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ABSTRACT

Modern wake word detection systems usually rely on neural net-
works for acoustic modeling. Transformers has recently shown su-
perior performance over LSTM and convolutional networks in var-
ious sequence modeling tasks with their better temporal modeling
power. However it is not clear whether this advantage still holds
for short-range temporal modeling like wake word detection. Be-
sides, the vanilla Transformer is not directly applicable to the task
due to its non-streaming nature and the quadratic time and space
complexity. In this paper we explore the performance of several
variants of chunk-wise streaming Transformers tailored for wake
word detection in a recently proposed LF-MMI system, including
looking-ahead to the next chunk, gradient stopping, different posi-
tional embedding methods and adding same-layer dependency be-
tween chunks. Our experiments on the Mobvoi wake word dataset
demonstrate that our proposed Transformer model outperforms the
baseline convolution network by 25% on average in false rejection
rate at the same false alarm rate with a comparable model size, while
still maintaining linear complexity w.r.t. the sequence length.

Index Terms— wake word detection, Transformer, streaming,
LF-MMI

1. INTRODUCTION

Voice interactions between human and digital assistants integrated in
smartphones and home-owned voice command devices are becom-
ing ubiquitous in our daily lives. This necessitates a built-in wake
word detection system which constantly listens to its environment,
expecting a predefined word to be spotted before turning into a more
power consumptive state to understand users’ intention (e.g. [1]).

Similar to automatic speech recognition (ASR), modern wake
word detection systems can be constructed with either HMM/DNN
hybrid [2, 3, 4, 5] or pure neural networks [6, 7, 8, 9, 10]. In either
of these two categories some types of neural networks are used for
acoustic modeling to encode the input features of an audio recording
into a high level representation for the decoder to determine whether
the wake word has been detected within some range of frames.

A wake word detection system usually runs on devices, and it
needs to be triggered as soon as the wake word actually appears in a
stream of audio. Hence the neural networks are limited to: 1) small
memory footprint; 2) small computational cost; and 3) low latency
in terms of the number of future frames needed to compute the score
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for the current frame. Under these criteria, the family of recurrent
neural networks [11, 12] is not suitable because its sequential nature
in computation prevents it from being parallelized across time in the
chunk-streaming case even with GPUs. So most of the current sys-
tems adopt convolutional networks. A convolution kernel spans over
a small and fixed range of frames, and is repeatedly applied by slid-
ing across time or frequencies. Although each kernel only captures a
local pattern, the receptive field can be enlarged by stacking several
convolution layers together: higher layers can “see” longer range of
frames than lower layers, capturing more global patterns.

Recently the self-attention structure, as a building block of the
Transformer networks [13], receives popularity in both NLP and
speech communities for its capability of modeling context depen-
dency for sequence data without recurrent connections [13, 14].
Self-attention replaces recurrence with direct interactions between
all the pairs of frames in a layer, making each frame aware of its
contexts. The computations are more parallelized, in the sense that
the processing of a frame does not depend on the completion of
processing other frames in the same layer. [15] also explored the
self-attention in the keyword search (KWS) task. However, the
original self-attention requires the entire input sequence to be avail-
able before any frames can be processed, and the computational
complexity and memory usage are both O(T 2). Time-restricted
self-attention [16] allows the self-attention to be restricted within
a small context window around each frame with attention masks.
But it still does not have a mechanism of saving the current com-
puted state for future computations, and thus is not applicable to
streaming data. Transformer-XL [17] performs chunk-wise training
where the previous chunk is cached as hidden state for the current
chunk to attend to for long-range temporal modeling. So it can be
used for streaming tasks. The time and space complexity are both
reduced to O(T ), and the within-chunk computation across time
can be parallelized with GPUs. While there has been recent work
[18, 19, 20, 21, 22] with similar ideas showing that such stream-
ing Transformers achieve competitive performance compared with
latency-controlled BiLSTMs [23] or non-streaming Transformers
for ASR, it remains unclear how the streaming transformers work
for shorter sequence modeling task like wake word detection.

In this paper we investigate various aspects of the streaming
Transformers with its application to wake word detection for the re-
cently proposed alignment-free LF-MMI system [5]. This paper has
the following contributions: 1) we explore how the gradient stopping
point during back-propagation affects the performance; 2) we show
how different positional embedding methods affect the performance;
and 3) we compare the performance of either obtaining the hidden
state coming from the current or previous layer. In addition, we pro-
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pose an efficient way to compute the relative positional embedding
in streaming Transformers. To the best of our knowledge, this is the
first time that streaming Transformers are applied to this task.

2. THE ALIGNMENT-FREE LF-MMI SYSTEM

We build our system on top of the state-of-the-art system described
in [5]. We briefly explain that system below to provide some back-
ground information. Interested readers can refer to [5] for details.

This is a hybrid HMM/DNN system with alignment-free LF-
MMI loss [24, 25], where the positive wake word (denoted as wake
word) and the negative non-silence speech (denoted as freetext) are
modeled with a single left-to-right 4-state HMM respectively, re-
gardless of how many actual phonemes are there. In addition, a
1-state HMM is dedicated to model optional silence [26] (denoted
as SIL). The motivation behind this is that we believe the proposed
design choice has sufficient modeling power for this task.

In LF-MMI loss, the numerator represents the likelihood of the
input feature given the correct output state sequence, while the de-
nominator represents the likelihood given incorrect state sequences.
So the model is trained to maximize the posterior of the correct se-
quence among other competing sequences. “Alignment-free” here
refers to unfolded FSTs as the numerator graphs are directly de-
rived from the truth labels (“positive” or “negative” in our task). The
denominator graph is specified manually, containing one path cor-
responding to the positive recordings and two paths corresponding
to the negatives. Since the alignment-free LF-MMI system outper-
forms the cross-entropy HMM-based and other pure neural systems
[5], we base our work in this paper on this specific system.

The work in [5] adopts dilated and strided 1D convolutional
networks (or “TDNN” [27, 28]) for acoustic modeling, which is
straightforward as the computation of convolution is both stream-
able by its nature and highly parallelizable. In the next section, we
will detail our approach to streaming Transformers for modeling the
acoustics in our task.

3. STREAMING TRANSFORMERS

We recapitulate the computation of a vanilla single-headed Trans-
former here.1 Assume the input to a self-attention layer is X =
[x1, . . . ,xT ] ∈ Rdx×T where xj ∈ Rdx . The tensors of query Q,
key K, and value V are obtained via

Q = WQX, K = WKX, V = WV X ∈ Rdh×T (1)

where the weight matrices WQ,WK ,WV ∈ Rdh×dx . The output
at i-th time step is computed as

hi = Vai ∈ Rdh , ai = softmax

(
[Q>K]i√

dh

)
∈ RT (2)

where [·]i means taking the i-th row of a matrix. All the operations
mentioned above are homogeneous across time, thus can be paral-
lelized on GPUs. Note that here Q,K,V are computed from the
same input X, which represents the entire input sequence.

Such dependency of each output frame on the entire input se-
quence makes the model unable to process streaming data where in
each step only a limited number of input frames can be processed.
Also, the self-attention is conducted between every pair of frames
within the whole sequence, making the memory usage and com-
putation cost are both O(T 2). Transformer-XL-like architectures
address these concerns by performing a chunk-wise processing of

1 A multi-headed extension is straightforward and irrelevant to our dis-
cussion here.
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Fig. 1: Two different type of nodes dependency when computing
self-attention in streaming Transformers. The figures use 3-layer
networks with 2 chunks (delimited by the thick vertical line in each
sub-figure) of size 2 as examples. The grey arcs illustrate the nodes
dependency within the current chunk, while the green arcs show the
dependency from the current chunk to the previous one.

the sequence. The whole input sequence is segmented into sev-
eral equal-length chunks (except the last one whose length can be
shorter). As shown in Fig. 1a, the hidden state from the previous
chunk are cached to extend keys and values from the current chunk,
providing extra history to be attended to. In this case, K̃ (or Ṽ) is
longer in length than Q due to the prepended history. To alleviate
the gradient explosion/vanishing issue introduced in this kind of re-
current structure, gradient is set to not go beyond the cached state,
i.e.,

K̃c = [SG(Kc−1);Kc], Ṽc = [SG(Vc−1);Vc] (3)

where c is the chunk index, [·; ·] represents concatenation along the
time dimension, and SG(·) is the stop gradient operation.2 The
memory usage and computation cost are both reduced to O(T ) given
the chunk size is constant.

3.1. Look-ahead to the Future and Gradient Stop in History
Our preliminary experiments show that only having history to the
left is not sufficient for a good performance in our task. So we also
allow a chunk to “look-ahead” to the next chunk to get future context
when making predictions from the current chunk. For the right con-
text, the gradient in back-propagation does not just stop at Kc+1 and
Vc+1, but rather go all the way down to the input within the chunk
c+1. On the other hand we can optionally treat the left context (i.e.
the history state) the same way as well. Intuitively, having weights to
have more information while being updated should always be ben-
eficial, as long as their gradient flow is constrained within a small
range of time steps. This can be achieved by splicing the left chunk
together with the current chunk and then only selecting the output
of the current chunk for loss evaluation, at the cost of having one
more forward computation for each chunk by not caching them. We
will show a performance comparison between with and without such
state-caching in the experiments.

3.2. Dependency on the Previous Chunk from the Same Layer
Note that when there are multiple stacked self-attention layers, the
output of the c-th chunk of the l-th layer actually depends on the
output of the (c − 1)-th chunk of the (l − 1)-th layer. So the re-
ceptive field of each chunk grows linearly with the number of the
self-attention layers, and the current chunk does not have access to
previous chunks in the same layer (Fig. 1a). This may limit the
model’s temporal modeling capability as not all parts of the network
within the receptive field are utilized. Hence, we take the output

2 For example, this would be Tensor.detach() in PyTorch.
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from the previous chunk in the same layer, and prepend it to the key
and value. Formally, let H = [h1, . . . ,hT ] ∈ Rdh×T where hi is
defined in Eq. (2). Then Eq. (3) becomes:

K̃l
c = [SG(Hl

c−1);K
l
c], Ṽl

c = [SG(Hl
c−1);V

l
c] (4)

where we use superscript l to emphasize tensors from the same layer.
Fig. 1b illustrates nodes dependency in such computation flows.

3.3. Positional Embedding

The self-attention in Transformers are invariant to the sequence re-
ordering, i.e., any permutations of the input sequence will yield ex-
actly the same output for each frame. So it is crucial to encode
the positions. The original Transformer [13] employs determinis-
tic sinusoidal functions to encode absolute positions. In our chunk-
streaming setting, we can also enable this by adding an offset to the
frame positions within each chunk. However our goal for wake word
detection is just to spot the word rather than recognizing the whole
utterance, a relative positional encoding may be more appropriate.
One type of relative positional embedding, as shown in [29], en-
codes the relative positions from a query frame to key/value frames
in the self-attention, and pairs of frames having the same position
difference share the same trainable embedding vector. The embed-
ding vectors E ∈ Rdh×T are then added to the key (optionally to the
value as well) of each self-attention layer. So Eq. (2) is modified as:

hi = (V +E)ai ∈ Rdh , ai = softmax

(
[Q> (K+E)]i√

dh

)
∈ RT

(5)
As suggested, the relative positional embedding is fed into every
self-attention layer and jointly trained with other model parameters.

Different from the case in [29] where the query and key (or
value) have the same sequence length, there is extra hidden state
prepended to the left of the key and the value in the current chunk,
making the resulting key and value longer than the query. By lever-
aging the special structure of the layout of relative positions between
the query and key, we design a series of simple but efficient ten-
sor operations to compute self-attentions with positional embedding.
Next we show how the dot product between the query Q and the po-
sitional embedding E for the key K can be obtained3. The procedure
when adding the embedding to the value V is similar.

Let’s denote the length of the query and the extended key as lq
and lk, respectively, where lq < lk. There are (2lk − 1) possible
relative positions from the query to the key ranging in [−lk+1, lk−
1]. Given an embedding matrix E ∈ Rdh×(2lk−1), we first compute
its dot product with the query Q, resulting in a matrix M = Q>E ∈
Rlq×(2lk−1). Then for the i-th row in M, we select lk consecutive
elements corresponding to lk different relative positions from the i-
th frame in the query to each frame in the key, and rearrange them
into M′ ∈ Rlq×lk . This process is illustrated in Fig. 2. In the 0-
th row, we keep those corresponding to the relative positions in the
range [−lk + lq, lq − 1]; in the i-th row, the range is left shifted by
1 from the one in the (i − 1)-th row; finally in the (lq − 1)-th row,
the range would be [−lk + 1, 0]. This process can be conveniently
implemented by reusing most of the memory configuration from M
for M′ without copying the underlying storage of M, and then do
the following steps: 1) point M′ to the position of the first yellow
cell in M; 2) modify the row stride of M′ from lk to (lk − 1); and
3) modify the number of columns of M′ from (2lk − 1) to lk.

3 We drop the batch and heads dimensions for clarity. So all tensors be-
come 2D matrices in our description.

Fig. 2: The process of selecting relevant cells from the matrix M ∈
Rlq×(2lk−1) (left) and rearranging them into M′ ∈ Rlq×lk (right).
The relevant cells are in yellow, and others are unselected. Note that
the position of yellow block in one row of M is left shifted by 1 cell
from the yellow block in the row above.

4. EXPERIMENTS
4.1. The Dataset
We use the Mobvoi (SLR87) dataset4 [30] including two wake
words: “Hi Xiaowen” and “Nihao Wenwen”. It contains 144 hrs
training data with 43,625 out of 174,592 positive examples, and 74
hrs test data with 21,282 out of 73,459 positive examples. We do not
report results on the other datasets mentioned in [5], because both
the numbers reported there and in our own experiments are too good
(FRR < 0.1%) to demonstrate any significant difference.

4.2. Experimental Settings
All the experiments in this paper are conducted in ESPRESSO, a
PyTorch-based end-to-end ASR toolkit [31], using PYCHAIN, a
fully parallelized PyTorch implementation of LF-MMI [32].

We follow exactly the same data preparation and preprocess-
ing pipeline as those in [5], including HMM and decoding graph
topolopies, feature extraction, negative recording sub-segmentation,
and data augmentations. During evaluation, when one of the two
wake words is considered, the other one is treated as negative. The
operation points are obtained by varying the positive path cost while
fixing the negative path cost at 0 in the decoding graph. It it worth
mentioning that all the results reported here are from an offline de-
coding procedure, as currently Kaldi [33] does not support online
decoding with PyTorch-trained neural acoustic models. However,
we believe that the offline decoding results would not deviate signif-
icantly from the online ones.

The baseline system is a 5-layer dilated 1D convolution network
with 48 filters and the kernel size of 5 for each layer, leading to 30
frames for both left and right context (25% less than that in [5]) and
only 58k parameters (60% less than that in [5]). For the streaming
Transformer models, the first two layers are 1D convolution. They
are then followed by 3 self-attention layers with the embedding di-
mension 32 and the number of heads 4, resulting in 48k parame-
ters without any relative embedding5. To make sure that the outputs
can “see” approximately the same amount of context as those in the
baseline, the chunk size is set to 27, so that in the no state-caching
setting the right-most frame in a chunk depends on 27 input frames
(still smaller than 30) as its right context 6; in the state-caching case,
the receptive field covers one more chunk (or 27 more frames) on the
left, as it increases linearly when the self-attention layers increases.

All the models are optimized using Adam with an initial learn-
ing rate 10−3 , and then halved if the validation loss at the end of

4 https://www.openslr.org/87
5 See Table 1 for model sizes with different relative embedding settings.
6 Our experiments (not shown here) also suggest 27 is the optimal in this

setting: a smaller chunk hurts the performance, and a larger one does not
have significantly improvement but incurs more latency.
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Table 1: Results of streaming Transformers with state-caching.

#Params FRR(%) at FAH=0.5

Hi Xiaowen Nihao Wenwen
1D Conv. (baseline)7 58k 0.8 0.8
Transformer (w/o look-ahead) 48k 3.5 4.7

+look-ahead to next chunk 48k 1.3 1.2
+abs. emb. 48k 1.2 1.2
+rel. emb. to key 52k 1.0 1.1

+rel. emb. to value 57k 0.7 0.5

an epoch does not improve over the previous epoch. The training
process stops if the number of epochs exceeds 15, or the learning
rate is less than 10−5. We found that learning rate warm-up is not
necessary to train our Transformer-based systems, probably due to
the relatively simple supervisions in our task.

4.3. Streaming Transformers with State-caching
We first evaluate our streaming Transformer models with state-
caching. The results are reported in Table 1, as false rejection rate
(FRR) at 0.5 false alarms per hour (FAH). If we only rely on the cur-
rent chunk and the cached state from the previous chunk but without
taking any look-ahead to the future chunk, the detection results (see
row 2 in Table 1) are much worse than the baseline. It is actually
expected, as the symmetric property of convolution kernels allows
the network to take future frames into consideration. This validates
that look-head to the future frames is important in the chunk-wise
training of Transformers. Then adding absolute positional embed-
ding seems not improve the performance significantly. One possible
explanation could be: the goal of the wake word detection is not
trying to transcribe the whole recording, but just spot the word of
interest, where the absolute encoding of positions do not have too
much effective impact. On contrary, when we add relative posi-
tional embedding to the key of self-attention layers instead, there is
slightly improvement over adding the absolute embedding, which
supports our previous hypothesis that the relative embedding makes
more sense in such task. When the embedding is also added to the
value, FRR reaches 0.7% and 0.5% at FAH=0.5 for the two wake
words respectively (i.e., 25% relative improvement over the baseline
on average), showing that the embedding is not only useful when
calculating the attention weights, but also beneficial when encoding
the positions into the layer’s hidden values.

4.4. Streaming Transformers without State-caching
Next we would like to explore whether having gradient to been back-
propagated into the history state would help train a better model. As
we mentioned in Sec. 3.1, this can be done by concatenating the
current chunk with the previous chunk of input, instead of caching
the internal state of the previous chunk. Table 2 shows several re-
sults. By looking at Table 2 itself, we observe a similar trend as that
in the state-caching model from the previous section: relative posi-
tional embedding is advantageous over the absolute sinusoidal posi-
tional embedding, and adding the embedding to both key and value is
again the best. Furthermore, by comparing the rows in Table 2 with
their corresponding entries in Table 1, we observe that, except the
case in the last row, regardless of the choice of positional embedding
and how it is applied, the models without state-caching outperform
models with state-caching. It indicates the benefit of updating the
model parameters with more gradient information back-propagated
from the current chunk into the previous chunk. However in the

7 We do not compare with other systems, because to our best knowledge
this baseline system is the state-of-the-art reported on the same dataset at the
time of submission.

Table 2: Results of streaming Transformers without state-caching.

#Params FRR(%) at FAH=0.5

Hi Xiaowen Nihao Wenwen
1D Conv. (baseline) 58k 0.8 0.8
Transformer (w/ look-ahead) 48k 1.0 1.1

+abs. emb. 48k 0.8 0.8
+rel. emb. to key 52k 0.6 0.7

+rel. emb. to value 57k 0.6 0.6

case where relative positional embedding is also added to the value,
the gap seems diminished, suggesting that by utilizing the positional
embedding in a better way, there is no need to recompute the part of
the cached state in order to reach the best performance.

We provide DET curves of the baseline convolution network and
the two proposed streaming Transformers in Fig. 3, for a more com-
prehensive demonstration of their performance difference.
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Fig. 3: DET curves for the baseline 1D convolution network and our
two proposed streaming Transformers.

4.5. Streaming Transformers with Same-layer Dependency
We now explore the architectural variant introduced in Sec. 3.2.
Note that if the relative positional embedding is added to the value
Vl

c−1 as shown in Eq. (5), Hl
c−1 will no longer be in the same

semantic space as Vl
c. So it is problematic to concatenate Hl

c−1

and Vl
c together in Eq. (4). A similar issue arises if the parame-

ter WK and WV from the same layer are not tied because Hl
c−1

is going to be concatenated to both Kl
c and Vl

c. Our solution is to
only add the positional embedding to Kl

c, and also tie Kl
c and Vl

c

together. However, it only achieves FRR=1.3% at FAH=0.5. When
absolute embedding is used, FRR=1.1% at the same FAH. This con-
tradicts the observations in [21, 22] where same-layer dependency
was found to be more advantageous for ASR and it was attributed to
the fact that the receptive field is maximized at every layer8. A better
way of incorporating relative positional information for this case is
our future work.

5. CONCLUSIONS
We propose using streaming Transformers for wake word detec-
tion with the latest alignment-free LF-MMI system. We explore
how look-ahead of the future chunk, and different gradient stopping,
layer dependency, and positional embedding strategies could affect
the system performance. Along the way we also propose a series
of simple tensor operations to efficiently compute the self-attention
in the streaming setting when relative positional embedding is in-
volved. Experiments on Mobvoi (SLR87) show the advantage of the
proposed streaming Transformers over the 1D convolution baseline.

8 They did not mention the type of positional embedding being used.
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