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ABSTRACT

This paper proposes multistream CNN, a novel neural net-
work architecture for robust acoustic modeling in speech
recognition tasks. The proposed architecture processes input
speech with diverse temporal resolutions by applying dif-
ferent dilation rates to convolutional neural networks across
multiple streams to achieve the robustness. The dilation rates
are selected from the multiples of a sub-sampling rate of 3
frames. Each stream stacks TDNN-F layers (a variant of 1D
CNN), and output embedding vectors from the streams are
concatenated then projected to the final layer. We validate
the effectiveness of the proposed multistream CNN architec-
ture by showing consistent improvements against Kaldi’s best
TDNN-F model across various data sets. Multistream CNN
improves the WER of the test-other set in the LibriSpeech
corpus by 12% (relative). On custom data from ASAPP’s
production ASR system for a contact center, it records a rela-
tive WER improvement of 11% for customer channel audio to
prove its robustness to data in the wild. In terms of real-time
factor, multistream CNN outperforms the baseline TDNN-F
by 15%, which also suggests its practicality on production
systems. When combined with self-attentive SRU LM rescor-
ing, multistream CNN contributes for ASAPP to achieve the
best WER of 1.75% on test-clean in LibriSpeech.
Index Terms: Multistream CNN, robust acoustic modeling,
speech recognition

1. INTRODUCTION

Automatic speech recognition (ASR) with processing speech
inputs in multiple streams, namely multistream ASR, has long
been researched mostly for robust speech recognition tasks in
noisy environments since the earlier works such as [1, 2, 3].
The multistream ASR framework was proposed based on the
analysis of human perception and decoding of speech, where
acoustic signals enter into the cochlea and are broken into
multiple frequency bands such that the information in each
band can be processed in parallel in the human brain [4]. This
approach worked reasonably well in the form of multi-band

Codes are available at https://github.com/asappresearch/multistream-
cnn.

ASR where band-limited noises dominate signal corruption
[5, 6]. Later, further development was made in regards with
multistream ASR in the areas of spectrum modulation and
multi-resolution based feature processing [7, 8, 9] and stream
fusion or combination [10, 11, 12, 13].

With the advent of deep learning, multistream ASR re-
search shifts its focus on deep neural network (DNN) archi-
tectures where multiple streams of encoders process embed-
ding vectors in parallel. Although some forms of artificial
neural networks like multilayer perceptron (MLP) [14] had
already been utilized in the literature for multistream ASR
[3, 13], they were shallow and their usage was limited to fus-
ing posterior outputs from a classifier in each stream. The re-
cent DNN architectures for multistream ASR instead perform
more unified functions, not only processing information in
parallel but combining the information streams to classify all
at once. In [15, 16] a multistream ASR architecture was sim-
plified into one neural network where a binary switch was ran-
domly applied to each feature stream when concatenating the
multistream features as the neural network input. In decod-
ing, a tree search algorithm was utilized to find the best stream
combination. In [17], a stream attention mechanism inspired
by the hierarchical attention network [18] was proposed to
multi-encoder neural networks that can accommodate diverse
viewpoints when processing embedding vectors. This multi-
encoder architecture was successful in data sets recorded with
multiple microphones [19, 20]. As multi-head self-attention
[21] became widely employed, multistream self-attention ar-
chitectures were also investigated in [22, 23].

This paper presents multistream CNN (as illustrated in
Figure 1) as a novel neural network architecture for robust
speech recognition. The proposed architecture processes
input speech with diverse temporal resolutions by having
stream-specific dilation rates to convolutional neural net-
works (CNNs) across multiple streams to achieve the ro-
bustness. In each stream we stack TDNN-F1, a variant of
1D-CNN. The dilation rate for the TDNN-F layers in each
stream is chosen from multiples of the default sub-sampling

1TDNN-F stands for factorized time-delay neural network [24]. The con-
volution matrix in TDNN-F is decomposed into two factors with the or-
thonormal constraint, followed by a skip connection, batch normalization and
a dropout layer.
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Fig. 1: Schematic diagram of the proposed multistream CNN
architecture.

rate (3 frames) for model training and decoding. The choice
of multiples of 3 for the dilation rates can offer a seamless
integration with the training and decoding process. Output
embedding vectors from the streams are concatenated then
projected to the final layer.

We structure this paper as follows. In Section 2, we de-
tail training and evaluation data, and share experimental se-
tups for ablation discussions in Section 3, where we explain
our proposal of multistream CNN and analyze the impact of
a few design choices in the proposed architecture on the Lib-
riSpeech data. In Section 4, we discuss the performances of
single- and multistream CNNs on custom data from ASAPP’s
production ASR system for a contact center in terms of both
WER and RTF. In section 5, we conclude this work with sum-
maries and comments on future directions.

2. DATA AND EXPERIMENTAL SETUPS

2.1. Data

The LibriSpeech corpus [25] is a collection of approximately
1,000hr read speech (16kHz) from audio books. Each dev/test
category (clean and other) contains around 5hrs of audio. This
corpus also provides n-gram LMs trained on 800M token
texts.

The Switchboard-1 Release 2 (LDC97S62) and Fisher
English Training Part 1 and 2 (LDC2004S13, LDC2004T19,
LDC2005S13, LDC2005T19) corpora total 2,000hrs of
8kHz telephony speech. We use the HUB5 eval2000 data
(LDC2002S09, LDC2002T43) for evaluation.

We collect roughly 500hrs of 8kHz audio from our pro-
duction ASR system. An eval set is 10hr of audio collec-
tion with a balanced distribution between agent and customer
channel recordings.

2.2. Experimental Setups

For LibriSpeech, neural networks for acoustic modeling are
trained on the 960hr training set with the LF-MMI objective
[26]. The learning rates are decayed from 10−3 to 10−5 over
the span of 6 epochs. The minibatch size is 64. We use the
n-gram LMs provided by the LibriSpeech corpus for the 1st
pass decoding and 2nd pass rescoring.

Regarding model training with SWBD/Fisher, we lever-
age the default Kaldi recipe2 [27]. We train models on the
2,000hr training data. For neural network AMs, we exponen-
tially decay the learning rates from 10−3 to 10−4 during 6
epochs. The minibatch size is 128. The default n-gram LMs
produced by the recipe are used for decoding.

We fine-tune the SWBD/Fisher model with the ASAPP
custom data for further evaluation on data in the wild. We
adjust the learning rate decay schedule, starting from 10−5

to 10−7 for 6 epochs with the minibatch size of 128. The
PocoLM toolkit3 is used to train a 4-gram LM for the 1st-pass
decoding in the evaluation.

3. MULTISTREAM CNN

As illustrated in Figure 1, the proposed multistream CNN ar-
chitecture branches multiple streams after processing given
input speech frames with 5 CNN layers in a single stream
where CNNs could be TDNN-F or 2D-CNN (in case of ap-
plying SpecAugment [28]). After being branched out, a stack
of 17 TDNN-F layers in each stream process the output of the
single-streamed CNNs with a unique dilation rate. Consider
an embedding vector xi comes out of the single-streamed
CNN layers at a given time step of i. An embedding vec-
tor ym

i from a stream m having gone through the stack of
TDNN-F layers with a dilation rate rm can be written as be-
low:

ym
i = Stacked-TDNN-Fm (xi; [−rm, rm]) , (1)

where [−rm, rm] means a 3 × 1 kernel with the dilation rate
rm for each TDNN-F layer. It is crucial to choose rm from
the multiples of a sub-sampling rate used for model train-
ing and decoding. (In our case, we choose the multiples of
3 frames.) Output embedding vectors from all the streams are
concatenated and followed by ReLu, batch normalization and
a dropout layer;

zi = Dropout
(
BN

(
ReLu

(
Concat

(
y1
i ,y

2
i , . . . ,y

M
i

))))
,
(2)

which is projected to the output layer via a couple of fully
connected layers.

In next subsections, we analyze the effect of our design
choices in the proposed multistream CNN architecture using
the LibriSpeech dev and test sets. Unless specified, the com-
plexity of all the models compared in the analysis is around
20M parameters for a fair comparison. The baseline model
is a 17-layer (single-stream) TDNN-F in the recipe4 for Lib-
riSpeech of the Kaldi toolkit.

2https://github.com/kaldi-asr/kaldi/tree/master/egs/fisher swbd/s5
3https://github.com/danpovey/pocolm
4https://github.com/kaldi-asr/kaldi/egs/librispeech/s5/local/chain/run tdnn.sh
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Table 1: LibriSpeech WERs (%) by multistream CNNs with
various combinations of dilation rates across streams. d: em-
bedding dimension for TDNN-F.

System d
dev test

clean other clean other

Baseline 1,536 3.26 8.86 3.68 8.92

Multistream CNN

1-2 768 3.36 8.86 3.80 8.91

1-2-3 512 3.33 8.81 3.84 8.93

1-2-3-4-5 307 3.36 8.62 3.67 8.76

1-2- · · · -6-7 219 3.27 8.39 3.65 8.85

1-2- · · · -8-9 170 3.27 8.45 3.60 8.63

1-3-6 512 3.27 8.58 3.67 8.71

3-6-9 512 3.24 8.30 3.59 8.70

6-9-12 512 3.17 8.25 3.54 8.41

1-3-6-9-12 307 3.29 8.26 3.57 8.78

3-6-9-12-15 307 3.22 8.30 3.58 8.52

3.1. Multiple Streams w/ Dilation Rates

Table 1 compares multistream CNN models against the base-
line as we increase the number of streams with various dila-
tion rates. For example, 1-2-3-4-5 indicates that the dila-
tion rates of 1, 2, 3, 4, and 5 are used to TDNN-F layers over
the total 5 streams respectively in a multistream CNN model.
We adjust the dimension of embedding vectors for the TDNN-
Fs to keep the model complexity around 20M parameters for a
fair comparison. From the upper half of the table, it is evident
that the proposed multistream CNN architecture improves the
WERs of the ‘other’ data sets more noticeably as we increase
the number of streams up to 9 by the increment of 1. We
don’t report model performances with more streams since we
observed no improvement after 9 streams. This could have
resulted from combined reasons, such as too small embed-
ding dimension for TDNN-F over too many streams. In the
lower half of the table, we apply the multiples of the sub-
sampling rate (i.e., 3 frames). The results prove careful selec-
tion of dilation rates would further improve WER even with
smaller numbers of streams. The choice of the multiples of
3 for TDNN-F layers seems to be better streamlined with the
training and decoding process where input speech frames are
sub-sampled every 3 frames.

We find the best setup from the 6-9-12 configuration,
which, juxtaposed with the baseline, shows a relative WER
improvements of 6.9% and 5.7% on dev-other and test-other,
respectively.

Table 2: LibriSpeech WERs (%) by multistream CNNs in
larger size. N : model complexity in # of parameters. d: em-
bedding dimension for TDNN-F.

System N d
dev test

clean other clean other

Baseline 20.7M 1,536 3.26 8.86 3.68 8.92

Multistream CNN

6-9-12 20.6M 512 3.17 8.25 3.54 8.41

6-9-12 73.2M 1,536 3.07 8.10 3.40 8.32

6-9-12 93.9M 1,536 3.09 7.98 3.52 8.32

3.2. Larger Networks

Table 2 contrasts the WERs of the multistream CNN mod-
els with the same 6-9-12 configuration, but with different
model complexity. The 73M parameter model has 3 times
larger embedding dimension for TDNN-F (1,536 versus 512),
while the 94M parameter model has 7 more TDNN-F lay-
ers in each stream. As observed in the table, the larger-sized
multistream CNN models reached lower WERs, but the im-
provement from the 20M parameter model seems marginal
considering much longer training times. In real-world appli-
cations, especially for cases where online inference is critical,
the 20M parameter model must be a reasonable choice.

3.3. Toward State-of-the-Art

In this section, we optimize the multistream CNN model with
the 6-9-12 configuration (20M parameter) with SpecAug-
ment and neural network based LMs toward competitive
state-of-the-art results in LibriSpeech.

Since its introduction in [28], the SpecAugment data aug-
mentation method of masking random time-frequency bands
from input spectrograms has been wildly adopted by both hy-
brid and end-to-end ASR systems. SpecAugment is known to
prevent neural network models from being overfit thus enable
them to become more robust to unseen testing data. To apply
this method on top of the proposed multistream CNN archi-
tecture, we replace the first 5 layers of TDNN-F of the model
(corresponding to the Single Stream TDNN-F part in Figure
1) with 5 layers of 2D-CNN to better accommodate log-mel
spectrograms. We use 3 × 3 kernels for the 2D-CNN layers
with a filter size of 256 except for the first layer with the fil-
ter size of 128. Every other layer we apply frequency band
sub-sampling with the rate of 2.

We employ multiple stages of LM rescoring in order to
obtain the minimum WERs on the test sets in LibriSpeech.
The LMs are trained on normalized texts where typos are
corrected as well as spelling consistencies between British
and American English are addressed. The initial decoding
is based on the decoding graph constructed from the multi-
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Table 3: State-of-the-art performances on Librispeech using
multistream CNN and neural network based LMs including
self-attentive SRU LM.

Setup
dev test

clean other clean other

Multistream CNN 2.62 6.78 2.80 7.06

+TDNN-LSTM LM 2.14 5.82 2.34 6.04

+Self-Attentive SRU 1.55 4.22 1.75 4.46

stream CNN AM and a 3-gram LM, resulting in the initial
hypotheses in a lattice format. Lattice rescoring is done with
a larger sized 4-gram LM, followed by a second-pass lattice
rescoring with a TDNN-LSTM language model [29]. In the
final rescoring stage, we use an interpolated self-attentive
SRU LM [30]. We linearly interpolate two self-attentive SRU
models, one of which is trained on word pieces using byte-
pair encoding (BPE) and the other is trained at a word level.
After the interpolation, we re-rank the N -best hypotheses
from the lattices rescored by the TDNN-LSTM LM in the
previous stage. In our experiments, we empirically keep N at
100.

In Table 3, we tabulate the performances of the three LM
rescoring stages for multistream CNN where the 4-gram LM
rescores the first pass decoding results (first line) and the other
two neural network based LMs further rescore the n-gram LM
rescored results. The 1.75% WER on test-clean is, to the best
of the authors’ knowledge, the lowest reported in the litera-
ture, without extra data (e.g., Libri-Light) taken into consid-
eration for either AM or LM training.

4. MULTISTREAM CNN IN THE WILD

In this section, we manifest the feasibility of the proposed
multistream CNN architecture in real-world scenarios. We
use our custom training data (500hrs) collected from AS-
APP’s contact center ASR system to fine-tune the seed mod-
els (baseline TDNN-F and multistream CNN) trained on the
SWBD/Fisher corpora mentioned in Section 2.1. The seed
model performances on the HUB5 eval2000 data consisting
of the SWBD and CH (i.e., CallHome) portions are presented
in Table 4. A noteworthy observation in the table is that the
proposed model architecture continues to excel the baseline
model in more challenging data. This is further highlighted
in Table 5 where the two fine-tuned models (baseline and
multistream CNN) are evaluated on the ASAPP custom eval
set of 10hrs also described in Section 2.1. The relative WER
improvement (WERR) of 11.4% on the customer channel
recordings5 declares the robustness of the proposed multi-

5Compared to agent channel audio, customer channel audio are by far
challenging for ASR systems due to noisier acoustic environments, non-
native/accented speech, multiple talkers, etc.

Table 4: HUB5 eval2000 WERs (%) by telephony seed mod-
els. SWBD: Switchboard, CH: CallHome in HUB5 eval2000.

Baseline Multistream CNN

SWBD CH SWBD CH

WER (%) 8.7 16.2 9.0 15.6

Table 5: Relative performance improvements by multistream
CNN on ASAPP’s custom data for conversational speech over
telephony channels, against the baseline TDNN-F model. The
absolute performances are not disclosed. RTF: real time fac-
tor.

WERR (%) Relative
Agent Customer RTF Imp.

Multistrem CNN 8.8 11.4 15.1

stream CNN model architecture in the wild. In addition,
the relative real-time factor (RTF) improvement of 15.1%
against the baseline TDNN-F model shows the practicality of
the proposed model architecture in real-world applications,
especially where online inference is necessary.

5. CONCLUSIONS

In this paper, we proposed a novel neural network architec-
ture, namely multistream CNN, for robust speech recogni-
tion. The reasoning behind the proposal was that diversity in
temporal resolution across multiple streams would enhance
the overall robustness in acoustic modeling. We empirically
showed that it would further improve the benefit of having
such diversity in temporal resolution to choose dilation rates
for TDNN-F layers across multiple streams form the multi-
ples of 3 frames (i.e., sub-sampling rate). We tested multi-
stream CNN models on various data sets including ASAPP’s
custom data collected from a contact center ASR system to
demonstrate the robustness and practicality of the proposed
model architecture.

Multistream CNN seems promising to be utilized in a
number of ASR applications and frameworks. We plan to
continue to improve this multistream model architecture to
further enhance our production ASR systems.
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