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ABSTRACT

Training automatic speech recognition (ASR) systems requires large
amounts of well-curated paired data. However, human annotators
usually perform “non-verbatim” transcription, which can result in
poorly trained models. In this paper, we propose Omni-temporal
Classification (OTC), a novel training criterion that explicitly incor-
porates label uncertainties originating from such weak supervision.
This allows the model to effectively learn speech-text alignments
while accommodating errors present in the training transcripts. OTC
extends the conventional CTC objective for imperfect transcripts by
leveraging weighted finite state transducers. Through experiments
conducted on the LibriSpeech and LibriVox datasets, we demon-
strate that training ASR models with OTC avoids performance
degradation even with transcripts containing up to 70% errors, a
scenario where CTC models fail completely. Our implementation is
available at https://github.com/k2-fsa/icefall.

Index Terms— weakly supervised learning, automatic speech
recognition, weighted finite-state transducer, omni-temporal classi-
fication.

1. INTRODUCTION

The development of automatic speech recognition (ASR) systems
based on neural networks typically requires acquiring vast amounts
of accurately transcribed speech [1, 2, 3]. However, with the excep-
tion of a few very carefully human-annotated or read speech cor-
pora — the creation of which is highly time-consuming and labor-
intensive — most datasets contain errors that might degrade the ASR
performance of trained models, especially when the amount of data
is relatively limited. This poses a major challenge to the develop-
ment of accurate ASR systems outside large industrial groups.

Existing methods to address this issue may be categorized into
two perspectives: data and model. Data cleaning is a broadly used
technique wherein errors in datasets are detected and discarded, usu-
ally through multiple stages of model training and alignment. How-
ever, data cleaning is usually done at the utterance level [4, 5, 6, 7, 8];
i.e., utterances in long recordings that do not align perfectly with the
annotations are often discarded. Such a process can potentially filter
out a large number of imperfect utterances that may still contain a lot
of useful information for the model. Table 1 presents the summary
statistics of some popular ASR datasets that were created using such
a data-cleaning process from sources containing non-verbatim tran-
scripts. Unsupervised training [9, 10, 11, 12, 13], on the other hand,
leverages non-parallel speech and text, where models are designed to

The authors would like to thank Matthew Wiesner for his comments on
the paper draft.

Table 1: Data filtering statistics for popular ASR corpora. Raw and
filtered refer to the amount (in hours) of source audio and the final
prepared data, respectively.

Dataset Raw (h) Filtered (h) Ratio (%)

TED-LIUM [18] 216 118 54.6
TED-LIUM 2 [19] 351 207 58.9
TED-LIUM 3 [20] 540 452 83.7
Europarl-ST [21] 816 255 31.3
HK-LegiCoST [22] 1,400 609 43.5
Europarl-ASR [23] 4,900 1,300 26.5

learn high-level features from audio. However, training such models
is often challenging due to the lack of supervision, and the improve-
ments achieved by unsupervised training tend to be limited.

From a model perspective, weakly supervised learning tackles
data errors by designing models that can detect and learn from use-
ful portions of the data while avoiding contamination from errors.
This class of methods includes the recently proposed star tempo-
ral classification (STC) [14], wild-card CTC (W-CTC) [15], alterna-
tive pseudo-labeling (APL) [16], and bypass temporal classification
(BTC) [17]. These methods enable the use of audio data combined
with non-verbatim transcripts, such as videos with closed captions,
which are widely available and accessible on the internet. Our pro-
posed OTC training objective falls into this model perspective, and
we will describe it in Section 3.

Data and model based methods may also be used in combina-
tion. For instance, Wav2Vec-U [10] used self-supervised training on
unlabeled speech. Meta’s MMS [24] used multiple rounds of data
alignment using a model trained with the STC objective. The re-
cently released Whisper [25] leveraged 680k hours of weakly filtered
web data to achieve impressive ASR performance.

In this paper, we focus on the model perspective of weakly su-
pervised ASR. We argue that in order to train models on reasonably-
sized corpora with imperfect transcripts (e.g. non-verbatim anno-
tations), the model needs to explicitly account for errors (i.e., sub-
stitution, insertion, and deletion errors) that exist within the tran-
scripts during the training process.1 Our observation is inspired by
numerous recent studies such as STC, W-CTC, APL, and BTC, as
mentioned earlier. These existing methods focus on specific cate-
gories of transcript errors: STC and W-CTC tackle deletion errors,
APL addresses substitution errors, and BTC handles both substitu-

1Such label errors may be relatively less hazardous in the very-large-data
regime (such as Whisper), but most academic (and industrial) systems trained
on medium scale data, often for copyright/privacy reasons. At this scale,
erroneous transcripts may be devastating (§ 4).
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tion and insertion errors. However, the specific type of error present
in real-world data sources cannot be predetermined and may include
all of these. Consequently, these are only partial solutions, and it is
imperative to develop a method capable of effectively handling and
accommodating all types of errors.

To this end, we propose a criterion called Omni-temporal Clas-
sification (OTC), an extension of Connectionist Temporal Classifica-
tion (CTC) [26]. OTC integrates the advancements made in previous
works such as STC and BTC [14, 17] and supersedes them by ad-
dressing all types of errors encountered during training (hence the
name “omni”). We achieve this by directly encoding label uncer-
tainties, encompassing substitution, insertion, and deletion errors,
into the training graph by leveraging the weighted finite-state trans-
ducer (WFST) framework. Our implementation is built on the k2
toolkit2, which provides GPU-based implementations of all WFST
operations to enable faster training. Through extensive experiments
on the LibriSpeech and LibriVox corpora, we demonstrate that OTC-
based training maintains the performance of the ASR model despite
erroneous transcripts. Notably, on the LibriSpeech dataset, when the
proportion of synthetic errors exceeds 50%, OTC-based models still
obtain 10-30% word error rates (WERs), whereas CTC training fails
completely. Additionally, we show that our method is robust against
under-processed data of lower quality, which requires minimal hu-
man intervention.

2. PRELIMINARIES

2.1. ASR with CTC

Given an acoustic feature sequence x = [x1, . . . , xT ] of length T ,
where xt ∈ Rd corresponds to the d-dimensional, real-valued acous-
tic representation at frame t, an ASR system predicts the most “prob-
able” transcript ŷ, i.e.,

ŷ = argmax
y

P (y|x). (1)

Here, y = [y1, . . . , yU ] has length of U , where yu ∈ V rep-
resents a discrete unit from a finite vocabulary V . CTC models
the posterior probability P (y|x) by marginalizing over all possible
frame-level alignments π = [π1, . . . , πT ] between x and y. Each
πt ∈ V ∪⊘, where ⊘ is a special symbol used in CTC to align extra
acoustics, given that T ≥ U . CTC further assumes that the output
units in the frame-level alignment π are conditionally independent
given the acoustic features x, which yields

P (y|x) =
∑

π∈B−1(y)

P (y,π|x) =
∑

π∈B−1(y)

P (π|x) (2)

=
∑

π∈B−1(y)

T∏
t=1

P (πt|x), (3)

where B is a deterministic mapping from the alignment sequence π
to transcript y by removing ⊘ and merging adjacent repetitions.

2.2. CTC within the WFST framework

A weighted finite-state transducer (WFST) is a directed graph that
represents a function that maps sequences of input symbols to output
symbols. Each edge (or arc), denoted as e, is assigned a weight,
ω(e). Two WFSTs H1 and H2 can be composed to cascade mapping

2https://github.com/k2-fsa/k2

operations, denoted as H1◦H2. In the resulting WFST, the weight of
each edge is the ⊗-product of the corresponding edge weights from
the source WFSTs. When training ASR models, we use WFSTs on
the log semiring, such that edge weights may be interpreted as log
probabilities; consequently, ⊗ is simply the addition operation.3

Previous studies [14, 17, 28, 29, 30] have shown that the compu-
tation of P (y|x) can be efficiently implemented within the WFST
framework. B−1(y), which encompasses all possible alignments
for a given y, can be represented by a WFST denoted as S(y). This
WFST, often referred to as the training graph, is illustrated in Fig-
ure 1(a). Each path within S(y) corresponds to a distinct alignment
π. By composing S(y) with the emission WFST E(x) that repre-
sents logP (π|x) (Fig. 4 (a)), logP (y|x) can be expressed as

logP (y|x) =
∑

π∈S(y)−1

P (π|x)︸ ︷︷ ︸
E(x)

= Weight(E(x) ◦ S(y)). (4)

The training graph S(y) can be further factored as S(y) =
T ◦ L ◦ G(y), where T removes the special symbol ⊘ and merges
repeated output units, L maps unit sequences (e.g., BPE or phone)
to words, and G(y) is a linear WFST representing the transcript y
(Fig. 2(c)). This decomposition yields

logP (y|x) = Weight(E(x) ◦ T ◦ L ◦G(y)). (5)

In the following sections, we will describe our modifications to
E(x) and G(y) that constitute the OTC loss.

3. OMNI-TEMPORAL CLASSIFICATION

3.1. WFST topology

As mentioned earlier, previous CTC variants such as STC [14], W-
CTC [15], and BTC [17] partially solved the problem of training
with imperfect transcripts. The key insight was to extend the training
graph by introducing a special token ⋆ that can handle mismatched
acoustics. OTC further enhances the flexibility of the training graph
to accommodate all potential errors present in the transcript y, in-
cluding substitution, insertion, and deletion errors.

To achieve this, we modify G(y) by adding self-loop arcs
(Fig. 2(a)) into each state and bypass arcs (Fig. 2(b)) into each arc.
Each added arc is associated with the special token ⋆ and penalty
λ adopted from [14, 17]. The modified WFST Gotc(y) is shown
in Fig. 2(d). This ⋆ symbol acts as a token of uncertainty, offering
a preferable choice over aligning with potentially incorrect tokens.
Fig. 3 illustrates an example of how the ⋆ token functions.
Bypass arcs were proposed in [17] to address substitution and inser-
tion errors. When encountering an incorrectly substituted word yu

′,
the bypass arc provides an alternative path parallel to the erroneous
word. This allows the model to associate the acoustics with the ⋆
token instead of the erroneous token, effectively reducing the prob-
ability P (yu

′|x). By doing so, the model avoids learning wrong
relationships through back-propagation during training. This strat-
egy also applies to insertion errors, where the transcript y contains
additional words not present in the intended reference. In such cases,
the model allocates a minimal amount of acoustics, usually a single
frame, from neighboring tokens to the ⋆ token.
Self-loop arcs are proposed to handle deletion errors. These errors
occur when there are acoustics present in the input data x which

3Refer to [27] for details about WFSTs for speech recognition.

https://github.com/k2-fsa/k2


(a) CTC training graph.

(b) OTC training graph. The self-loop arcs and bypass arcs are highlighted in green and blue, respectively.

Fig. 1: Training graphs of the transcript “a b" given the lexicon {a:A, b:B}. A state labeled ‘0’ is the starting state. The state with the double
circle (state 5) is the final state. States are connected by directed arcs. Each arc has an input and output symbol (separated by a colon) and a
weight (after a slash). The arc labeled ‘-1’ is a special arc pointing to the final state.

(a) self-loop arc (b) bypass arc

(c) CTC G(y)

(d) OTC Gotc(y)

Fig. 2: CTC and OTC WFST representations of y: G(y) and
Gotc(y). The self-loop arc and bypass arc are associated with penalty
λ1 and λ2, respectively. An arc with a single symbol indicates iden-
tical input and output.

do not have a corresponding token yu in the transcript y. To han-
dle deletions, the self-loop arc can insert an arbitrary number of ⋆
tokens. These ⋆ tokens can then be aligned with the “orphan” acous-
tics in the input x, filling in the gaps left by the deleted tokens.

After composing the modified WFST Gotc(y) with L and T , the
OTC training graph is shown in Fig. 1(b). We incorporate the penalty
strategy introduced in [17] and apply different configurations for the
self-loop arc and bypass arc. The penalties are set as

λ1i = β1 ∗ τ i
1, λ2i = β2 ∗ τ i

2 (6)

for the i-th training epoch. β is the initial penalty that encourages
the model to rely more on the given transcript at the start of training.
It decays exponentially by a factor of τ ∈ (0, 1), gradually encour-
aging the model to align speech with ⋆ when getting confused.

Fig. 3: Example demonstrates how OTC tackles errors in the given
transcript “a very good day". The errors include one deletion (miss-
ing “have"), one insertion (“very"), and one substitution (replacing
"nice" with "good") error compared to the verbatim transcript. Dur-
ing training, OTC automatically aligns the audio with the pattern " ⋆
a ⋆ ⋆ day", by assigning a higher probability to this alignment.

3.2. Modeling ⋆ token

In [17], the symbol ⋆ represented an individual token with its own
distribution. This approach works for substitution and deletion er-
rors, as the bypass arc offers a non-⋆ token as the reference. In
effect, it guides the model to treat ⋆ as a “garbage” token capable
of matching any non-blank tokens by distinguishing between ⋆ and
reference token given the acoustic context.

However, in our preliminary experiments, we found that such
modeling of ⋆ is not effective for insertion (self-loop) case, as the
model may confound the roles of ⋆ and ⊘ symbols as there is no
token to be compared within the self-loop arc. To remedy this, we
adopt the strategy used in STC [14], where ⋆ is represented as the
average probability of all non-blank tokens. In our WFST-based im-
plementation, this is done by modifying the emission WFST E(x),
as shown in Fig. 4 (b).

4. DATA PREPARATION

We use the publicly available LibriSpeech and LibriVox corpora for
demonstrating OTC.

LibriSpeech [31] (LS) train set consists of 960 hours of read



(a) CTC emission WFST E(x)

(b) OTC emission WFST E(x).

Fig. 4: OTC and CTC emission WFST E(x) over 2 frames. For
OTC, the weight associated with each arc is its log probability.
The weight of ⋆ is the log average probability of ‘A’ and ‘B’:
log e−1.2+e−2.3

2
= −1.6 and log e−1.9+e−0.5

2
= −1.0 for 2 frames.
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Fig. 5: Distribution of chapter audio length of LibriVox 100 hours
(green) and LibriVox 960 hours (blue).

speech divided into three subsets: 100 + 360 (clean) and 500 (other).
Additionally, it includes two development subsets and two test sub-
sets, each containing 5 hours of speech.

LibriVox4 (LV) is a set of audiobooks, from which the LS
dataset is derived. Each audiobook consists of multiple chapters,
and the audio is available at the chapter level without any segmen-
tation. For our investigation, we retrieved the exact portions of the
audiobooks that were used to create LS. We refer to the retrieved
data as LV-100 and LV-960, respectively, which correspond to the
100h subset and the full LS, respectively. The duration of each chap-
ter varies between 5 minutes and 70 minutes as shown in Fig. 5. It
should be noted that the accompanying text derived from the books
is not perfect, as it contains errors from human reading.5

4.1. LibriSpeech processing

As described in [31], significant human efforts were dedicated to
creating the LS dataset from the LV source.

1. Preprocessing: The audio of each chapter was divided into seg-
ments, with a maximum duration of 30 minutes. These segments
were decoded using an external ASR model trained on the Vox-
Forge dataset, using the Kaldi toolkit [32].

4https://librivox.org
5Common errors include missing chapter titles and reader information in

the text, repetitions in the audio, and reading incorrect words.

Fig. 6: Comparison between data processing of LibriSpeech (left)
and LibriVox (right). Audio, reference text, and decoded text are
represented as blocks of color: green, light blue, and dark blue. The
3 big grey blocks on the left represent the following stages: prepro-
cessing, first alignment, and second alignment.

2. First alignment (coarse filtering): The Smith-Waterman algo-
rithm [33] was applied to compare the decoded text with the
original chapter text. This process aimed to identify the region
that exhibited the closest text match to retrieve the correspond-
ing speech fragment. The retrieved fragments were subsequently
segmented into smaller chunks, ensuring that each chunk was
shorter than 35 seconds and separated by periods of silence.

3. Second alignment (fine filtering): A specialized decoding graph
was constructed as a refined filter to only allow arbitrary phone
insertions between words in the transcript, or replacement of
words in the transcript. This graph was applied to the smaller
audio chunks obtained from the previous stage, in order to filter
out chunks whose decoded text significantly differed from the
expected transcript, thereby providing a more accurate selection
of suitable speech fragments.

4.2. LibriVox processing: weak supervision

To demonstrate the efficiency of training an ASR system using OTC
on weakly supervised speech data, we use the LibriVox dataset. Our
goal is to highlight the minimal effort required for preparing training
data in this approach. For a visual representation of the comparison
between data preparation for LS and LV, please refer to Fig. 6.

As described in Section 4, we extract the chapter-level audio
and text from the original audiobooks corresponding to the 100h and
960h sets from LS, and these are referred to as LV-100 and LV-960,
respectively. By employing OTC, the data processing workflow can
be simplified into two steps.

1. First, a voice activity detection (VAD) technique is applied to
remove non-speech audio.

2. Following that, both the audio and text data are uniformly seg-
mented, with each speech segment restricted to a duration of
60 seconds. In Section 7.2, we present an analysis of different
choices for this uniform duration.

https://librivox.org


Fig. 7: Text error rates of 12 segments within the chapter (id 103-
1240), span from 0.2 to 0.8. The text error rates are dominated by
shift errors (insertion and deletion), particularly for the segments lo-
cated in the middle of the chapter.

The processed LV corpus contains errors from two distinct
sources. The first one, which we label as a “shift error,” is a product
of uniform segmentation, which can cause a misalignment between
the speech and the corresponding text segments. Such a mismatch
may occur if the segmented portions do not exactly match the natu-
ral boundaries of speech. The second error source, which we refer
to as an “internal error,” originates from the potential imperfections
within the original chapter text itself. Such errors are inherent due
to human error in the reading process.

In order to gain a clearer understanding of the text mismatch, we
manually aligned the text for each segment within a specific chapter
(id 103-1240), which we then used as the ground truth. We compared
this ground truth text to the text acquired via uniform segmentation
and calculated the word error rates. This was done to numerically
express the extent of misalignment, as shown in Fig. 7.

5. EXPERIMENTAL SETUP

5.1. Synthetic data generation

For a controlled experiment, we first generated synthetic data based
on LS train-clean-100. This allows us to test whether OTC per-
forms as well as tuning hyper-parameters. We introduced substitu-
tion, insertion, and deletion, errors by randomly replacing, insert-
ing, and removing each token in the transcript with probabilities
psub, pins, pdel, respectively. We trained models on transcripts con-
taining different degrees of each of these errors, by setting the cor-
responding probabilities to one of {0.1, 0.3, 0.5, 0.7}. Additionally,
we train on transcripts containing all the errors combined. For this,
we consider settings where psub +pins +pdel falls within the same set
of values, such that psub = pins = pdel.

5.2. Model

We used the wav2vec 2.0 (base) model [34] to extract 768-dimensional
features with a stride of 20 ms, from audio recordings originally
sampled at 16 kHz. For this, we used the extractor available in the
S3PRL toolkit [35].6 These features were fed to an acoustic model
based on a 12-layer conformer [36] network. Each conformer block
consists of two feed-forward layers, with half-step residual con-
nections. These layers encapsulate multi-headed self-attention and
convolution modules, followed by layer normalization. The decoder
is simply a linear layer with a softmax, which converts encoder
representations into a probability distribution over the extended vo-
cabulary. For CTC-based training, the output units comprise BPE

6https://github.com/s3prl/s3prl
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Fig. 8: WERs of models trained on LS train-clean-100 with syn-
thetic transcript errors: substitution, insertion, deletion, and a mix-
ture of these at error rates: {0.0, 0.1, 0.3, 0.5, 0.7}. BTC results are
compared in (a) substitution and (b) insertion. Results of CTC, BTC,
and OTC are depicted in blue, green, and orange, respectively.

units and a blank token. For OTC, we additionally include the ⋆
token in the output, as described earlier.

5.3. Tokenization

We used byte pair encoding (BPE) [37] for sub-word tokenization.
For this, we used the implementation available in the sentencepiece
toolkit7. We explored vocabulary sizes of 100, 200, and 500, and de-
termined that a size of 200 yields the optimal performance. Further
analysis and details can be found in Section 7.3.

6. RESULTS & DISCUSSION

6.1. LibriSpeech 100h

As mentioned in Section 5.1, we first experimented with OTC-based
training for LS train-clean-100 by incorporating synthetic errors.
We performed experiments under four scenarios: substitution, inser-
tion, deletion, and a mix of all three errors at different error rates.
For each of these weakly supervised settings, we trained models us-
ing both CTC and OTC objectives and evaluated their word error rate
(WER) performance on LS test-clean using greedy decoding. For
substitution and insertion cases, we also compared the results with
BTC. The comparisons are shown in Fig. 8.

As the error rates increase (especially beyond 0.5), the perfor-
mance of the ASR system using regular CTC worsens, and it fails to
converge entirely beyond error rates of 0.7. On the other hand, mod-
els trained with OTC maintain their performance with only small
degradation. OTC also outperforms BTC in scenarios involving sub-
stitution and insertion errors, due to the strategy of modeling the ⋆
token described in Section 3.2. Importantly, OTC performs on par
with CTC in the case of verbatim transcripts, as shown in Table 2.

7https://github.com/google/sentencepiece

https://github.com/s3prl/s3prl
https://github.com/google/sentencepiece


Table 2: WER (%) of CTC/OTC on LS train-clean-100 with ver-
batim transcript (transcript error rate = 0.0).

Transcript Error Rate CTC OTC
0.0 7.8 7.8

Table 3: Comparison of performance (WER (%)) of ASR systems
trained on LS and LV using CTC/OTC.

Dev Test
Training Data Clean Other Clean Other

LS train-clean-100 4.9 13.6 5.2 13.5CTC LV-100 98.9 98.8 98.8 98.7
OTC LV-100 7.4 18.4 7.9 18.9

LS train-960 3.1 8.1 3.3 8.2CTC LV-960 99.2 99.8 99.6 99.7
OTC LV-960 5.9 12.6 6.1 12.5

6.2. LibriVox

We also evaluated OTC on LV-100 and LV-960 datasets. To establish
a baseline for comparison, we trained the ASR system using the CTC
on the LibriVox dataset. We define a “topline” as the result obtained
by training the ASR system on the corresponding LS subset, which
is clean and well-segmented as outlined in Section 4.1. We decoded
using a 3-gram language model, and the results are shown in Table 3.
The results obtained using CTC are emphasized in red.

These experiments highlight the ineffectiveness of direct train-
ing on the LV dataset using the CTC approach due to transcript
errors. However, when utilizing OTC for training, we observed a
significant reduction in the performance gap between the LS and
LV datasets. Specifically, when considering the 100-hour subset,
OTC only incurs a loss of 2.7% absolute WER on test-clean (from
5.2% to 7.9%) and 4.6% absolute WER test-other (from 13.5% to
18.9%). Similarly, on the 960-hour set, OTC experiences a loss of
2.8% on test-clean (from 3.3% to 6.1%) and 4.3% on test-other
(from 8.2% to 12.5%).

7. ANALYSIS

The analyses are carried out using the LS train-clean-100 with syn-
thetic errors in the transcripts. Here, “error type” refers to the spe-
cific error made in the transcripts, while “error rate” indicates the
ratio of that error to the reference transcripts.

7.1. Impact of penalty

The initial penalty β1 and β2 on the self-loop arc and bypass arc
are determined empirically. We experimented with a range of dif-
ferent values and evaluated their impact on the performance of the
ASR system. Parameter β1 was selected for cases involving dele-
tion errors only, where the error rate was set to 0.5 and the system
was configured to only enable self-loop. β2 was chosen for cases of
substitution and insertion errors separately, with an error rate again
set to 0.5, enabling only the bypass arc. The decay factors are set to
τ1 = 0.999, τ2 = 0.975. The comparison is shown in Fig. 9

In the deletion case, when λ1 is set to 3.75, the system achieves
its lowest WER of 15.4. In the substitution and insertion case, the
system achieves its best performance with a WER of 15.8 for substi-
tution and 8.1 for insertion when β2 is set to -19.
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(a) Deletion

71115192327
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substitution
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(b) Substitution
Fig. 9: Self-loop and bypass penalty impact on WER (%).

Table 4: WER (%) for substitution/deletion at rate 0.5 across sub-
word vocabulary size. The best result is highlighted in bold.

Error Type Error Rate Vocabulary Size
100 200 500

substitution 0.5 15.8 15.2 16.4
deletion 0.5 16.6 15.4 18.9

7.2. Segmentation length choices

Traditional ASR training typically utilizes utterances with lengths
under 30 seconds, achieving optimal performance within the 10 to
15-second range [38]. However, in the context of OTC, uniform seg-
mentation with short lengths introduces significant “shift errors” that
misalign speech and text, while excessively long segments can over-
whelm GPU memory in the conformer architecture. We conducted
an exploration of different segment durations, including 15, 30, and
60 seconds. Our findings revealed that the model fails to converge
when using 15 or 30-second segments. However, we observed that
utilizing 60-second segments strikes the optimal balance.

7.3. Subword vocabulary size

We conducted experiments using subword vocabularies of sizes 100,
200, and 500, focusing on cases of substitution and deletion errors
with an error rate of 0.5. The results, shown in Table 4, demonstrate
that a vocabulary size of 200 consistently yielded the best perfor-
mance in terms of WER for both substitution and deletion errors
(namely, 15.2% for substitution and 15.4% for deletion).

8. CONCLUSION

We proposed a novel training criterion, Omni-Temporal Classifica-
tion (OTC), for training ASR systems using weakly supervised data,
such as non-verbatim transcripts. OTC allows the model to learn
speech-text alignment while effectively addressing errors present in
the transcripts within the WFST framework. Experimental results
on the LibriSpeech and LibriVox datasets demonstrated that models
trained with OTC maintain reasonable ASR performance even when
the transcripts contain up to 70% errors of different types. From
the LibriVox experiments, it is evident that our method can signifi-
cantly reduce the human effort required for data preparation in train-
ing ASR systems.
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