
LIBRIHEAVY: A 50,000 HOURS ASR CORPUS WITH PUNCTUATION CASING AND
CONTEXT

Wei Kang, Xiaoyu Yang, Zengwei Yao, Fangjun Kuang, Yifan Yang, Liyong Guo, Long Lin, Daniel Povey
Xiaomi Corp., Beijing, China
{kangwei1, dpovey}@xiaomi.com

ABSTRACT

In this paper, we introduce Libriheavy, a large-scale ASR
corpus consisting of 50,000 hours of read English speech
derived from LibriVox. To the best of our knowledge, Lib-
riheavy is the largest freely-available corpus of speech with
supervisions. Different from other open-sourced datasets
that only provide normalized transcriptions, Libriheavy con-
tains richer information such as punctuation, casing and text
context, which brings more flexibility for system building.
Specifically, we propose a general and efficient pipeline to
locate, align and segment the audios in previously published
Librilight to its corresponding texts. The same as Librilight,
Libriheavy also has three training subsets small, medium,
large of the sizes 500h, 5000h, 50000h respectively. We
also extract the dev and test evaluation sets from the aligned
audios and guarantee there is no overlapping speakers and
books in training sets. Baseline systems are built on the pop-
ular CTC-Attention and transducer models. Additionally, we
open-source our dataset creatation pipeline which can also be
used to other audio alignment tasks.

Index Terms— Speech recognition, Corpus, Audio align-
ment, Librivox

1. INTRODUCTION

In the past decade, various system architectures, like Con-
nectionist Temporal Classification (CTC) [1], RNN-T [2] and
encoder-decoder based model [3], have been proposed, push-
ing the dominant framework from the hybrid Hidden Markov
Models (HMM) [4] to end-to-end models. In general, the neu-
ral network models are supposed to be more data hungry than
traditional systems.

A lot of work has been done on publishing open source
datasets, for example, the Wall Street Journal corpus [5],
SwitchBoard [6], Fisher [7] and the famous LibriSpeech cor-
pus [8]. While these are all small or medium size datasets
with less than 2,000 hours, which is too small to train a good
enough end-to-end model. In recent years, there are also
large-scale corpora like GigaSpeech [9], People’s Speech [10]
and MLS [11]. One drawback of these datasets is that they
only provide normalized transcriptions, making it impos-
sible to train a model that needs full-format texts, such as
punctuation prediction.

Typical ASR corpora aim at training ASR systems to rec-
ognize independent utterances. However, the preceding con-
text of the current utterance may convey useful information.
Contextualized speech recognition utilizes the cross-utterance
context to improve the accuracy of ASR systems and yields
promising results [12, 13]. However, training such systems
usually requires utterance-level context for each training ut-
terance, which is not available in most existing ASR corpora.
Therefore, such a dataset with textual context information is
highly desirable.

Motivated by the aforementioned points, we introduce
Libriheavy, a large-scale (50,000 hours) corpus containing
not only fully formatted transcripts but also textual context,
which is suitable for various speech recognition related tasks.
In addition, unlike other open-source datasets that have their
own creating pipelines, we propose a general audio alignment
method and release it as a standard package. Our contribu-
tions are as follows:
• We release a 50,000-hour of labeled audio containing punc-

tuation casing and preceding text;
• We propose and open-source a general audio alignment

pipeline, which makes it easier to construct ASR corpora;
• We provide solid evaluation results on Libriheavy, which

demonstrate the high quality of the corpus and the robust-
ness of our pipeline.

2. LIBRIHEAVY CORPUS

In this section, we provide a detailed description of the Libri-
heavy corpus, including audio files, metadata, data partitions,
text styles, and other aspects. Instructions and scripts are
available in the Libriheavy GitHub repository1.
2.1. Librilight
Librilight [14] is a collection of unlabeled spoken English au-
dio derived from open-source audio books from the LibriVox
project 2. It contains over 60,000 hours of audio and aims
for training speech recognition systems under limited or no
supervision. The corpus is free and publicly available 3.
2.2. Libriheavy
Libriheavy is a labeled version of Librilight. We align the
audio files in Librilight to their corresponding text in the orig-

1https://github.com/k2-fsa/libriheavy
2https://librivox.org
3https://github.com/facebookresearch/libri-light

ar
X

iv
:2

30
9.

08
10

5v
1

 [
ee

ss
.A

S]
 1

5
Se

p
20

23

https://github.com/k2-fsa/libriheavy
https://librivox.org
https://github.com/facebookresearch/libri-light

Table 1: The dataset statistics of Libriheavy.

subset hours books per-spk hrs total spks
small 509 173 1.22 417
medium 5042 960 3.29 1531
large 50794 8592 7.54 6736
dev 22.3 180 0.16 141
test-clean 10.5 87 0.15 70
test-other 11.5 112 0.16 72

inal book and segment them into smaller pieces with dura-
tions ranging from 2 to 30 seconds. We maintain the origi-
nal dataset splits of Librilight and have three training subsets
(small, medium, large). In addition, we further extract eval-
uation subsets (dev, test-clean, test-other) for validation and
testing. Table 1 shows the statitics of these subsets.

2.2.1. Metadata
We save the metadata of the dataset as Lhotse [15] cuts in
JSON lines. Each line is a self-contained segment, including
the transcript and its audio source. Users can clip the cor-
responding audio segment with the given start and duration
attributes. Unlike other publicly available corpora that only
provide normalized transcripts, Libriheavy includes richer
information such as punctuation, casing, and text context.
The text context is the transcription of the preceding utter-
ances, located in the pre texts entry, with a default length of
1000 bytes. There are also begin byte and end byte attributes,
which allow users to easily slice any length of text context
from the original book pointed to by the text path attribute.
Of course, there are other supplementary entries that might
be usefull for other tasks, such as id, speaker, etc.

2.2.2. Evaluation Sets
As mentioned above, we have three evaluation sets in Libri-
heavy, namely dev, test-clean, test-other. We ensure that the
evaluation sets have no overlapping speakers and books in the
training set. To make the evaluation sets contain as many
speakers and books as possible while not dropping out too
much training data, we filtered out speakers and books with
shorter durations as candidates. We then determine the clean
speakers and other speakers using the same method as in [8]
and divide the candidates into clean and other pool. We ran-
domly select 20 hours of audio from the clean pool, half of
which forms the test-clean set and the other half is appended
to the dev set. We follow the same procedure for the other
pool. Librilight ensures that audio files from the LibriSpeech
evaluation sets are not present in the corpus, therefore, the
LibriSpeech evaluation sets can also be used as our evalua-
tion sets.

3. AUDIO ALIGNMENT

This section describes the creation pipeline of the Libriheavy
corpus. The key task of audio alignment is to align the au-
dio files to the corresponding text and split them into short
segments, while also excluding segments of audio that do not

correspond exactly with the aligned text. Our solution pre-
sented here is a general pipeline that can be applied to other
data generation tasks as well. The implementation of all the
following algorithms and corresponding scripts are publicly
available4.

3.1. Downloading text
To align the audio derived from audiobooks, we require the
original text from which the speaker read the audiobook.
From the metadata provided by Librilight, we can obtain the
URL of the textbook for each audio file. We have written
scripts to automatically extract the text and download the
sources for all audiobooks. We then apply simple clean-up
procedures such as removing redundant spaces and lines to
the text sources.

3.2. First alignment stage

The goal of this stage is to locate the audio to its correspond-
ing text segments (e.g. chapter) in the original book. First, we
obtain the automatic transcript of the audio file. Then we treat
the automatic transcript as query and the text in the original
book as target 5, and find the close matches (Sec 3.2.2) for
each elements in the query over the target. Finally, we de-
termine the text segment of the audio by finding the longest
increasing pairs (Sec 3.2.3) of query elements and their close
matches. Note, we did not use the VAD tool provided by Lib-
rilight for audio segmenting and as our algorithm requires a
relatively long text to guarantee its accuracy.

3.2.1. Transcribe audios
The audios in Librilight have a large variance in duration,
from a few minutes to hours. To avoid excessive computa-
tion on long audio files, we first split the long audio into 30-
second segments with 2 seconds of overlap at each side, and
then recognize these segments with an ASR model trained on
Librispeech. Finally, we combine the transcripts that belong
to the same audio by leveraging the timestamps of the recog-
nized words.

3.2.2. Close matches
Now we have the automatic transcript and the original book
for each audio. To obtain the most similar text segment in the
original book of the automatic transcript roughly, we propose
the close matches. First, we concatenate query and target to
a long sequence (target follows query), then a suffix array is
constructed on the sequence using the algorithm in [16]. The
close matches of the element in query position i is defined
as two positions in the original sequence that are within the
target portion, and which immediately follow and precede, in
the suffix array, query position i. This means that the suffixes
ending at those positions are reverse-lexicographically close
to the suffix ending at position i. Figure 1 shows a simple

4https://github.com/k2-fsa/text_search
5We will normalize the text to upper case and remove the punctuation, but

keep the index into original text.

https://github.com/k2-fsa/text_search

Fig. 1: Example of finding close matches for a query (LOVE)
over the target (ILOVEYOU). The dash arrows point from the
query elements to their close matches.

example of finding the close matches of query “LOVE” over
target “ILOVEYOU”.

3.2.3. Longest increasing pairs
Let us think of those close matches which we obtained above
as a set of (i, j) pairs, where i is an index into query se-
quence and j is an index into the target sequence. The query
and its corresponding segment in the target should be mono-
tonic aligned, so we can get the approximate alignment be-
tween the two sequences by finding the longest chain of pairs:
(i1, j1) , (i2, j2) , ... (iN , jN), such that i1 <= i2 <= ... <=
iN , and j1 <= j2 <= ... <= jN .

3.3. Second alignment stage

From the longest chain obtained from the previous step, we
can roughly locate the region in the target sequence relative
to the query. At this stage, we use the Levenshtein align-
ment [17] to find the best single region of alignment between
the recognized audio (query) and the text segment (obtained
by the longest chain pairs). Since Levenshtein alignment is a
quadratic time complexity algorithm, and will be very ineffi-
cient for long sequences. We can use the traceback through
the pairs in the longest chain as the backbone for the Leven-
shtein alignment, so that we limit the Levenshtein alignment
into blocks defined by the (i, j) positions in this traceback.
By concatenating the Levenshtein alignments of all the blocks
along the query index, we obtain the Levenshtein alignment
of the whole query.

3.4. Audio segmentation
The goal of audio segmentation is to break long audio into
shorter segments, ranging from 2 seconds to 30 seconds,
which are more suitable for ASR training. We use a two-
stage scoring method to search for good segmentations 6.
All books in LibriVox have punctuation, so we decided to
split the sentence only at punctuation indicating the end of a
sentence, namely, “.”, “?” and “!” 7. We select the positions

6The scores mentioned below will be normalized to the same scale, so
none of the scores would dominate the final score.

7Our toolkit also supports splitting sentences at a certain threshold of si-
lence.

in the alignment that follow chosen punctuations as Begin
Of a Segment (BOS) and the positions followed by chosen
punctuations as End Of a Segment (EOS), then we compute
scores for these positions:
• The number of silence seconds this position follows or is

followed by, up to 3 seconds.
• The score corresponding to the number of insertions, dele-

tions and substitutions within a certain region of this posi-
tion.

Each pair of BOS and EOS forms a segment. The follow-
ing rule is applied to assign scores to potential segments:
• The score of BOS plus the score of EOS.
• A score related to the duration of the segment, which guar-

antees the duration is in the range of 2 to 30 seconds and
encourages a duration between 5 to 20 seconds.

• A bonus for the number of matches in the alignment.
• A penalty for the number of errors in the alignment.

For each BOS, we find the 4 best-scoring EOS and vice
versa. We then append the preceding 2 sets of segments to get
a list of candidate segments. We determine the best segmen-
tations by getting the highest-scoring set of segments that do
not overlap. In practise, to avoid dropping out too much au-
dio, we allow some kind of overlap if the overlapping length
is less than a quarter of the segment.

4. EXPERIMENTS

In this section, we present the baseline systems and ex-
perimental results for two popular models, namely CTC-
Attention [18] and neural transducer [2]. We then compare
the performance between the models trained on normalized
text and texts with punctuation and casing.

4.1. CTC-Attention baseline system

We build the CTC-Attention baseline using the Wenet [19]
framework. We use the classic setup of Wenet toolkit which
consists of a 12-layer Conformer [20] encoder and a 6-layer
Transformer decoder. The embedding dimension is set to 512.
The kernel size of the convolution layers is set to 31. The
feedforward dimension is set to 2048. The modeling units
are 500-class Byte Pair Encoding (BPE) [21] word pieces.
The loss function is a logarithmic linear combination of the
CTC loss (weight = 0.3) and attention loss with label smooth-
ing (weight = 0.1). The input features are 80-channel Fbank
extracted on 25 ms windows shifted by 10 ms with dither
equal 0.1. SpecAugment [22] and on-the-fly Speed perturba-
tion [23] are also applied to augment the training data. During
training, we use the Adam optimizer [24] with the maximum
learning rate of 0.002. We use the Noam [25] learning rate
scheduler with 25k warm-up steps.

The model is trained for 90, 60 and 15 epochs on the
small, medium and large subsets, respectively. Table 2 shows
the Word Error Rate (WER) of the models on Libriheavy test

Table 2: The WERs of LibriSpeech (ls) and Libriheavy (lh)
test sets on CTC-Attention system.

subset ls-clean ls-other lh-clean lh-other
small 5.76 15.60 6.94 15.17
medium 3.15 7.88 3.80 8.80
large 2.02 5.22 2.74 6.68

Table 3: The WERs of LibriSpeech (ls) and Libriheavy (lh)
test sets on transducer system.

subset ls-clean ls-other lh-clean lh-other
small 4.05 9.89 4.68 10.01
medium 2.35 4.82 2.90 6.57
large 1.62 3.36 2.20 5.57

sets. As a reference, we also show the WER on the Lib-
riSpeech test sets. The N-Best hypotheses are first generated
by the CTC branch and then rescored by the attention branch.
Note that for the LibriSpeech results, we apply some sim-
ple text normalization, such as converting numbers to their
corresponding text and converting abbreviations (e.g “Mr.” to
“Mister”) on the hypotheses to make it compatible with the
LibriSpeech transcripts. We also apply these normalization
procedures in the following experiments.

4.2. Transducer baseline system

We build the transducer baseline system using the icefall 8

which is one of the projects in the Next-gen Kaldi toolkit. Ice-
fall implements a transformer-like transducer system, which
consists of a encoder and a stateless decoder [26]. Different
from the setting in [26] which only has an embedding layer,
an extra 1-D convolution layer with a kernel size of 2 is added
on top of it. The encoder used in this baseline is a newly pro-
posed model called Zipformer. The Zipformer paper has not
been released yet, but the implementation details and training
pipeline can be found in icefall 9. We use the default setting
in the Zipformer LibriSpeech recipe in icefall for all the fol-
lowing experiments.

The same as CTC-Attention baseline system, we train the
model for 90, 60 and 15 epochs for the small, medium and
large subsets, respectively. Table 3 shows the decoding results
of the models trained on different training subsets, and the
WERs on LibriSpeech and Libriheavy test sets are presented.
We use the beam search method proposed in [27] which lim-
its the maximum symbol per frame to one to accelerate the
decoding.

4.3. Training with punctuation and casing

This section benchmarks the performance of models trained
on texts with punctuation and casing, and compares them with
the performance of models trained on normalized texts. The

8https://github.com/k2-fsa/icefall
9https://github.com/k2-fsa/icefall/blob/master/

egs/librispeech/ASR/zipformer/zipformer.py

Table 4: The Libriheavy WERs and CERs on transducer sys-
tem trained on texts with punctuation and casing.

subset WER CER
lh-clean lh-other lh-clean lh-other

small 13.04 19.54 4.51 7.90
medium 9.84 13.39 3.02 5.10
large 7.76 11.32 2.41 4.22

Table 5: The comparison of WERs between models trained
on Upper case No Punctuation (UNP) and Casing with Punc-
tuation (C&P).

subset text ls-clean ls-other lh-clean lh-other

small UNP 4.05 9.89 4.68 10.01
C&P 4.51 10.84 5.16 11.12

medium UNP 2.35 4.82 2.90 6.57
C&P 2.45 5.03 3.05 6.78

large UNP 1.62 3.36 2.20 5.57
C&P 1.72 3.52 2.28 5.68

system setting is almost the same as the transducer baseline
system mentioned above. The only difference is that we adopt
756-class BPE word pieces rather than 500 for modeling, be-
cause we open the fallback bytes flag when training the BPE
model to handle rare characters, so we need an additional 256
positions for bytes. Table 4 shows the WERs and Char Error
Rate (CER) of models trained on texts with punctuation and
casing.

Table 5 compares the results of systems trained on nor-
malized texts (upper case without punctuation) and unnormal-
ized texts (casing with punctuation). In this experiment, we
normalized both the transcripts and decoding results to up-
per case and removed the punctuation when calculating the
WERs. From the results, the performance gap between two
types of training texts is large when the training set is small,
but as the training set grows, the gap becomes negligible. This
indicates that when the training set is large enough, the style
of training texts will not make much difference on perfor-
mance, while training with texts with punctuation and casing
brings us more information and flexibilities.

5. CONCLUSION

We release a large-scale (50,000 hours) corpus containing
punctuation, casing and text context, which can be used in
various of ASR tasks. We also propose and open-source a
general and efficient audio alignment toolkit, which makes
constructing speech corpora much easier. Finally, we con-
duct solid experiments on the released corpus, and the results
show that our corpus is of high quality and demonstrates the
effectiveness of our creation pipeline.

https://github.com/k2-fsa/icefall
https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/zipformer/zipformer.py
https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/zipformer/zipformer.py

6. REFERENCES

[1] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber, “Connectionist temporal classifi-
cation: labelling unsegmented sequence data with recur-
rent neural networks,” in Proc. ICML, 2006.

[2] A. Mohamed A. Graves and G. Hinton, “Speech recog-
nition with deep recurrent neural networks,” in Proc.
ICASSP, Vancouver, 2013.

[3] William Chan, Navdeep Jaitly, et al., “Listen, attend and
spell,” in Proc. ICASSP, Shanghai, 2016.

[4] George E Dahl, Dong Yu, Li Deng, and Alex Acero,
“Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition,” IEEE/ACM
Trans. on Audio, Speech, and Language Processing,
2011.

[5] Douglas B. Paul and Janet M. Baker, “The design for the
Wall Street Journal-based CSR corpus,” in Speech and
Natural Language: Proceedings of a Workshop Held at
Harriman, 1992.

[6] Godfrey, John J., and Edward Holliman., “Switchboard-
1 release 2 ldc97s62.,” 1993.

[7] Cieri, Christopher, et al., “Fisher english training speech
part 1 transcripts ldc2004t19.,” 2004.

[8] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an ASR corpus based
on public domain audio books,” in Proc. ICASSP, Bris-
bane, 2015.

[9] Guoguo Chen, Shuzhou Chai, Guanbo Wang, Jiayu Du,
Wei-Qiang Zhang, Chao Weng, Dan Su, Daniel Povey,
et al., “Gigaspeech: An evolving, multi-domain asr cor-
pus with 10,000 hours of transcribed audio,” in Proc.
Interspeech, Brno, 2021.

[10] Daniel Galvez, Greg Diamos, Juan Ciro, Juan Felipe
Cerón, et al., “The people’s speech: A large-scale di-
verse english speech recognition dataset for commercial
usage,” 2021.

[11] Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel
Synnaeve, and Ronan Collobert, “MLS: A large-scale
multilingual dataset for speech research,” in Proc. In-
terspeech, 2020.

[12] Kai Wei, Thanh Tran, Feng-Ju Chang, et al., “Attentive
contextual carryover for multi-turn end-to-end spoken
language understanding,” in Proc. ASRU, 2021.

[13] Shuo-Yiin Chang, Chao Zhang, Tara N Sainath, Bo Li,
and Trevor Strohman, “Context-aware end-to-end ASR
using self-attentive embedding and tensor fusion,” in
Proc. ICASSP, Rhodes, 2023.

[14] J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu,
P. E. Mazaré, J. Karadayi, V. Liptchinsky, R. Collobert,
et al., “Libri-light: A benchmark for asr with limited or
no supervision,” in Proc. ICASSP, Barcelona, 2020.

[15] Piotr Żelasko, Daniel Povey, Jan ”Yenda” Trmal, and
Sanjeev Khudanpur, “Lhotse: a speech data represen-
tation library for the modern deep learning ecosystem,”
2021.

[16] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt,
“Linear work suffix array construction,” Journal of the
ACM, 2006.

[17] Vladimir I Levenshtein et al., “Binary codes capable of
correcting deletions, insertions, and reversals,” in Soviet
physics doklady. Soviet Union, 1966.

[18] Shinji Watanabe et al., “Hybrid CTC/attention architec-
ture for end-to-end speech recognition,” IEEE Journal
of Selected Topics in Signal Processing, 2017.

[19] Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang,
et al., “Wenet: Production oriented streaming and non-
streaming end-to-end speech recognition toolkit,” in
Proc. Interspeech, 2021.

[20] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, et al., “Conformer: Convolution-
augmented Transformer for Speech Recognition,” in
Proc. Interspeech, Shanghai, 2020.

[21] Rico Sennrich, Barry Haddow, and Alexandra Birch,
“Neural machine translation of rare words with subword
units,” in Proc. ACL, Berlin, 2016.

[22] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, et al., “Specaugment: A simple
data augmentation method for automatic speech recog-
nition,” in Proc. Interspeech, Graz, 2019.

[23] Tom Ko, Vijayaditya Peddinti, Daniel Povey, and San-
jeev Khudanpur, “Audio augmentation for speech recog-
nition,” in Proc. Interspeech, Dresden, 2015.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” Computer Science, 2014.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, et al., “Attention is all you
need,” in Proc. NIPS, Long Beach, 2017.

[26] Mohammadreza Ghodsi, Xiaofeng Liu, James Apfel,
et al., “RNN-transducer with stateless prediction net-
work,” in Proc. ICASSP, Barcelona, 2020.

[27] Wei Kang, Liyong Guo, Fangjun Kuang, Long Lin,
Mingshuang Luo, Zengwei Yao, Xiaoyu Yang, Piotr
Żelasko, and Daniel Povey, “Fast and parallel decod-
ing for transducer,” in Proc. ICASSP, Rhodes, 2023.

	 Introduction
	 Libriheavy corpus
	 Librilight
	 Libriheavy
	 Metadata
	 Evaluation Sets

	 Audio Alignment
	 Downloading text
	 First alignment stage
	 Transcribe audios
	 Close matches
	 Longest increasing pairs

	 Second alignment stage
	 Audio segmentation

	 Experiments
	 CTC-Attention baseline system
	 Transducer baseline system
	 Training with punctuation and casing

	 Conclusion
	 References

