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Abstract

The RNN-Transducer (RNN-T) framework for speech recog-
nition has been growing in popularity, particularly for deployed
real-time ASR systems, because it combines high accuracy with
naturally streaming recognition. One of the drawbacks of RNN-
T is that its loss function is relatively slow to compute, and can
use a lot of memory. Excessive GPU memory usage can make
it impractical to use RNN-T loss in cases where the vocabulary
size is large: for example, for Chinese character-based ASR.

We introduce a method for faster and more memory-
efficient RNN-T loss computation. We first obtain pruning
bounds for the RNN-T recursion using a simple joiner network
that is linear in the encoder and decoder embeddings; we can
evaluate this without using much memory. We then use those
pruning bounds to evaluate the full, non-linear joiner network.
The code is open-sourced and publicly available.
Index Terms: speech recognition, transducer, end-to-end, lim-
ited memory

1. Introduction
End-to-End (E2E) models have been growing in popularity in
the field of automatic speech recognition (ASR). Unlike con-
ventional ASR, which contains an acoustic model (AM) and a
language model (LM) that are usually trained separately, E2E
models use a single neural network model to predict words or
graphemes directly from acoustic waveforms, which simplifies
both training and decoding.

Three popular E2E models are connectionist temporal clas-
sification (CTC) models [1], attention-based models [2], and
RNN-T models [3]. RNN-T models are naturally streaming and
can be decoded frame synchronously. On one hand, it does not
require the full context to predict the next token, as is required
by attention-based models. On the other hand, there are no as-
sumptions about frame independence given acoustic inputs that
exist in CTC models. As a consequence, RNN-T models are
very attractive in industry areas [4, 5].

The output of the RNN-T model [3] is usually a 4-D tensor
of shape (N,T, U, V ), where N is the batch size, T is the out-
put length of the transcription network, U is the output length of
the prediction network, and V is the vocabulary size. The out-
put contains the probability distribution over all tokens in the
utterance at each time step, which requires a lot of memory in
training. For large vocabulary sizes (e.g. Chinese characters),
this can severely limit the batch size and slow down training.

There are various efforts to reduce memory usage in RNN-
T training. One technique is to remove paddings when combin-
ing the outputs from the prediction network and the transcrip-
tion network [6]. Function merging [6] is also used to reduce
memory consumption by computing gradient with respect to the

logits directly. Another method is to use half-precision for train-
ing [7] at the cost of degradation in WER.

In this paper, instead of generating a probability distribu-
tion over all the tokens U at each time step, we propose pruned
RNN-T, which limits the range of tokens at each time step from
U to S, where S � U . Therefore, the output shape becomes
(N,T, S, V ), leading to less memory usage and faster training.
We show that using pruned RNN-T for training can not only re-
duce memory consumption but can also achieve faster training,
without performance degradation in WER. Furthermore, the
above-mentioned techniques can be used together with pruned
RNN-T to further reduce memory usage and accelerate training.

In a slight abuse of notation, when we refer to RNN-T in
this paper we are speaking of the RNN-T loss itself, which is
more properly speaking the transducer loss. In our experiments
we use a Conformer encoder [8], not a recurrent encoder; and
the decoder is stateless [9] rather than recurrent.

The code for this work is open-sourced and publicly avail-
able1.

The remainder of the paper is structured as follows. In Sec-
tion 2, we briefly describe the standard RNN-T and identify the
reason for its high demand for memory in training, motivating
us to propose pruned RNN-T in Section 3 to reduce memory
consumption and to accelerate training. Section 4 gives the ex-
periment setup for benchmarking different implementations of
RNN-T loss and applying pruned RNN-T in ASR training. The
results are given in Section 5. Finally, we conclude the paper in
Section 6.

2. Motivations
Assume the acoustic input has been parameterized into a se-
quence of T feature frames x = {xt}T−1

t=0 . Also assume
the transcript has been tokenized into a sequence of U tokens
y = {0 ≤ yu < V |u = 0, 1, 2, . . . , U}, where V is the vocab-
ulary size and token ID 0 is the blank token ∅; we have y0 = 0
as a beginning-of-sentence token, with the remaining positions
corresponding to “real” words (there is no end-of-sentence to-
ken).

There are 3 components in the standard transducer
model [3]: An encoder (a.k.a transcription network), a decoder
(a.k.a prediction network), and a joiner (a.k.a joint network).

The encoder network functions as an acoustic model, trans-
forming acoustic frames into a high-level representation. The
encoder output is a 2-D tensor X with shape (T,E)2, where E
is the output dimension of the encoder. The decoder network is
similar to a language model that tries to predict a distribution by
conditioning on the last non-blank token. The output of the de-

1https://github.com/danpovey/fast_rnnt and
https://github.com/k2-fsa/k2

2We assume the batch size is 1.
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Figure 1: Output log-probability lattice defined by the joiner
output L in RNN-T. The vertical transition leaving node (t, u)
has the log-probability y(t, u), while the horizontal leaving
node (t, u) has the log-probability ∅(t, u). Log-probabilities
for transitions that are not shown in the figure are set to minus
infinity. (a) Lattice for the standard RNN-T. (b) Lattice for the
pruned RNN-T.

coder is a 2-D tensor Y of shape (U+1, D), whereD is the out-
put dimension of the decoder. The joiner combines the outputs
from the encoder network and the decoder network and pro-
duces a log-probability distribution L of shape (T,U+1, V ),
where L(t, u, v) is the log-probability for the token v to appear
at position t, given y0..u.

Similar to [3] (but in log-space, and with zero-based t in-
dex), we define

y(t, u) = L(t, u, yu+1) (1)
∅(t, u) = L(t, u,∅) (2)

where y(t, u) is the log-probability of the vertical transition
leaving the node at position (t, u) in Figure 1(a), while ∅(t, u)
is the log-probability of the horizontal transition leaving the
node at position (t, u) in Figure 1(a).

It usually uses the forward-backward algorithm [3] to com-
pute the RNN-T loss. Let the forward variable α(t, u) be the
log-probability outputting y0..u after seen x0..t. It can be com-
puted recursively using (3)

α(t, u) = LogAdd (α(t− 1, u) +∅(t− 1, u) ,

α(t, u− 1) + y(t, u− 1))) (3)

where LogAdd is defined as:

LogAdd(x, y) = log(ex + ey) (4)

α(0, 0) is initialized to 0 and the total log-likelihood of the
sequence is α(T−1, U) +∅(T−1, U).

The RNN-T loss computation can be quite memory-
and compute-intensive because it has to compute y(t, u) and
∅(t, u) for all t ≤ T and u ≤ U , so the output shape of the joint
network has to be (N,T, U, V ) if the batch size is N . This is
much larger than the output required by CTC [1] and attention-
based [2] models which involves shapes like (N,T, V ) or
(N,U, V ).

Figure 2 shows the node gradient at each position (t, u) in
Figure 1(a). It shows that: (1) At each time step, there is only a
small range of nodes with a non-zero gradient; (2) Positions of
nodes with non-zero gradient change monotonically from the
lower left to the upper right. Therefore, instead of generating
a probability distribution over all U tokens at each time step,
we can limit the range of tokens from U to S, where S � U .
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Figure 2: Visualizations of node gradient in the standard trans-
ducer lattice for an utterance during training. The joiner con-
sists of an adder and a softmax layer. (a) The model parameters
are randomly initialized. (b) The model has been trained for
several epochs.

That is, at time step t, we only compute the log-probabilities at
positions (t, pt), (t, pt + 1), . . . , (t, pt + S − 1) and the log-
probabilities at other positions are set to minus infinity. Fig-
ure 1(b) shows the lattice for pruned RNN-T when S is 4.

As a consequence, the output shape of the joint network
in the pruned RNN-T becomes (T, S, V ). Since S � U , it
reduces not only memory consumption but also computation,
thus leading to faster training.

3. Pruned RNN-T
The basic idea of pruned RNN-T is to only evaluate the joiner
network for the (t, u) pairs that significantly contribute to the
final loss. We do this by computing the core recursion of (3)
twice. The first time we do it with a “trivial” joiner network
that is very fast to evaluate; we use this output to work out which
indexes are important, and evaluate the full joiner network with
a subset of (t, u) pairs.

3.1. Trivial joiner network

We formulate the trivial joiner network in such a way that the
computation of y(t, u) and ∅(t, u) can be implemented by ma-
trix multiplication and some simple lookups. (We omit the sub-
script trivial here for brevity; let it be understood that in this
Sec. 3 we are talking about a separate version of these vari-
ables). In the trivial version of the joiner we project the en-
coder embedding and the decoder embedding respectively to
un-normalized logprobs Lenc(t, v) and Ldec(t, u) respectively,
and the joiner consists of simply adding these together and nor-
malizing the log-probabilities:

Ltrivial(t, u, v)
def
= Lenc(t, v)+Ldec(u, v)−Lnormalizer(t, u),

(5)
where

Lnormalizer(t, u)
def
= log

∑
v

exp (Lenc(t, v) + Ldec(u, v)) .

(6)
Equation (6) can be thought of as log-space matrix multiplica-
tion, and it can be implemented by conventional matrix multi-
plication after first applying offsets to ensure that overflow will
not occur.

Thus, with the trivial joiner network we can compute



y(t, u) and ∅(t, u) without ever materializing any “large” ma-
trices.

3.2. Pruning bounds

We introduce a constant S, e.g. S = 4 or S = 5, that represents
the number of u indexes that we will evaluate for any t index3.
For each t we will evaluate L(t, u, v) only for integer positions
pt ≤ u < pt + S, where pt (representing a position on the u
axis) will be computed from the result of the recursion of the
trivial joiner network. We will construct the y(t, u) and ∅(t, u)
matrices with only these elements set, and all others set to−∞,
before doing the recursion (3).

3.2.1. Globally optimal pruning bounds

Ideally, we would like to find the sequence of integer pruning
bounds p = p0, pt, . . . , pT−1 that would maximize the total re-
tained probability based on the “trivial” joiner network, treating
all P (t, u, ·) for u < pt or u ≥ pt + S as −∞. That is, we
are searching for the pruning bounds that would maximize the
data likelihood given the trivial joiner, after setting all pruned
logprobs to −∞. This is a difficult optimization problem. In-
stead, we solve it by finding the locally optimal pruning bounds
for each frame t, and then applying some continuity constraints
to the result.

3.2.2. Locally optimal pruning bounds

The total data log-prob is given byLtot = α(T−1, U)+∅(T−
1, U); let it be understood that we are talking about the “trivial”
version of these variables. Define y′(t, u) and ∅′(t, u) as the
derivatives of Ltot with respect to y(t, u) and ∅(t, u). We will
need to compute these later anyway, in the neural network back-
prop; we do this “early” in the forward pass so that we can use
the derivatives to compute the pruning bounds.

You can think of y′(t, u) and ∅′(t, u) as “occupation
counts” in the interval [0, 1], which correspond to the probabil-
ity of taking the upward and rightward transitions in Figure 1(a).
Now consider the case where S = 4 and we want to compute
how much the total data log-probability would be decreased if
we were to choose pt = 2, for example. The total amount of
retained probability mass can be lower-bounded by

∅′(t, 2) +∅′(t, 3) +∅′(t, 4) +∅′(t, 5)− y′(t, 1), (7)

indicated by the colored transitions in Figure 1(a). Our “locally-
optimal” pt is thus

pt = argmaxU−S+1
p=0 (−y′(t, p− 1) +

p+S−1∑
u=p

∅′(t, u)). (8)

4 To explain (8), which corresponds to “green arcs minus red
arc” in Figure 1(a): we want to get the total probability mass of
all the paths that will be included if we use this pruning bound;
and we can do by summing up the probabilities of exactly one
link in each included path; (8) is not the only way to do this. The
arcs summed in (8) include some probability mass that would
actually be pruned out because it arises from lower u values,
and we cancel this by subtracting y′(t, p − 1), which is red in
the diagram. This may slightly over-compensate, to the extent

3This is called s range in the code.
4The experiments in this paper were actually done with an earlier,

less-accurate version of this computation

that some of that subtracted probability mass makes it all the
way through the pruned region.

It is possible for (8) to give a sequence of pt values that are
“inconsistent”, i.e. that do not admit any complete path. For
consistency, in addition to 0 ≤ pt ≤ U − S + 1, we require:

pt ≤ pt+1 (9)
pt+1 − pt < S. (10)

We modify the pruning bounds pt after computing them with (8)
to ensure that they satisfy these constraints while otherwise
changing them as little as possible. We won’t expand due to
length constraints5.

3.3. Loss function

The loss function will be a combination of the data log-
probability from the trivial joiner and the one with the full joiner
network. If the full-joiner logprob is unscaled, we found it best
to scale the trivial-joiner logprob by 0.5 in the loss function; it
seems to have a regularizing effect.

3.3.1. Smoothed trivial joiner

Since (5) makes it natural to separate the encoder (acoustic)
and decoder (language-model/LM) parts of Ltrivial(t, u, v), we
decided to try interpolating the trivial joiner with even-more-
trivial versions of the joiner network: specifically, versions
where we use encoder-only and decoder-only versions of the
probabilities. Let LogSoftmax be the log-softmax operation,
applied along the appropriate axis (the v axis). So the version
of the log-likelihoods we use in the recursion would be:

Lsmoothed(t, u, v) =
(
1− αlm − αacoustic

)
Ltrivial(t, u, v)

+ αlmLlm(t, u, v)

+ αacousticLlm(t, u, v) (11)

where:

Ltrivial(t, u, v)
def
= LogSoftmaxv (Lenc(t, v) + Ldec(u, v))

(12)
Lacoustic(t, u, v)

def
= LogSoftmaxv (Lenc(t, v) + Lavg

dec(u, v))
(13)

Llm(t, u, v)
def
= LogSoftmaxv Ldec(u, v). (14)

and Lavg
dec(u, v) takes the role of a unigram language-model

prior:

Lavg
dec(u, v)

def
= log

1

U + 1

U∑
u=0

Softmaxv Ldec(u, v) (15)

The reason for the asymmetry between the encoder and decoder
here is that we want the decoder log-probs to be independently
interpretable as language-model probabilities; this will be more
convenient in case we need to access the language model prob-
abilities independently for some reason later on.

4. Experiment Settings
The experiment contains 2 parts. In the first part, we bench-
mark the speed and memory usage of pruned RNN-T and sev-
eral other open-source implementations for computing RNN-T

5Search for adjust pruning lower bound in https://github.
com/k2-fsa/k2 for more details.

https://github.com/k2-fsa/k2
https://github.com/k2-fsa/k2


loss. In the second part, we apply pruned RNN-T for ASR train-
ing using the LibriSpeech corpus [10]. Note that we don’t use
any kind of language models during decoding.

4.1. Benchmarks of RNN-T loss computation

We compare the speed and peak memory usage of pruned
RNN-T with the following open-source implementations:
warp-transducer6, torchaudio [11], optimized transducer7, and
SpeechBrain [12].

Because padding matters in the RNN-T loss computation
and to make the benchmark more realistic, instead of generating
random data with random shapes we get the shapes for tokens
and acoustics using the test-clean dataset from the LibriSpeech
corpus. Two commonly used settings are benchmarked: (1)
Fixed batch size. In this setting, the batch size is fixed and utter-
ances in a batch have various lengths of durations. (2) Dynamic
batch size. In this setting, we sort utterances by durations be-
fore batching them up to minimize paddings and the maximum
number of frames in a batch before padding is limited to 10k at
100 frames per second.

The number of model output units is 500. We use an
NVIDIA V100 GPU with 32 GB RAM to run the benchmarks.
The code is open-sourced and publicly available8.

4.2. Pruned RNN-T for ASR training

We use pruned RNN-T for ASR training with the LibriSpeech
corpus, which consists of 960 hours of 16 kHz read English
speech for training and two subsets, test-clean and test-other,
for testing, each of which has approximately 5 hours speech
data.

The inputs of the neural network model are 80-dimension
log Mel filter bank features with a window size 25 ms and a
window shift 10 ms. SpecAugment [13] and speed perturba-
tion [14] with factors 0.9 and 1.1 are used to make the train-
ing more stable. The outputs of the model are 500 sentence
pieces [15] with byte pair encoding (BPE) [16].

The encoder of the RNN-T model is a Conformer [8] with
12 layers. Each encoder layer has 8 self-attention[2] heads. The
attention dimension and the feed-forward dimension are 512
and 2048, respectively. We use a stateless decoder [9], which
consists of an embedding layer followed by a 1-D convolutional
layer with a kernel size 2. The embedding dimension is 512. We
use 8 NVIDIA V100 32GB GPUs for training.

To ensure convergence, for the first few thousand mini-
batches we disable the pruned part of the loss by giving it a
zero scale in the loss function; after the trivial loss starts to
learn something meaningful, it will provide reasonable pruning
bounds and we can enable the pruned loss. Due to space con-
straints we are not showing convergence results, but the pruned
transducer converges very similarly to the conventional trans-
ducer.

5. Results
5.1. Benchmark results

Table 1 and Table 2 compare the speed and peak memory usage
for different implementations. Pruned RNN-T has a clear ad-

6https://github.com/b-flo/warp-transducer/
tree/espnet_v1.1

7https://github.com/csukuangfj/optimized_
transducer

8https://github.com/csukuangfj/transducer-loss-benchmarking

Table 1: Speed and memory usage for different RNN-T loss im-
plementations using fixed batch size 30.

Average time Peak memory
per batch (ms) usage (GB)

torchaudio 544 18.48
optimized transducer 377 7.32
warp-transducer 276 18.63
SpeechBrain 459 18.63
pruned RNN-T 64 3.73

Table 2: Speed and memory usage for different RNN-T loss im-
plementations using dynamic batch size where utterances are
sorted by durations before batching them up and the maximum
number of frames in a batch before padding is limited to 10k at
100 frames per second.

Average time Peak memory
per batch (ms) usage (GB)

torchaudio 601 12.66
optimized transducer 568 10.65
warp-transducer 211 12.76
SpeechBrain 264 12.76
pruned RNN-T 38 2.59

Table 3: WERs on the LibriSpeech test-clean and test-other
datasets for two models, where one is trained with pruned RNN-
T and the other is trained using optimized transducer. Beam
search with beam size 4 is used for decoding. No external LMs
are used during decoding.

test train hours
clean other per epoch

pruned RNN-T 2.56 6.27 1.17
optimized transducer 2.61 6.46 2.33

vantage in not only speed but also memory usage in both bench-
mark settings. The memory efficiency means that we can use a
larger batch size and vocabulary size during training, further in-
creasing speed.

5.2. Results for ASR training

Table 3 compares WERs on the LibriSpeech test-clean and test-
other datasets for models trained with pruned RNN-T vs. opti-
mized transducer. Pruned RNN-T has slightly better WER than
the model trained with unpruned RNN-T loss.

6. Conclusions
In this paper, we propose pruned RNN-T to reduce the mem-
ory usage and computation for RNN-T loss by limiting the
range of tokens at each time step. Benchmark results show that
pruned RNN-T is the fastest and consumes the least memory
among commonly used open-source implementations: torchau-
dio, warp-transducer, SpeechBrain, and optimized transducer.
Furthermore, we demonstrate that using pruned RNN-T in ASR
training can achieve competitive WERs with standard RNN-T
on the LibriSpeech corpus.

https://github.com/b-flo/warp-transducer/tree/espnet_v1.1
https://github.com/b-flo/warp-transducer/tree/espnet_v1.1
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
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