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Abstract—Hybrid deep neural network hidden Markov models
(DNN-HMM) have achieved impressive results on large vocabu-
lary continuous speech recognition (LVCSR) tasks. However, the
recent approaches using DNN-HMM models are not explored
much for text recognition. Inspired by the current work in
automatic speech recognition (ASR) and machine translation, we
present an open vocabulary sub-word text recognition system.
The sub-word lexicon and sub-word language model (LM) helps
in overcoming the challenge of recognizing out of vocabulary
(OOV) words, and a time delay neural network (TDNN) and
convolution neural network (CNN) based DNN-HMM optical
model (OM) efficiently models the sequence dependency in the
line image. We present results on 12 datasets with training data
varying from 6k lines to 600k lines. The system is built for 8
languages, i.e., English, French, Arabic, Chinese, Farsi, Tamil,
Russian, and Korean. We report competitive results on several
commonly used handwritten and printed text datasets.

Index Terms—OCR, ASR, open vocabulary, lattice-free MMI,
BPE

I. INTRODUCTION

Text recognition is the task of transcribing printed text or
handwritten text line images. Since both text recognition and
automatic speech recognition (ASR), convert a sequence of
vectors into text, approaches used for transcription of text
line image are also similar to speech recognition. Hybrid
hidden Markov model (HMM) [1] based speech/text recog-
nizer is one such approach that is common in both ASR
and text recognition. Recently, the performance of HMM-
based speech recognition systems is further boosted by using a
sequence discriminative objective called lattice-free maximum
mutual information (LF-MMI) [2]. In addition, although text
recognition and ASR are inherently open vocabulary tasks,
many text recognition and ASR systems still rely on a fixed
vocabulary, thereby making it a closed vocabulary setup. A
closed vocabulary setup usually faces the challenge that the
word which is not present in the lexicon (OOV: out-of-
vocabulary word), cannot be recognized by the system.

Hence, recognition of rare words can require a highly
specific vocabulary to achieve good performance in the closed
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vocabulary scenario. Previous approaches addressed this issue
by simultaneously hypothesizing an unknown word and iden-
tifying it as a sequence of characters. The system provides
both a word probability and the probability of an unknown
word [3]. Another approach is to have sub-words in lexicon
and LM so that it can recognize OOV words as a sequence
of sub-words [4]. Recently, sub-word/hybrid LM based ap-
proaches [5] have started gaining popularity in text recognition
community. However, the focus of previous works has been to
build an open vocabulary sub-word setup with limited latency.

In this work, we present a DNN-HMM-based offline text
recognition system trained with LF-MMI objective function.
An open-vocabulary word-based system and a sub-word based
system were built and compared at different OOV rates. These
setups are implemented in the open-source ASR toolkit Kaldi
[6] and are made publicly available.

A. Contributions

We explored adopting state-of-the-art acoustic models used
in ASR for text recognition and implemented a sub-word
lexicon and sub-word LM based system. The contributions
of this paper are summarized below.

e We adapt a low latency CNN-TDNN-HMM acoustic
model from ASR trained with LF-MMI objective function
for text recognition. The optical model (OM) is explained
in Section II-A.

o We implement different data augmentations and perform
language specific modifications such as decomposition
and bidirectional reordering. The details about the data
augmentations are mentioned in Section II-B.

o To overcome the challenge of OOV words, we implement
a new sub-word based algorithm for text recognition. The
open vocabulary setup is explained in Section II-C.

o We obtained state-of-the-art results on several commonly
used datasets in the literature. We have open sourced the
scripts for all setups.

The rest of the paper is organized as follows. In Section II,

we briefly describe our HMM-based text recognition system.
In Section III, we describe the experimental setup and present
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Fig. 1. Text recognition setup with four major components: optical model
(green), sub-word lexicon (top dark blue), sub-word language model
(brown) and data augmentation (bottom light blue) setup

the results in Section IV. The conclusion is presented in
Section V.

II. TEXT RECOGNITION WITH HIDDEN MARKOV MODELS

Our HMM-based text recognizer setup is shown in Figure
1. It has three main components: an optical model, an image
augmentation setup, and a sub-word LM and sub-word lexicon.
A comprehensive review of the traditional hybrid HMM can
be found in [1].

A. Optical model

A DNN helps in learning a complex representation from a
raw pixel feature vector and hence can work seamlessly with
diverse datasets. In a DNN-HMM system, a neural network
is used to estimate the emission probability for all the states
of a context-dependent character-based HMM. A DNN-HMM
based OM is shown in Figure 2. While building a DNN-
HMM system for text recognition, we made the following
considerations.

e We used a CNN-TDNN-HMM setup because a CNN
can extract relevant features from the raw pixels and the
following TDNN [7] can efficiently model the context on
either side of the feature vector.

e We use L2-regularization, batch normalization, and
scheduled dropout for faster training and to avoid over-
fitting.

o Since the features extracted from line images and fea-
tures extracted from an acoustic recording files have
different properties, we require different values for the
tolerance, frame sub-sampling factor and chunk-width
hyper-parameters.

CNN

CNN
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Activations

Seq of HMM-state
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Fig. 2. The DNN-HMM optical model. DNN is used to estimate the
emission probabilities of HMM states. OM provides the likelihood of the
sequence of observations for a given word sequence.

To model the sequential dependency, we chose a TDNN
over LSTM. This is because TDNNs [7] can model with
low latency and low computational complexity and performed
better than LSTMs in our experiments. A flat-start [8] [9]
model with sequential loss function was used for training the
DNN-HMM system, after which the training data was forced-
aligned for the second pass CNN-TDNN-HMM model. We use
a LF-MMI objective function instead of a frame-wise cross-
entropy objective function as the former has been shown to
give significant improvements in WER over the latter. In both
word-based and sub-word based open vocabulary setups, the
OM still works at the context dependent character level. To
get the likelihood of a word or word sequence, the HMMs
of the context dependent characters are concatenated with the
help of the lexicon.

B. Data Augmentation

Our idea behind applying data augmentations is to make
training data similar to the validation data. The SLAM dataset
has comparatively lower resolution images than the YOMDLE
dataset. Since we use YOMDLE for training and SLAM
for testing, training images were randomly scaled down and
then scaled up for data augmentation. Since Rimes dataset
has an axis-aligned bounding box, the line images contain
surrounding lines. Hence during training, bounding boxes were
expanded to simulate this effect. For example, if a bound-
ing box coordinates are (0,0), (0,100), (100,0), (100,100),



a possible expanded bounding box coordinate can be (0,0),
(0,120), (120,0), (120,120). Both these bounding boxes will
be resized to the same height while maintaining the aspect
ratio. Similarly, deslanting and deskewing [10] was applied
to the IAM line images for data augmentation. Currently, the
image augmentation is part of some setups but not all.

C. Lexicon and language model

1) Open vocabulary word-based setup: An approach to
building an open vocabulary system is to simultaneously
hypothesize an unknown word and identify it as a sequence
of characters. This approach needs two LMs, namely a
word-based LM for hypothesizing the unknown word and a
character-based LM for recognizing the word as a sequence of
characters. This approach has been widely studied and adopted
by the text recognition community. Many setups have used
this unknown word decoding approach to show significant
improvement in performance. A comprehensive review of this
method can be found in [3].

2) Open vocabulary sub-word based setup: Implementing
a sub-word open vocabulary system in Kaldi is significantly
different than the implementation in other toolkits. Below, we
explain the word-segmentation and sub-word implementation
in Kaldi.

Byte pair encoding (BPE) [11] is used to create sub-words
in a language independent, data-driven way. BPE compression
is a greedy algorithm and requires a training data to learn sub-
words from words. For each iteration, it greedily replaces the
most frequent pair of characters with a new character symbol.
Since at each iteration a new symbol is produced, the number
of symbols (vocabulary size) can be controlled by fixing the
number of iterations.

While building a sub-word based text recognition setup, we
made the following considerations:

o We retained singletons in the lexicon to allow all possible

output character sequences.

e Since it is difficult to capture the character position
information in a sub-word, we turned off the character
position information flag.

o We add a special space symbol in front of the sub-words
to distinguish word boundaries from sub-word transitions.

o We empirically select a sub-word vocabulary size of 700
based on the system performance across diverse datasets.

BPE is applied to the training text and corpus text to convert
the text at word level into text at sub-word level. A sub-word
lexicon is created using this sub-word text. The decoder finds
the best sub-word sequence for a given test line image. During
scoring, to combine sub-words into words, we remove the
space between the sub-words and the special space symbol
is replaced with an actual space. In addition, since the setup
uses sub-words instead of words for language modeling, it
weakens the LM due to decrease in context size. Hence,
a higher order 6-gram sub-word LM is used in decoding
instead of commonly used 3-gram LM, which was empirically
found to perform better. However, using the higher order n-
gram significantly increases the decoding time. To alleviate

it, decoding is performed using a pruned 6-gram LM and
rescoring is performed using the unpruned 6-gram.

III. EXPERIMENTS
A. System Overview

The line images are resized to a pixel height of 40 while
maintaining the aspect ratio. The images are padded with white
space at the start and end of the line. Our OM consists of a
6-layer CNN, a 3-layer TDNN and a softmax layer. Dilated
convolutions and height sub-sampling layer are used in the
network architecture. The size of the softmax layer depends
on the number of context dependent characters obtained from
decision tree. The decision tree is trained using the alignments
obtained from training data and flat-start OM and optimizes the
GMM likelihood. WFSTs are used for decoding to combine
the OM with n-gram LM.

For the IAM dataset, deslanting and deskewing is applied
for augmentation and also to the test set. A smaller topology
of four states is used for punctuations and space and an
eight state HMM topology is used for other characters. The
Rimes dataset has 6.3% and 6.1% OOV rate on test and
validation set for lexicon built with training text. Expanding
bounding box as augmentation is applied on this, as well
as a subset of Madcat Arabic and Madcat Chinese dataset.
Paragraph scoring is further applied to Rimes dataset. For
Madcat Chinese and YOMDLE Chinese, we also use character
decomposition [12] and 16 HMM states instead of eight for
non-space characters. Similar to [13], line images of Madcat
Chinese dataset are also resized to a higher height of 80
to capture more information, since Chinese characters are
intrinsically complex. Semi-supervised training [14] is used
for YOMDLE Korean and YOMDLE Tamil, and additional
synthetic data is used for YOMDLE Chinese dataset [12].

B. Databases and language modeling

We report WER results on several text recognition datasets.
However, most intermediate results are presented for IAM
and Rimes datasets because of their popularity in the text
recognition community. Final results are reported for six
commonly used handwritten recognition datasets (Bentham
[21], TAM [15], Madcat Arabic [17], Rimes [16], Madcat
Chinese [19], IFN-ENIT [20]) and six printed text recognition
datasets (UW3 [18], YOMDLE Chinese, YOMDLE Farsi,
YOMDLE Korean, YOMDLE Russian, YOMDLE Tamil).
YOMDLE and SLAM [12] [22] are machine printed dataset
that includes complex layouts of document images, including
mobile camera images of books, newspapers, receipts, Power
Point slides, social media and web pages. YOMDLE datasets
were used for training and SLAM datasets were used for
testing. Both datasets have around 15k to 20k line images each
for Chinese, Korean, Farsi, Russian, and Tamil language. In
addition, there are a large number of abbreviations, URLs, and
typing errors in both datasets, which significantly increase the
OOV rate. The details about the datasets are given in Table I.

For IAM dataset, LOB [23](excluding text present in [AM
test and validation set), Brown [24], and Wellington [25] text



TABLE I
Total number of lines (sum of test, train, and validation split), OOV
rate (calculated from lexicon built with training text), and total unique
characters in different datasets

Dataset Total lines | OOV rate | Total characters
1AM 9.8k 2.3 79
Bentham 11.5k 1.7 93
Rimes 13k 6.3 99
Madcat Arabic subset 25.3k 16.5 145
YOMDLE Tamil 25.6k 49.1 176
IFN-ENIT 26.5k 0 39
YOMDLE Chinese 27.5k 0 4310
YOMDLE Russian 29.7k 46.0 234
YOMDLE Korean 31.4k 55.3 1502
YOMDLE Farsi 33.6k 20.0 254
UW3 96.4k 2.5 89
Madcat Chinese 278k 0 2879
Madcat Arabic 740k 53 164

corpora and training text were used for language modeling.
When all words from the corpus and training data were
included in the lexicon and LM, we observed 2.32% OOV
rate on test and 2.71% OOV rate on the validation set. For
IAM dataset, punctuation marks were separated from words
while calculating WER.

C. Effect of data augmentation and parameter tuning

Table II shows improvements from adding batch normaliza-
tion, L2-regularization, and scheduled dropout in DNN-HMM
optical model discussed in section II-A. We used the LF-MMI
objective for all the experiments in this paper, which may
sometimes lead to overfitting [2]. To overcome this challenge
and to improve training of DNN, we use a combination of
the three techniques. Addition of both L2-regularization and
batch normalization, led to significant reduction in the WER.
Further it was observed that addition of scheduled dropout led
to some more improvements.

TABLE II
WER from open vocabulary sub-word setup for IAM dataset (with
data-split available with dataset)

L2-regularization | Batch normalization | Schedule Dropout | WER
Y Y N 9.17
Y N Y 9.79
N Y Y 9.95
Y Y Y 8.46

Table IIT shows improvements from different data augmen-
tations discussed in section II-B. The three different image
augmentations i.e. expanding bounding box, de-slanting and
de-skewing, and random scaling for respective datasets, sig-
nificantly helped in improving the results by approximately 7-
12% relative. For IAM dataset, we observed that simply using
deslanting and deskewing as a prepossessing step for the test
data also gave good performance improvements.

D. Effect of the OOV rate

We evaluate our word-based open vocabulary setup (Section
II-C1) by measuring the improvement between open vocabu-
lary and closed vocabulary scenario for different OOV rates for

TABLE III
WER from open vocabulary sub-word based system without
augmentation (WER1) and with augmentation (WER?2) for different
augmentations for different datasets

Dataset Augmentation WER1 | WER2
YOMDLE Korean | random scaling 28.9 27.0
IAM de-slant and de-skew 12.3 11.0
Rimes expanding bounding box 9.0 8.3

IAM dataset. The experiment is conducted with IAM official
split and without text normalization for LM. Table IV shows
the WERs for the open vocabulary setup and the baseline
closed vocabulary setup for different lexicon size and hence
at different OOV rates for the IAM dataset. For a vocabulary
size [V|, we used top |V| most frequent words from the LM
text and remaining words are mapped to <unk> symbol. A 3-
gram word-based LM was built using an open-source pocoLM
toolkit and a 4-gram character based LM was built using
the lexicon words. We can see that decreasing OOV rate,
the performance of both setups improved consistently, as did
the relative improvement between closed and open vocabulary
setups. However, the performance gap between closed vocab-
ulary and open vocabulary systems reduced significantly for
smaller OOV rates.

TABLE IV
WER from closed vocabulary word-based system (WER1)and
open-vocabulary word-based system (WER2) for IAM dataset (with
data-split available with dataset)

Lexicon size | OOV rate | WERI WER2
50k 4.5 12.1 9.9
100k 3.1 10.5 94
150k 2.7 10.0 9.2
200k 2.3 9.7 8.9

E. Effect of the order of n-gram

As briefly discussed in the Section II-C2, for an open
vocabulary sub-word setup, using a standard 3-gram LM
weakens the model. It is due to the fact that a word can be
formed by combining approximately 1-6 sub-words, which
reduces the context for a 3-gram sub-word LM to 1-2 words.
To alleviate this problem, a higher order n-gram sub-word LM
is used. Table V shows the WERs for the open vocabulary sub-
word setup at different n-gram order with the same language
modeling text. For Madcat Arabic and Rimes dataset, only
training text is used for LM training whereas for IAM dataset
a corpus text as mentioned in III-B is also used.

TABLE V
WER from open-vocabulary sub-word system at different n-gram order
for different datasets and different corpus size (number of words)

Dataset corpus size | 3-gram | 4-gram | 5-gram | 6-gram
1AM 7.6M 10.01 8.65 8.52 8.46
Rimes 0.26M 9.56 9.36 9.29 7.66
Madcat Arabic 8.6M 9.56 8.33 8.15 8.05




IV. FINAL RESULTS
A. Comparison with word based setup

Table VI shows the comparison between the word-based
setup and the sub-word based setup for different datasets.
Both the setups have similar DNN structure, and the same
corpus text and augmentations are used for both. Due to time
constraints, we use a closed vocabulary word-based setup for
comparison in the case of Madcat Arabic and Madcat Arabic
subsets, whereas for IJAM and Rimes an open vocabulary
word-based setup is built. In addition to the details mentioned
in Section III-D, a 3-gram word LM is built on the training
corpus and a 4-gram character LM built with the lexicon is
used for Rimes. We see that increasing OOV rate the relative
difference in performance between the two systems increases,
which demonstrates the usefulness of our open vocabulary text
recognition system.

TABLE VI
Comparison between our word-based system (WER1) and BPE-based
system (WER2)

Dataset OOV rate | WERI WER2
IAM 2.3 8.9 8.4
Madcat Arabic 5.3 10.8 8.0
RIMES 6.3 9.3 7.6
Madcat Arabic subset 16.5 24.2 13.7

B. Comparison with published results

Table VII shows comparison of our system with published
results for different datasets. To make the results comparable
with other groups, following modifications were made before
reporting the results. For IAM, we followed a similar data
split as [26], which has 6,482, 976, and 2,915 samples for
train, validation, and test. Same refernece tokenization and
hypothesis normalization (separating a subset of punctuation
marks (; !, : ) from word and joining a subset of contraction
(’s,’t 11, m,ve, re,’d) to word) were used. For LM training,
we used the IAM training transcripts, LOB (excluding the
text present in IAM test and validation set), Brown and
Wellington text corpora. Tokenization similar to hypothesis
normalization are applied to language model text. For Bentham
dataset [27], punctuation marks were separated from words
while calculating WER. For Rimes, a similar procedure as
in [28] was followed and 10% of the total training samples
were used for validation purposes to get a split of 10,203,
1,130, and 778 for train, validation, and test, respectively.
Paragraph level error rates were computed. Similar to [13]
and [28], no extra corpus text was used for Madcat Arabic
and Rimes dataset. Furthermore, following the method in [13],
we normalized certain diacritics while computing the WER
and CER. We used the same splits for all databases except
Madcat Arabic (and have made it publicly available) because
of unavailability of original data splits. For the Madcat Chinese
and UW3 datasets, results from character based model and
open vocabulary word-based model are reported, respectively.
Madcat Chinese is a relatively new dataset and do not have

published results. For Madcat Chinese, results are compared
with a system built with ESPnet [29]. Since IFN-ENIT does
not have OOV words, results from a closed vocabulary word-
based setup are reported. For UW3 and Madcat Chinese, CER
is reported instead of WER.

Voigtlaender et al. [26] used a deep multidimensional long
short term memory network (MDLSTM) with connectionist
temporal classification (CTC) loss function. The system was
trained end to end in an open vocabulary recognition setup
with weighted finite state transducer. Puigcerver et al. [28]
used a convolution neural network for feature extraction and
LSTMs for modeling context on either side of the feature
vector. A CTC objective function and WFST based decoding
was performed to get final results in a closed vocabulary
scenario. Rawls et al. [13] used a system built with CNN,
LSTM, and CTC objective function. No language model was
used and greedy decoding was performed on the output of the
neural network. Our results, without using extra corpus text for
LM, do not match [13], but on including extra corpus text show
an improvement in WER over [13]. For IFN-ENIT, although
[6] performs better than our system, they use a full CNN-
based system for isolated word recognition, which is difficult
to adopt for more general line recognition system. The major
advantage in our approach over other approaches is that using
a sub-word lexicon and sub-word language model ensures that
we do not have OOV words and our sub-word LM is as strong
as a word-based LM.

TABLE VII
Performance comparison of our DNN-HMM text recognition setup for
different amount of training data

Dataset Training Size | Best WER | Our WER
1AM 6.4K 9.3 [26] 10.0
Bentham 9.1k 8.6 [27] 8.0
RIMES 10.2k 9.0 [28] 7.6
YOMDLE Korean 13.9k 16 12.5
YOMDLE Tamil 14.1k 12.4 8.9
YOMDLE Farsi 16.2k 11.5 12.7
YOMDLE Russian 17.9k 7.5 7.4
IFN-ENIT 19.7K 5.9 [30] 7.6
UW3 91.8k 0.6 [31] 0.1
Madcat Chinese 185k 6.2 4.4
Madcat Arabic 600k 5.9 [13] 8.0

V. CONCLUSION

In this paper, we presented an open vocabulary sub-word
based text recognition system. We adopted the hybrid deep
neural network HMM (DNN-HMM) acoustic model used
in ASR for text recognition, and implemented a new sub-
word based algorithm for lexicon and language modeling.
We showed that modifications made for optical modeling,
data augmentation, sub-word lexicon and sub-word language
model help in significantly improving the performance of our
system. Finally, we achieved an approximate 10% relative
improvement which is consistent across majority of datasets.
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