzalez-Dominguez, I. Lopez-Moreno,
P. Moreno, and J. Gonzalez-Rodriguez, “Frame-
by-frame language identification in short utterances
using deep neural networks,” Neural Networks, vol.
64, pp. 49–58, 2015.

[10] D. Garcia-Romero and A. McCree, “Stacked long-
term tdnn for spoken language recognition,” in IN-
TERSPEECH, 2016, pp. 3226–3230.

[11] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey,
and S. Khudanpur, “X-vectors: Robust dnn em-
beddings for speaker recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018.



[12] D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlı́ček,
Y. Qian, P. Schwarz, et al., “The Kaldi speech
recognition toolkit,” in Proceedings of the
Automatic Speech Recognition & Understanding
(ASRU) Workshop, 2011.

[13] D. Povey, X. Zhang, and S. Khudanpur, “Par-
allel training of deep neural networks with natu-
ral gradient and parameter averaging,” CoRR, vol.
abs/1410.7455, 2015.

[14] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur,
“Audio augmentation for speech recognition.,” in
Interspeech, 2015, pp. 3586–3589.

[15] D. Snyder, D. Garcia-Romero, and D. Povey, “Time
delay deep neural network-based universal back-
ground models for speaker recognition,” in 2015
IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU). IEEE, 2015, pp. 92–
97.

[16] A. McCree, D. Snyder, G. Sell, and D. Garcia-
Romero, “Language recognition for telephone and
video speech: The JHU HLTCOE submission for
NIST LRE17,” Submitted to Odyssey, 2018.

[17] D. Garcia-Romero and C. Espy-Wilson, “Analysis
of i-vector length normalization in speaker recogni-
tion systems.,” in Interspeech, 2011, pp. 249–252.

[18] A. McCree, “Multiclass discriminative training of
i-vector language recognition,” in Proc. Odyssey,
2014, pp. 166–172.

[19] “NIST 2017 language recognition evaluation
plan,” https://www.nist.gov/sites/
default/files/documents/2017/06/
01/lre17_eval_plan-2017-05-31_v2.
pdf, 2017.

[20] “The 2015 language recognition i-vector
machine learning challenge,” https:
//www.nist.gov/sites/default/
files/documents/itl/iad/mig/lre_
ivectorchallenge_rel_v1-1.pdf, 2015.

[21] T. Ko, V. Peddinti, D. Povey, M. Seltzer, and
S. Khudanpur, “A study on data augmentation
of reverberant speech for robust speech recogni-
tion,” in Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on.
IEEE, 2017, pp. 5220–5224.

[22] D. Snyder, G Chen, and D. Povey, “MU-
SAN: A Music, Speech, and Noise Corpus,” 2015,
arXiv:1510.08484v1.


