
X-vector DNN Refinement with Full-length Recordings for Speaker
Recognition

Human Language Technology Center of Excellence & Center for Language and Speech Processing
The Johns Hopkins University, Baltimore, MD 21218, USA

dgromero@jhu.edu

Abstract
State-of-the-art text-independent speaker recognition systems
for long recordings (a few minutes) are based on deep neural
network (DNN) speaker embeddings. Current implementations
of this paradigm use short speech segments (a few seconds) to
train the DNN. This introduces a mismatch between training
and inference when extracting embeddings for long duration
recordings. To address this, we present a DNN refinement ap-
proach that updates a subset of the DNN parameters with full
recordings to reduce this mismatch. At the same time, we also
modify the DNN architecture to produce embeddings optimized
for cosine distance scoring. This is accomplished using a large-
margin strategy with angular softmax. Experimental validation
shows that our approach is capable of producing embeddings
that achieve record performance on the SITW benchmark.
Index Terms: speaker recognition, x-vectors, deep neural net-
works, metric learning.

1. Introduction
A key aspect of the success of DNNs is that they can be trained
end-to-end to directly solve the task of interest. In this way, the
classification and representation stages can be jointly optimized
to yield improved performance. For applications like face or
speaker recognition, where the set of training classes is most
likely disjoint from those at test time (i.e., few-shot-learning),
the end-to-end approaches use metric learning loss functions.
For example, given two audio recordings, the DNN outputs a
similarity score that reflects the likelihood that they belong to
the same speaker or not (i.e., same vs different) [1]. Another
popular alternative is to use triplet loss [2]. Examples of end-to-
end DNNs for text-dependent tasks can be found in [3, 4, 5, 6].
Also, examples for text-independent tasks with short utterances
can be found in [1, 4, 6]. Recently, good progress has been
presented in [7] for the long duration (e.g., minutes of speech)
text-independent case. However, successful implementations of
end-to-end DNNs usually require cumbersome sample mining
strategies (e.g., hard or semi-hard examples) that strongly influ-
ence the performance and convergence speed [6].

One way to avoid this challenge is to train DNNs to produce
embeddings using a classification loss (e.g., multiclass cross en-
tropy). In this way, the goal of training the network is to produce
embeddings that generalize well to speakers beyond those in the
training set. Also, we would like the embeddings to summarize
speaker characteristics over the entire recording. Once the DNN
is trained, the embeddings are extracted for each recording and
compared using a similarity metric. The metric learning pro-
cess is disjoint from the DNN training and it is typically done
using some variant of probabilistic linear discriminant analysis

(PLDA) [8, 9, 10, 11].
A successful example of this paradigm is the x-vector sys-

tem presented in [12, 13], and independently validated in [14,
15]. The x-vector DNN uses a temporal pooling layer that com-
putes the mean and standard deviation of an input sequence
to capture the speaker characteristics over the entire record-
ing. Ideally, the DNN embeddings should be trained on speech
segments that matches the range of durations we expect to en-
counter at test time. However, GPU memory limitations and
convergence speed force a tradeoff between minibatch size and
maximum sequence length. As an engineering compromise, the
current x-vector implementation [13] relies on short segments
to train the embedding (e.g., up to 10 second segments). Unfor-
tunately, this can introduce an undesirable mismatch between
training and inference time.

In this work, we propose a refinement stage of a subset of
the DNN parameters (after the pooling layer) to reduce this mis-
match. At the same time, we also modify the DNN architec-
ture in a way that facilitates embedding comparisons with co-
sine distance (i.e., dot product of normalized vectors). We con-
sider this convenient as it enables very fast large scale compar-
isons [16], easier privacy protection [17], and has been shown
to generalize well [6, 18, 19].

Our experimental setup uses VoxCeleb data [20, 21] to train
the x-vector DNN and evaluates performance on the speakers in
the wild (SITW) core-core task [22]. The results show that our
full recording refinement stage is capable of producing embed-
dings that achieve record performance on the SITW benchmark.

2. X-vector System
The x-vector system is a DNN that computes speaker embed-
dings from variable-length speech segments. For this work, we
use an extended version of the system in [13], which is the de-
fault architecture in the public Kaldi recipes. Table 1 summa-
rizes the extended network architecture and Figure 1(a) shows
its diagram. The layers can be grouped into three blocks accord-
ing to their main functionality. The first group comprises layers
1 to 9 and is a collection of TDNN (1D convolutions) and dense
layers. The hierarchical structure of the convolutions provides
an efficient way to process an extended input context of 230
ms with a reduced number of parameters. Given a sequence of
T input features of dimension F , this block maps patches of
23× F features into a sequence of T high dimensional vectors
(1500 dim). The second group, layer 10, performs a temporal
pooling operation over this sequence by computing the mean
and standard deviation across each dimension. These two statis-
tics are concatenated together into a fixed-dimensional vector
of size 3000, which summarizes the entire input recording. The
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Table 1: Extended TDNN x-vector architecture

Layer Layer Type Context Size

1 TDNN-ReLU t-2:t+2 512
2 Dense-ReLU t 512
3 TDNN-ReLU t-2, t, t+2 512
4 Dense-ReLU t 512
5 TDNN-ReLU t-3, t, t+3 512
6 Dense-ReLU t 512
7 TDNN-ReLU t-4, t, t+4 512
8 Dense-ReLU t 512
9 Dense-ReLU t 1500
10 Pooling (mean+stddev) Full-seq 3000
11 Dense(Embedding)-ReLU 512
12 Dense-ReLU 512
13 Dense-Softmax Num. spks.

third group, layers 12 to 13, is a feed-forward network with a
bottleneck layer and serves as a classifier that outputs posterior
probabilities for the training speakers. The x-vector is extracted
from layer 11 prior to the ReLU non-linearity. The bottleneck
structure of the net is used to achieve a dimensionality reduc-
tion of the embedding (512 dimensions). The total number of
parameters of the DNN used in the experiments (using 7,168
training speakers) is approximately 8 million, of which only 4
million are needed for extracting the x-vector.

3. Angular softmax with additive margin
Since our goal is to obtain embeddings that can be directly com-
pared using cosine distance, it is important to use that metric
when training the network. The use of cosine similarity as the
logit input to the softmax layer is referred to in the literature
as angular softmax [23]. A number of variants have been pro-
posed [24, 25] to reduce the interclass variance by introducing
the notion of a margin penalty to the target class logit. Effec-
tive applications for speaker recognition have been presented
in [18, 19]. In this work, we use the additive margin variant [24]
due to its good performance and ease of implementation. The
corresponding loss function is

L = − 1

n

n∑
i=1

log
es(cos θyi−m)

es(cos θyi−m) +
∑
j 6=yi e

s cos θj
, (1)

where cos θyi = wT
yi fi/ ‖wyi‖ ‖fi‖, wyi is the weight vector

of class yi, and fi is the input to the layer for example i. Also,
s is an adjustable scale factor and m is the penalty margin. To
accelerate convergence, we follow the practice of fixing s to a
predefined value. Also, during training, m is linearly increased
from 0 to the desired margin value following the annealing strat-
egy in [26].

4. Training
4.1. Data preparation

We combined the VoxCeleb1 [20] and VoxCeleb2-dev [21] data
(removing the 60 speakers that overlap with SITW) to obtain
155,482 original recordings from 7,183 speakers. We refer to
this combination as VoxCeleb. Note that by recording we mean
all the labeled audio segments of a particular speaker from a
video. After augmentation and removal of recordings with less

Figure 1: Block diagrams of the three network architectures
used in this work. Gray boxes indicate that the parameters
are frozen after pre-training. The position of the star indicates
where the embedding is extracted.

than 4 seconds of speech (as determined by the Kaldi energy
VAD) we obtained a total of 485,385 recordings that we use
for training. To augment a recording, we randomly applied ei-
ther babble noise, music, general noise, or reverberation as de-
scribed in [13]. A validation set of 1,000 recordings (each from
a different speaker) was set aside to monitor DNN training per-
formance.

The audio was processed at 16 KHz sampling rate and pa-
rameterized into 60 MFCCs using a 25 ms window every 10 ms
with 60 mel bins over the spectral band of 20–7600 Hz.

4.2. DNN training

4.2.1. Short segment training

Although we would ideally seek to minimize the mismatch be-
tween training and inference, in practice, there are two main
reasons why we restrict training to short segments. First, longer
batch sizes become feasible in limited GPU memory. Second,
longer sequences are easier to classify and the network tends
to overfit to them. As a compromise, based on experimenta-
tion, we pick examples that range from 2 to 4 seconds (200 to
400 frames) along with a minibatch size of 64. The DNN train-
ing speech segments are uniformly sampled per speaker from
the 484,385 available recordings. We used 10,000 examples
per speaker. The network is trained for 4 epochs using natural-
gradient stochastic gradient descent [27]. Figure 2 depicts the
accuracy profile for the train and the validation set as a func-
tion of the number of days needed to complete the 4 epochs.
It is quite remarkable that an accuracy of around 85% can be
attained for such a challenging task.

4.2.2. Full recording refinement

The engineering compromise of using 2 to 4 second segments to
train the embedding can be relaxed by freezing the DNN com-
ponents that are responsible for most of the memory, as well
as controlling the network capacity so that it does not overfit to
longer sequences. In this way, we can use the pre-trained net-
work with short segment as an initialization for a full recording
refinement of a subset of the network parameters.

For this purpose, we explore architectures (b) and (c) of
Figure 1. Both of them freeze all pre-pooling TDNN layers
(as they are responsible for most of the memory) and replace
the standard affine+softmax (i.e., multiclass logistic regression)
layer with the angular softmax layer described in Section 3.
They differ in that architecture (b) replaces layers 12 and 13
from Table 1 with a single affine transformation, whereas (c)
freezes the affine component from which the conventional x-
vector is extracted, and removes the ReLU components. Both
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Figure 2: Accuracy profile for train and validation sets.

systems produce embeddings of 256 dimensions optimized for
a cosine distance metric. The use of an additive margin penalty
during training ensures that the learning process is challenging,
even for full length sequences of minutes. Also, the reduction
of the number of parameters after the pooling layer (about half
of those used in architecture (a)) helps mitigate potential over-
fitting. Using full sequence refinement and angular softmax has
the effect of reducing the mismatch between training and infer-
ence, and produces embeddings that can be compared using a
simple cosine distance.

We used the 485,385 VoxCeleb recordings for refinement
and validation. The scale factor s of the angular softmax was
first learned by training the net with a marginm = 0 and check-
ing the accuracy on the recordings of the validation set. We
were mostly interested in understanding a reasonable range for
this parameter. Multiple repetitions of this exercise returned
values in the range of 18 to 21. The scale factor does not seem
very sensitive and we decided to fix it to 20. Following the
findings in [24], we explored margin values around m = 0.35.
Further experimentation using the validation set indicated that
a value of 0.5 was slightly better for our setup; although this
parameter was also not very sensitive. During training, m was
initialized to 0 and increased by 0.025 every other epoch (taking
a total of 40 epochs to reach its target value of 0.5). We refined
the trainable parameters of the nets for 200 epochs, and both
architectures (b) and (c) were able to attain an accuracy around
97% on the validation set.

5. Scoring
5.1. HT-PLDA scoring

For the baseline x-vector (architecture (a)), we used the gen-
erative Heavy Tailed PLDA (HT-PLDA) classifier described
in [11], as it was shown to outperform a Gaussian PLDA sys-
tem. The HT-PLDA was trained using the x-vectors from the
485,385 VoxCeleb recordings that we processed by centering
and whitening, but no unit-length projection was applied [10].
We used a speaker subspace of dimension 150 and the number
of degrees of freedom ν = 200. The evaluation data was also
centered and whitened using the parameters learned from the
VoxCeleb set.

5.2. Cosine scoring

When using cosine scoring for the embeddings optimized for
this metric (architectures (b) and (c)), we simply compare them
by evaluating the cosine distance. When we report cosine scor-
ing results for the standard x-vectors (not optimized for this

Table 2: Performance on SITW core-core task.

System Scoring mDCF(10−3) mDCF(10−2) EER(%)

(a) HT-PLDA 0.35 0.21 1.8
(a) Cosine 0.39 0.25 2.8

(b)-1 Cosine 0.27 0.18 2.4
(b)-2 Cosine 0.32 0.20 2.0

(c) Cosine 0.29 0.18 2.0

metric), we first center and project them down to 256 dimen-
sions, using LDA learned on VoxCeleb, and then compute the
cosine distance.

6. Experimental setup
Our evaluation setup uses the Speakers in the Wild (SITW)
core-core task [22] with 16 KHz sampling rate. It consists of
unconstrained audio from video of English speakers, with nat-
urally occurring noises and reverberation, as well as device and
codec variability. Both enroll and test utterances vary in length
from 6–240 seconds. The evaluation protocol yields 3658 target
trials and 718130 non-target trials.

We report results in terms of equal error-rate (EER) and
minimum normalized detection cost (mDCF) at two operating
points with PTarget = 10−2 and PTarget = 10−3. In both cases
CFA = CMISS = 1.

7. Results
The performance of the baseline x-vector system with the HT-
PLDA classifier is shown in the first row of Table 2. To the best
of our knowledge, this result represents a new state-of-the-art
for the SITW benchmark. We attribute this to the ability of the
extended x-vector architecture (Figure 1(a)) to take advantage
of the large set of speakers in VoxCeleb, as well as the use of
16 KHz sampling rate. The second row shows that applying the
typical LDA followed by a cosine distance classifier (instead
of some PLDA variant) lags behind. This was expected, but is
shown to facilitate comparison with our proposed approach.

In rows three and four, we present the results of using archi-
tecture (b) during the full recording refinement and cosine scor-
ing. System (b)-1 corresponds to a network refined using the
margin penalty described in Section 4.2.2. System (b)-2 shows
the same architecture but with no margin penalty applied dur-
ing the refinement. Using the margin penalty seems highly ben-
eficial at operating points that require low false alarms. How-
ever, this performance boost is obtained at the expense of some
slight degradation at the EER point. Comparing system (b)-1
with the baseline x-vector system, we can observe significant
gains (20% and 15% relative improvement at mDCF(10−3) and
mDCF(10−2) respectively) and some degradation at EER. To
better illustrate the performance trend, Figure 3 show the DET
plot for these two systems (as well as an equal weight sum fu-
sion). It is clear that system (b)-1 is tilted in a way that favors
the low false alarm region. More importantly, these competitive
results validate our approach as a way to obtain embeddings that
work well for long recordings with cosine distance.

The final row indicates that an equivalent performance can
be achieved with system (c), which also makes use of the margin
penalty. It is important to note that this architecture is basically
learning an affine projection on top of the conventional x-vector.
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Figure 3: DET plot

After applying it, we obtain a new embedding of smaller dimen-
sion (256 dimensions) that can be optimally compared using a
cosine distance metric. In this way, this can be thought of as an
improved replacement over the conventional LDA followed by
cosine distance.

8. Conclusions
We have explored a refinement stage of an extended x-vector
architecture using full recordings. The goal was to mitigate the
duration mismatch between training and inference, and produce
embeddings that can be directly compared using cosine scor-
ing. Our approach freezes all the pre-pooling parameters of
the x-vector extractor, simplifies the post-pooling classifier, and
trains its parameters using the full recordings. We used angu-
lar softmax with a margin penalty. Our experimental setup uses
VoxCeleb as a training set and the SITW core-core benchmark.
Our results indicate that an affine transformation after the pool-
ing layer is capable of transforming the embedding space to di-
rectly use cosine scoring. Relative improvements of around 15
to 20% are observed at low false alarm operating points with
respect to a very strong state-of-the-art baseline. To the best
of our knowledge, these numbers represent the best published
results on the SITW benchmark.

9. References
[1] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero,

Y. Carmiel, and S. Khudanpur, “Deep neural network-based
speaker embeddings for end-to-end speaker verification,” in SLT,
2016.

[2] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in CVPR, 2015.

[3] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-end
text-dependent speaker verification,” in ICASSP, 2016.

[4] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kan-
nan, and Z. Zhu, “Deep speaker: an end-to-end neural speaker
embedding system,” in CoRR, vol. abs/1705.02304, 2017.

[5] F. A. R. R. Chowdhury, Q. Wang, I. Lopez-Moreno, and L. Wan,
“Attention-based models for text-dependent speaker verification,”
ICASSP, 2018.

[6] L. Wan, Q. Wang, A. Papir, and I. Lopez Moreno, “Generalized
end-to-end loss for speaker verification,” in ICASSP, 2018.

[7] J. Rohdin, A. Silnova, M. Diez, O. Plchot, P. Matejka, and L. Bur-
get, “End-to-end DNN based speaker recognition inspired by i-
vector and PLDA,” in ICASSP, 2018.

[8] S. Ioffe, “Probabilistic linear discriminant analysis,” in ECCV,
2006.

[9] P. Kenny, “Bayesian speaker verification with heavy-tailed pri-
ors.” in Odyssey, 2010.

[10] D. Garcia-Romero and C. Espy-Wilson, “Analysis of i-vector
length normalization in speaker recognition systems.” in Inter-
speech, 2011.
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