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Abstract

Constrained Maximum Likelihood Linear Regression (CMLLR) is a speaker
adaptation method for speech recognition that can be realized as a feature-
space transformation. In its original form it does not work well when the
amount of speech available for adaptation is less than about five seconds,
because of the difficulty of robustly estimating the parameters of the trans-
formation matrix. In this paper we describe a basis representation of the
CMLLR transformation matrix, in which the variation between speakers is
concentrated in the leading coefficients. When adapting to a speaker, we can
select a variable number of coefficients to estimate depending on the amount
of adaptation data available, and assign a zero value to the remaining coef-
ficients. We obtain improved performance when the amount of adaptation
data is limited, while retaining the same asymptotic performance as conven-
tional CMLLR. We demonstrate that our method performs better than the
popular existing approaches, and is more efficient than conventional CMLLR
estimation.

Keywords: Speech Recognition, Speaker Adaptation

1. Introduction

Constrained Maximum Likelihood Linear Regression (CMLLR) [3, 5, 4]
is a speaker adaptation method for speech recognition. Although originally
presented as a model-space transformation, it can be described more com-
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pactly as an affine transformation of the speech feature vectors, of the form:

x → A(s)x + b(s), (1)

where x ∈ R
D is the feature vector, and A(s) and b(s) are transformation pa-

rameters specific to speaker s. We will write this here in the more convenient
form

x → W(s)x+, (2)

where x+ =
[

xT , 1
]T

, and W(s) =
[

A(s) ; b(s)
]

. Because it can be repre-
sented as a feature-space transform, CMLLR is also known as feature-space
MLLR (fMLLR).

CMLLR is typically estimated in a Maximum Likelihood fashion based
either on known transcripts of a speaker’s utterances (so-called supervised
adaptation) or on the text output from a speech recognition system (unsu-
pervised adaptation). An EM algorithm is normally used to estimate W(s);
we will summarize this in Section 2. However, when less than about five
seconds of adaptation data is available this does not always lead to improve-
ments in Word Error Rate (WER). This is presumably because the estimate
of W(s) is too noisy and does not generalize well to test data.

Various methods have been proposed to improve CMLLR estimation for
limited adaptation data; we discuss these further in Section 3. These include
the use of block-diagonal and diagonal forms of the matrix A [4], the use
of Bayesian priors (“fMAPLR”) [11, 8], and representing W in a smaller
dimension using a basis [16, 15]. In [15] it was found that it is important
to train such a basis using a Maximum Likelihood criterion (rather than the
PCA scheme used in [16]).

We describe the key ideas behind our approach in Section 4. Our method
is a basis method; the general idea is the same as [16] but we have solved a
number of problems to make it practical and efficient. In particular, we are
able to use a PCA-like algorithm to train the basis in a Maximum Likelihood
fashion. This differs from the method used in [16] by the use of precondition-
ing, which enables it to more closely approximate Maximum Likelihood. In
addition we allow the number of basis elements used to vary per speaker. This
enables us to improve performance across all lengths of adaptation data. The
preconditioning also helps us when we need to optimize the speaker-specific
coefficients that describe the adaptation matrix, because it approximately
decorrelates the coefficients in the objective function and this makes the op-
timization of the speaker-specific coefficients converge faster.
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We describe our approach as an algorithm in Section 5. This includes a
pre-computation phase in which we use training data to compute an appro-
priate set of basis matrices {Wn, 1 ≤ n ≤ D(D + 1)}, and a test-time com-
putation in which we compute the speaker-specific adaptation matrix W(s)

as a weighted sum of a subset of the basis matrices {Wn, 1 ≤ n ≤ N(s)},
where N(s) is the number of basis elements we choose to keep. Rather than
introduce a complicated method based on an information criterion, we sim-
ply set N(s) proportional to the number of frames of adaptation data. The
idea is that the more data we have, the more parameters we can afford to es-
timate. We present two iterative methods of optimizing the speaker-specific
coefficients in test time. In both cases, on each iteration we choose a di-
rection to search in and then perform a line search in that direction. Our
simpler method searches in the gradient direction; the alternative method
uses conjugate gradients.

In Section 6 we describe our experiments. We compare our method with
standard CMLLR, diagonal and block-diagonal CMLLR, and fMAPLR. Our
experiments show a clear advantage of our technique over the baselines we
tested. We conclude in Section 7. We believe that our method may be
usefully deployed wherever CMLLR adaptation is used. This is because it
gives good WER improvements when the amount of speaker adaptation data
is small, while giving the same performance as the baseline for large amounts
of adaptation data. In this respect it is quite similar to fMAPLR. However,
our experiments show that our method gives about twice the improvement
of fMAPLR, taking standard CMLLR as the baseline. In addition it is more
efficient in the update phase than either CMLLR or fMAPLR.

We note that in this paper we have devoted a lot of space to a detailed
description of the steps of our algorithm, and relatively little to its derivation,
or to justification of the exact approximations we made. The main aim of our
paper is to facilitate easy reproduction; there are many aspects of our method
which could have been done differently, but time did not permit an exhaustive
investigation of all the possibilities. We have also limited our experimental
baselines to normal CMLLR, its block diagonal forms, and fMAPLR. We
have not implemented the methods described in [16, 15] which are closely
related to the methods we describe here. One reason is that those methods
were not described in a level of detail that allows for very easy reproduction.
Certainly we cannot claim to have fully explored the solution space for robust
CMLLR parameter estimation. Our objectives are to communicate the key
ideas behind our method, to describe it in detail sufficient to allow others to
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reproduce it, and to demonstrate that it is better than the commonly used
baselines.

2. Constrained MLLR

CMLLR was originally described in [3] as a model-space transformation.
Using a dash to distinguish the quantities used in the original paper, the
model-space transformation is from generic to speaker-specific parameters:

µ̂jm = A′µjm + b′ (3)

Σ̂jm = A′ΣjmA′T . (4)

Making the substitutions A = A′ −1 and b = − A′ −1
b′ to obtain the op-

posite transformation from speaker-specific to generic features, we obtain
the form given in (1). When writing it as a feature transformation, we also
have to include a log determinant term log | detA| in the likelihood function,
which arises from the following equality:

logN (x ; µ̂jm, Σ̂jm)

= log | detA| + logN (Ax + b ; µjm,Σjm) . (5)

It is straightforward to show this by writing out the Gaussian likelihood
functions.

As mentioned, the conventional approach for estimating CMLLR trans-
form parameters is an Expectation-Maximization (E-M) process. Normally
only one or two iterations of E-M are required since it converges very fast.
We assume we are given input features x(t) for speaker s; t is the time index.
Sums over time in equations below are assumed to be over the frames for the
given speaker s. In the expectation phase, we first compute the Gaussian
level posteriors γjm(t) for states j and Gaussian mixtures m. This would
typically be done by forward-backward or Viterbi alignment of a HMM cor-
responding to a known or hypothesized text string. Writing out the auxiliary
function derived in the normal way using Jensen’s inequality, we have:

Q(W(s)) =
∑

j,m,t

γj,m,tN (x(t) ; µ̂jm, Σ̂jm). (6)

By using (5) to express this as a feature-space transform, rearranging expres-
sions to move the sums over j and m into equations for sufficient statistics,
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and discarding terms constant in W(s), we obtain the following auxiliary
function [4]. For brevity we omit the superscript ·(s):

Q(W) = β log | detA| + tr (KTW) +
∑

i

rT
i Giri, (7)

where the sufficient statistics are K ∈ R
D×D+1, β ∈ R, and

{

Gi ∈ R
D+1×D+1, 1 ≤ i ≤ D

}

,
and the column vector ri corresponds to the i’th row of W. The sufficient
statistics are defined as:

Gi =
∑

t

∑

j,m

γjm(t)
1

σ2
jm(i)

x(t)+x(t)+T
(8)

K =
∑

t

∑

j,m

γjm(t)Σ−1
jmµjmx(t)+T

(9)

β =
∑

t

1, (10)

where (10) is just the number of frames for the speaker. These formulas rely
on the assumption that the covariance matrices Σjm are diagonal; in the
general case we would have matrices Gij , with 1 ≤ i, j ≤ D [14], or we could
alternatively store per-Gaussian statistics.

Equation (7) is still not very easy to maximize, due to the presence of
the log determinant term. The standard approach [5, 4] uses the fact that
it is possible to solve it for a particular row ri of W given fixed values for
all the other rows. If this is done for each row i in turn, and the process is
repeated, it converges reasonably fast: only about 10 or 20 repetitions are
typically necessary.

3. Prior work on Robust CMLLR estimation

In our experience CMLLR gives little or no improvement when less than
about 5 seconds of adaptation data is available (e.g. see our experiments in
Section 6). Various methods have been proposed to adapt on small amounts
of data. In [4] it was mentioned that diagonal or block-diagonal structures
for A can be used to reduce the number of parameters to estimate. Because
of their simplicity such methods are frequently used, and we use them as
baselines here.
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3.1. Bayesian techniques

Bayesian techniques have been investigated in [11] and [8], both under
the name fMAPLR. The basic idea is to use the Maximum A Posteriori rule
to choose the parameter, given a suitable prior, i.e. to maximize:

p(W|X ) ∝ p(X |W)p(W), (11)

where X is the speech data, p(X |W) is the data likelihood (represented
by (7)), and p(W) is the prior likelihood. The two papers both used Gaussian
priors over p(W) (viewing the matrix as the vector of its concatenated rows)
but they used different ways of compactly representing the prior covariance
which is a matrix of dimension D(D+1)×D(D+1). In [8] a factor-analyzed
form was used (i.e. the covariance matrix was a diagonal matrix plus the
outer product of a rectangular matrix), and in [11] a diagonal matrix was
used. In both cases the Maximum Likelihood estimates of the matrices W(s)

for a set of speakers were used as training data for the prior parameters (a
simple “empirical Bayes” approach). The version of fMAPLR we used as a
baseline here is a slight generalization of [11], in which we give the covariance
of the prior a block-diagonal structure (one block for each row of W) and
also introduced a scaling factor on the log-prior term, which we tuned to
optimize WER. We trained the prior only on speakers with a relatively large
amount of adaptation data, as we found this worked best.

3.2. Basis methods

A basis representation of the CMLLR matrix was described in [16]. The
idea is to represent W as a sum over basis matrices:

W(s) =
N

∑

n=1

d(s)
n Wn, (12)

where N is some basis size decided in advance with 1 ≤ N < D(D+1) (e.g.

N=200), Wn are the basis matrices, and d
(s)
n are speaker-specific coefficients.

This improved WER for small amounts of adaptation data, but the technique
ultimately degraded performance relative to CMLLR as the amount of adap-
tation data became larger, due to the fixed basis size. In [15] the same idea
was pursued further, and it was found that for best performance it was im-
portant to train the matrices Wn in a Maximum Likelihood fashion. For
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this reason we have focused on Maximum Likelihood solutions for the ba-
sis matrices in our own work (the key difference is that our approach does
not require us to decide the basis size in advance, so that we can choose an
appropriate basis size for each speaker).

We note that basis representations of Maximum Likelihood Linear Regres-
sion (MLLR) have been proposed, such as Eigen-MLLR [2]. The problem
with such approaches is that they are difficult to make very efficient, since
they require the model’s means to be transformed for each new speaker. This
will typically dominate the computation time in cases where the amount of
adaptation data is small. Another well-known method for fast adaptation is
Eigenvoices [10], but methods of that type require a very large number of
parameters to be learned in training time.

4. Key ideas of our approach

The basis representation we use is very similar to (12), except with an
offset term and (more importantly) a basis size that varies per speaker:

W(s) = W0 +

N(s)
∑

n=1

d(s)
n Wn, (13)

where 0 ≤ N(s) ≤ D(D+1) and

W0 = [I ; 0] . (14)

In our work we just set N(s) to be proportional to the the amount of adapta-
tion data (but not exceeding D(D+1) which is the number of parameters in
W). Note that while this is a model selection problem, we have not compared
against standard model selection methods such as the Bayesian Information
Criterion (BIC) [12], or the Aikake Information Criterion (AIC) [1]. This is
because, in our experience, for these kinds of problems, such methods do not
show a clear advantage over simple count-based heuristics; in addition, they
are much more complex to implement. Our approach to model selection was
chosen for simplicity and speed.

Probably the key aspects of our work that distinguish it from [16, 15]
are the use of a varying number of basis elements, and our approach to
computing the basis matrices Wn. This approach approximates Maximum
Likelihood but is still efficient and is applicable when the basis size is to
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be decided in test time. The preconditioning we use to accomplish this has
the useful side effect that it speeds up the algorithms we use to learn the
parameters d

(s)
n in test time. Some of the ideas used here are derived from

prior work described in [6], which describes an efficient method of updating
the CMLLR transformation for a differently structured GMM-based system
with full covariances.

Below we discuss the ideas behind various aspects of our algorithm. In
Section 4.1 we discuss the preconditioning; in Section 4.2 we describe how we
compute the basis matrices Wn; in Section 4.3 we describe how we compute
the coefficients d

(s)
n , and in Section 4.4 we describe our formula to compute

N(s).

4.1. Preconditioning

In many of our computations it is easiest to think of W as a vector rather
than a matrix, so we define

w = vec (WT ), (15)

where the vec operator stacks the columns, so with the transpose, w is a
row stack of W; the transpose is useful later on. We will implicitly make
use of (15), by making it apply to pairs w and W whenever they share the
same subscripts, superscripts and other modifiers. Consider a second-order
Taylor expansion of (7), taken around w = w0. We write ∆w for (w−w0).
The approximation is written as follows (ignoring constant offsets):

Q(s)(w) ≃ (∆w)Tp(s) − 1
2
(∆w)TH(s)(∆w). (16)

The quantities p(s) and H(s) may be computed from the statistics G
(s)
i , K(s)

and β(s). The idea is to precondition via a change of variables, such that
when written in the new variable, the matrix corresponding to H(s) has good
condition number (i.e. it is close to the unit matrix times a constant). This
is quite straightforward to do. First we define

H =
1

∑

s β(s)

∑

s

H(s), (17)

so H is the average value of the H(s) term (normalized by the number of
frames). Note that this is a D(D+1)×D(D+1) matrix. We do the Cholesky
decomposition

H = CCT , (18)
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with C a lower triangular matrix. We then perform a change of variables by
defining

ŵ = CTw. (19)

Thus we can rewrite (16) as

Q̂(s)(ŵ) = (∆ŵ)T p̂(s) − 1
2
(∆ŵ)T Ĥ(s)(∆ŵ), (20)

(where ∆ŵ ≡ ŵ − ŵ0 and ŵ0 = CTw0), with

Ĥ(s) = C−1H(s)C−T (21)

p̂(s) = C−1p(s). (22)

Thus the new quadratic term averages to the unit matrix (i.e. Ĥ = I).

4.2. Basis computation

The basis computation also relies on the Taylor approximation of (16).
We additionally make the assumption that H(s) ≃ β(s)H (equivalent to
Ĥ(s) ≃ β(s)I). This is reasonable as long as all the speakers are sufficiently
similar. This assumption is necessary in order to reduce the problem to a
Principal Components Analysis (PCA) problem, which is tractable. These
approximations may seem quite crude, but the key is that they make the
basis computation fast. In [15] more exact methods were considered, but
they are not applicable if the basis size is to be decided in test time.

Under these assumptions it is easy to compute a Maximum Likelihood
solution for the basis matrices. The way we formulate the problem is to
ask for a sequence {Wn, 1 ≤ n ≤ D(D+1)}, such that whatever basis
size 1 ≤ N ≤ D(D+1) we choose, the training data likelihood (subject to
our assumptions and approximations) is maximized if we choose the first
N matrices as our basis. Let us consider the problem in its vector form
(i.e. in terms of wn). In order to ensure good conditioning of the auxiliary
function (7) when written in terms of the coefficients dn, we insist that the
transformed form of the vectors (i.e. ŵn) form an orthonormal set. It is not
hard to show that this is without loss of generality. We will consider some
arbitrary but fixed basis size 1 ≤ N ≤ D(D+1), and write ŵ as a sum over
basis elements, i.e.:

ŵ = ŵ0 +
N

∑

n=1

dnŵn. (23)
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Here, ŵ0 is the transformed version of W0 as in (14). We have limited ∆ŵ ≡
ŵ−ŵ0 to the subspace spanned by the vectors ŵn. We will now describe how
we compute the the basis elements ŵn in such a way that they approximately
maximize the objective function for all basis sizes simultaneously.

We first write down the auxiliary function in ŵ without yet applying the
subspace constraint of (23). Rewriting (20) using Ĥ(s) ≃ β(s)I,

Q̂(s)(ŵ) ≃ (∆ŵ)T p̂(s) − 1
2
β(s)(∆ŵ)T (∆ŵ). (24)

It is easy to see that this is maximized by ∆ŵ(s) = 1
β(s) p̂

(s), and that the

corresponding auxiliary function value is 1
2β(s) p̂(s) T

p̂(s). Defining

M̂ =
∑

s

1

β(s)
p̂(s) p̂(s) T

, (25)

we may write the total auxiliary function, summed over all speakers, as
tr (M̂)/2. Suppose we write XN = [ŵ1 . . . ŵN ] to represent a basis of size
N (recall that the ŵn are orthonormal). It is not hard to show that when
limiting ŵ to the form (23), the corresponding total auxiliary function value
is tr (XT

NM̂XN)/2, and that the basis XN that maximizes this can be ob-
tained by doing an eigenvalue decomposition on M̂ and letting ŵn be the
n’th eigenvector of M̂ (ordered from largest to smallest eigenvalue), so that
whatever basis size N we choose, XN always contains the top N eigenvectors.

Thus, with the help of the preconditioning and some additional approxi-
mations, we have reduced the difficult Maximum Likelihood problem consid-
ered in [15] to a much easier problem similar to Principal Components Anal-
ysis (PCA). After computing the vectors ŵn we can reverse the co-ordinate
changes and un-stack the matrix columns to obtain the set {Wn, 1 ≤ n ≤
D(D+1)}.

In order to get to this point, we have had to make the simplifying assump-
tion that the Hessians H(s) for speakers s are all the same, up to a constant
factor. In fact, later on we make a further approximation when computing
the average Hessian, by assuming model correctness (this is for convenience;
we could easily compute the exact average Hessian with an extra pass over
the training data). The reason we feel confident in making these approxima-
tions is that the Hessian is just going into a PCA type of computation where
we compute an ordered list of eigenvectors. These types of computation are
not very sensitive to approximations in the matrix we are decomposing, be-
cause the more important directions of variation will still be represented by
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the leading eigenvectors; the effect of the approximations will generally be
to mix up the eigenvectors with similar eigenvalues (and hence similar rank
ordering), which does not have much effect on the final objective function.

4.3. Test time computation

In test time, the optimization problem is as follows: we are given the
speaker-specific statistics K(s), G

(s)
i and β(s), the basis {Wn, 1 ≤ n ≤

D(D+1)} and a basis size 0 ≤ N(s) ≤ D(D+1) and we need to estimate the

speaker-specific coefficients d
(s)
n of (13).

Our update is iterative. On each iteration 1 ≤ q ≤ Q (where e.g. Q = 10
is a typical number of iterations), we compute the gradient of the auxiliary

function (7) w.r.t. the coefficients {d(s)
n , 1 ≤ n ≤ N(s)} and select a search

direction. In the basic version of our method the search direction is just the
gradient direction; we also describe a modification based on the conjugate
gradient method. Then we do a line search in that direction; our line search
is iterative and based on Newton’s method (in one dimension). We will show
that both our basic method and the conjugate gradient modification converge
very fast.

4.4. Choosing the basis size

The number of coefficients d
(s)
n to use was determined by the following

simple formula:
N(s) = min(⌊ηβ(s)⌋, D(D+1)), (26)

where η is a constant set by hand (e.g. η = 0.2) that determines how many
parameters to add for each new frame of data. The basic justification for
this formula is that the more data we have, the more parameters we can ro-
bustly estimate, and (26) is the simplest formula that captures this heuristic
(D(D+1) is the size of the parameter space).

5. Our Algorithm

In this section we describe the computations involved in our approach, in
a format conducive to replicating our results. In Section 5.1 we describe how
we compute the preconditioner, i.e. the cholesky matrix C. In Section 5.2 we
describe how we compute the basis matrices Wn. In Section 5.3 we describe
how we optimize the coefficients d

(s)
n in test time.
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5.1. Training time: computing the preconditioner

In order to compute the basis matrices we first need to compute the
Cholesky factor C of (18). In order to do that we need to compute the
average per-frame negated Hessian H of (17). It is possible to do so directly
from (17), given the quantities H(s) which may be computed from per-speaker
adaptation statistics. In fact, for convenience and to avoid an extra pass over
the data we did this a different way, via an approximation in which we assume
model correctness. We compute the expected values of the G statistics of (8),
as follows:

Ḡi ≡
1

∑

s β(s)
G

(s)
i (27)

≃
∑

j,m

P (j, m)
1

σ2
jm(i)

(

µ+
jm µ+

jm

T
+ Σ+0

jm

)

, (28)

where P (j, m) is the occupation probability for mixture m of state j, µ+
jm =

[µjm , 1], and the notation Σ+0
jm means the variance Σjm extended with an

extra row and column equal to zero. The quantity P (j, m) may be computed
as P (j, m) = P (j)cjm where P (j) is the occupation probability of state j,
and cjm are the Gaussian mixture weights; however, we just used P (j) = 1/J
where J is the number of states.

Looking at the auxiliary function (7), we see that there are two terms
that contribute to the second derivative w.r.t. w: the log determinant term
and the term involving the matrices Gi. We will write

H = H(1) + H(2), (29)

where H(1) arises from the log determinant term and has elements given by:

h
(1)
((i−1)(D+1)+j),((k−1)(D+1)+l) = δ(i, l)δ(j, k). (30)

for 1 ≤ i, j, k, l ≤ D, where the elements of H(1) that are not covered by
this formula are equal to zero. This can be computed as follows: first set
H(1) := 0 and then1 for 1 ≤ i, j ≤ D, set h

(1)
((i−1)(D+1)+j),((j−1)(D+1)+i) := 1.

The second term H(2) is given by:

H(2) = diag (Ḡ1, Ḡ2, . . . , ḠD), (31)

1To minimize the probability of error: in zero-based indexing, the procedure becomes:

for 0 ≤ i, j < D, set h
(1)
(i(D+1)+j),(j(D+1)+i) := 1.
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where we approximate Ḡi using (28), and we interpret diag here in the
obvious way. The reason for the transpose in w = vec (WT ) is to get this
block diagonal structure. After obtaining H from (29) we compute C as
in (18).

5.2. Training time: computing the basis

After computing the preconditioner C, we need to compute the basis ma-
trices Wn. These are computed via PCA on the matrix M̂ ∈ R

D(D+1)×D(D+1)

defined in (25) as a weighted scatter of auxiliary function gradients. In fact
we find it more convenient to compute a matrix M defined in terms of the
un-transformed gradients p(s), and convert it into the transformed space
afterwards. Thus, we compute for each speaker s in the training set, the
quantity:

p(s) =
∂Q

∂w(s)

∣

∣

∣

∣

w
(s)=w0

(32)

= vec














K(s) + β(s) [I ; 0] −







g
(s)
11
...

g
(s)
DD













T








(33)

where by g
(s)
ii we mean the i’th row (or column) of G

(s)
i . Note that this is a

specialization of a more general expression we use later as (38); here, we use
W0 = [I ; 0] to simplify. We then accumulate the quantity M as:

M =
∑

s

1

β(s)
p(s) p(s) T

, (34)

and then compute M̂ = C−1MC−T . As mentioned, the basis vectors wn

correspond to the eigenvectors of M̂, but the Singular Value Decomposition
(SVD) is more convenient to implement in software, so we do the decompo-
sition:

M̂ = ULVT (35)

in which we require that the diagonal matrix L be sorted from greatest to
least value. Since M̂ is positive semi-definite, we have that M̂ = ULUT ; the
columns of U are the eigenvectors of M̂ and the diagonal elements of L are
the corresponding eigenvalues. The basis matrices {Wn, 1 ≤ n ≤ D(D+1)}
are given by:

vec (WT
n ) = C−Tun, (36)
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where un is the n’th column of U. The only quantities that we need to retain
from training time are these basis matrices.

5.3. Test time: optimizing the coefficients

Here we describe the update phase of one E-M iteration in test time.
The statistics accumulation and the overall E-M process are the same as
previously described, e.g. [4]. We describe the update for a generic speaker
s, and we will drop the superscript ·(s) in this section to avoid cluttering the
equations. The situation is as follows: we are given the speaker’s statistics
K and {Gi, 1 ≤ i ≤ D}, and the data-count β: see Eqs. (8) to (10). We have
the stored basis matrices {Wn, 1 ≤ n ≤ D(D+1)}. We are also given an
initial version of the speaker’s adaptation matrix W: if this is the first E-M
iteration this will equal W0 = [I ; 0], but otherwise it will be the quantity
estimated on the previous iteration. We use (26) to compute the speaker-
specific basis size N(s).

The process we describe here is an iterative optimization of the coefficients
d

(s)
n . For iterations 1 ≤ q ≤ Q we compute the gradient w.r.t. the coefficients,

compute the search direction (which may be the gradient direction or may be
determined by the conjugate gradient method), and then iteratively compute
an optimal step-size in that direction using Newton’s method. However, in
our algorithm the quantities d

(s)
n become implicit and we deal directly with

the matrix W.
We now describe the algorithm. The four phases below are to be done in

turn for each iteration 1 ≤ q ≤ Q.

5.3.1. Check auxiliary function

For diagnostic purposes, on each iteration q we compute the auxiliary
function (7). If this decreases on any iteration, it indicates an implementation
error (very small decreases may be due to roundoff).

5.3.2. Compute auxiliary function gradient

Next we compute a quantity P ∈ R
(D×(D+1)) which is the derivative of (7)

w.r.t. W. First we compute S ∈ R
(D×(D+1)) which is the contribution of the

quadratic term of (7) to the derivative, as follows:

si := Giri, (37)
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where si and ri are the i’th rows of S and W respectively, viewed as column
vectors. We can then compute:

P := β
[

A−T ; 0
]

+ K − S, (38)

where A corresponds to the first D columns of W.

5.3.3. Compute step direction

The step direction, represented as a change in W, is a matrix ∆ ∈
R

D×(D+1). If using the simple gradient-based method, this is computed as:

∆ :=

N(s)
∑

n=1

tr (WT
nP)Wn. (39)

The reader may notice that ∆ does not equal the gradient of the auxiliary
function (or we would have ∆ = P), but when the equations are written in

terms of the coefficients d
(s)
n it is equal to the gradient; alternately, it may be

viewed as a “preconditioned” gradient.
If we are using the conjugate gradient modification, we use the symbol

D for the (preconditioned) gradient, and ∆ for the step direction. In the
conjugate gradient version of the algorithm, we do:

D :=

N(s)
∑

n=1

tr (WT
nP)Wn. (40)

If q = 1 (we are on the first iteration), we set:

∆ := D (41)

D̄ := D, (42)

where the variable D̄ is used to store the gradient direction from the pre-
vious iteration, as required by the conjugate gradient method. Otherwise
(q > 1) we make the following application of the Polak-Ribière formula with
“restarting” (see [13]):

b := max

(

0,
tr (DTD) − tr (DT D̄)

tr (D̄T D̄)

)

(43)

∆ := D + b∆ (44)

D̄ := D. (45)

The variables D̄ and ∆ must be retained between iterations.
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5.3.4. Compute optimal step size, and update matrix

We will take a step W := W + k∆ for a positive scalar k. Here we
describe how we optimize k. We use Newton’s method, and check on each
iteration that the auxiliary function has not decreased. Note that if the
preconditioning is accurate we expect k ≃ 1, at least in an order-of-magnitude
sense, so that k ≪ 1 or k ≫ 1 may indicate problems.

Before the iterations of Newton’s method, we compute the following scalar
quantities:

b := tr (∆KT ) − tr (∆ST ) (46)

c :=

D
∑

i=1

δT
i Giδi, (47)

where δi is the i’th row of ∆, viewed as a column vector. We are maximizing
the auxiliary function:

Q(q)(k) = β log | det(A + k∆1:D)| + k b − 1
2
k2c (48)

which is (7) written in terms of k, where the superscript ·(q) is to remind
us that the quantities we use to define this function depend on the iteration
index q (we have omitted the iteration index q from variables used in the
algorithm in order to make it clearer how to implement this method). Note
that ∆1:D represents the first D columns of ∆. We compute k iteratively,
starting from k = 0, for iterations 1 ≤ r ≤ R (we used R = 3 as this converges
very fast). On each iteration r we compute the following quantities:

N := (A + k∆1:D)−1∆1:D (49)

d1 := βtr (N) + b − kc (50)

d2 := min
(

−βtr (NN) − c,−
c

10

)

(51)

where d1 and d2 are the first and second derivatives of (48) w.r.t. k. In
the expression for d2, the first term in the min expression corresponds to
the actual second derivative and the second term is a floor to avoid the
theoretical possibility of a positive second derivative which would lead to the
wrong direction of update (in fact, in our experiments the second half of the
min expression was never taken). We then generate a candidate new value
of k:

k̂ := k − d1/d2. (52)
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We evaluate (48) for k and k̂. If Q(q)(k̂) < Q(q)(k), then we have overshot
and we need to reduce the step size by setting

k̂ := (k̂ + k)/2. (53)

This should happen rarely; if it does, we keep checking the auxiliary function
and while Q(q)(k̂) < Q(q)(k) we repeat (53). However, there should be a
maximum number of repetitions of this (e.g. 10) because numerical roundoff
can cause spurious failures of the auxiliary function check if we are close to
convergence; if the maximum number is reached we leave k unchanged and
terminate the loop over r. Otherwise, once the check succeeds we set k := k̂
and continue the loop over r.

After computing k we take the step W := W + k∆.

6. Experimental Results

6.1. System description

6.1.1. Common system features

We used two systems to evaluate our technique. Both use cross-word tri-
phone context dependency, with standard phone context clustering and three-
state left-to-right HMMs. The features are 13-dimensional MFCCs with ∆,
∆∆ and ∆∆∆ (i.e. deltas, accelerations and third derivatives), reduced in
dimension with HLDA. The frame shift is 10ms. We use cepstral mean nor-
malization; in test time this is applied in an on-line fashion. We do not
use Vocal Tract Length Normalization (VTLN), but rely instead on gender-
dependent models. To obtain these we train gender-independent models and
further train these for four more E-M iterations on only male or female data.
After this we perform discriminative training. The gender-independent mod-
els are used in the first pass of decoding to obtain the supervision hypothesis
and the corresponding phone-level alignment.

6.1.2. Interactive Voice Response (IVR) system

Our first system is a speaker-independent interactive voice response (IVR)
system, geared towards telephone applications with short utterances. The
training data consists of 7500 hours of speech, mostly voice search data
recorded over the telephone but also read speech. This is doubled to 15 000
hours of speech by duplicating the data and applying cepstral mean normal-
ization either at a per-utterance or per-session level. The average length of

17



training utterances is 5.3 seconds. The feature dimension after HLDA is 36.
Each of the three (GI, male and female) models has 9116 clustered states with
on average 46 Gaussians per state. The models were trained with Minimum
Classification Error (MCE) [9]. The test set contains three subsets consisting
of digits, city-state pairs and stock names, totaling 20 hours of speech, with
21K words and an average utterance length of 3.4 seconds. Such a large test
set is necessary because the WERs in this domain are very low, particularly
for digit strings.

6.1.3. Enhanced Voice Mail (EVM) system

This is an LVCSR system that is tested mostly on longer utterances. The
system architecture is as before but with 33 dimensional feature vectors and
MMIE [17]. The number of clustered states is 10144, with on average 47
Gaussians per state. The training data consists of 1700 hours of read speech
with an average utterance length of 5.3 seconds, plus 130 hours of voicemail
recordings with an average utterance length of 35.3 seconds; the statistics
from the voicemail are weighted by a factor of 20 in training (equivalent to
replicating the voicemail training data 20 times). We present test results
averaged over five different sources of voicemail test data, totaling 507 ut-
terances with 4 hours of speech in total. The average length of the test
utterances is 28.4 seconds.

6.1.4. Data subsets

IVR EVM
Min Duration 1.2 2.9 4.7 6.4 2.8 20.2 37.6 72.3
Max Duration 2.9 4.7 6.4 15.1 20.2 37.6 72.3 176.5
Mean Duration 2.2 3.8 5.4 7.7 11.6 28.1 51 101

#Words 29K 22K 30K 12K 7K 11K 12K 6.5K
#Utterances 12.6K 3.7K 3.5K 1.4K 210 138 81 23
Length (h) 7.8 3.9 5.2 2.9 0.68 1.08 1.14 0.64

%WER (Unadapted) 5.64 1.63 0.65 0.98 32.8 31.4 33.3 35.8

Table 1: Utterance duration bins: definition, length and baseline WERs

In order to see how our technique performs on different utterance lengths,
we broke up the IVR and EVM test sets into four subsets each, correspond-
ing to different duration bins. The bins were generated by initializing them
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as equal-sized duration intervals and then merging bins as necessary to have
a specified minimum number of words in each. Table 1 shows the minimum,
maximum and mean utterance length for each of these bins, along with the
baseline (unadapted) Word Error Rates in each bin. There is a very large
variation in Word Error Rates because different bins are dominated by differ-
ent types of test data. In particular, the longer IVR bins are dominated by
digits which have very low error rates. We will also show results separately
for IVR digits; this is a 10.5 hour test set with average utterance duration of
5.5 seconds, and the baseline (unadapted) Word Error Rate is 0.85%.

6.2. Details of adaptation setup

Here we describe some details of our process for collecting CMLLR statis-
tics and for speaker-adapted decoding; these apply both to our baseline and
experimental methods. All our adaptation is done per utterance, i.e. we
assume that each utterance corresponds to a unique speaker. This arises
from the nature of the products that these test setups correspond to: the
identity of a caller over the telephone will generally not be known with cer-
tainty. We apply the CMLLR estimation (in both the baselines and our
technique) in a segment-wise online fashion. That is, we divide the utter-
ances up into segments and the CMLLR estimation for each segment only
sees the statistics for that segment and preceding segments. For the statistics
accumulation, the CMLLR transform estimated from the previous segments
is used for within-phone alignment (the phone-level segmentation is fixed by
the first pass decoder). The segmenter is tuned to give about three segments
per utterance. Assuming equal length segments, for an utterance of length
T the number of frames used to estimate the CMLLR would be T/3, 2T/3
and T for the three segments respectively. The average is 2/3T , so we can
approximate the effect by a correction factor of 2/3 on our utterance lengths.
However, the utterance lengths we quote are the real lengths.

All of our CMLLR implementations are set to only adapt if statistics cor-
responding to more than 1.5 seconds of speech are available. In our shortest-
duration bin (left column of Table 1), only 1% of utterances are shorter than
this, so this will have only a small effect on our results.

We only do one iteration of E-M in the sense that for each segment we
only do the statistics accumulation and update once, but because of the
on-line aspect the effect is somewhat similar to multiple iterations. For the
baseline CMLLR optimization we used ten iterations in the update phase.
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The only tunable parameters of our algorithm are the proportionality con-
stant η, the number of outer iterations Q and the number of inner iterations
R. Unless stated otherwise, we used η = 0.2, Q = 10 and R = 3 (and we used
the gradient, not conjugate gradient, version of the test-time computation).

6.3. Baselines

The baseline adaptation strategies we compare against are “full CMLLR”,
which refers to CMLLR estimated in the standard way, “block-diagonal CM-
LLR”, in which the matrix A is block diagonal with three equal-sized blocks,
and “diagonal CMLLR” where A is diagonal. The use of the block-diagonal
structure originated with systems that use MFCC+∆+∆∆ coefficients, and
with HLDA features there is no special meaning to the three blocks; how-
ever, it seems to work in practice. We also compare with fMAPLR [11], for
which we use a separate full-covariance Gaussian for each row; we extend it
by putting a scale on the log prior term and tuning the scale. For the IVR
system our fMAPLR is applied to block diagonal CMLLR with 3 blocks, and
for the EVM system we use a full matrix; this choice was made to optimize
WER. The prior used for fMAPLR in the 3-block case is a full-covariance
Gaussian that models the non-zero part of each row, which is a vector of
dimension D/3 + 1.

Because the estimation of the prior in fMAPLR did not seem to work
well with short training utterances, we trained the fMAPLR prior only on
relatively long utterances. For the IVR system we used 4000 utterances
containing digits, since these are well matched to the test set and are longer
than the other types of test data. These utterances were not in the test set.
We used the same utterances to train the basis matrices for our method. For
the EVM system, we used the 130 hours of voicemail training data to train
the fMAPLR prior and the basis matrices. We always treat each utterance
as a separate speaker. For training the fMAPLR prior and the basis, we used
the same feature extraction (with on-line cepstral mean normalization) that
is used in test time.

6.4. Technical issues and tuning

Fig. 1 displays the sorted singular values of the matrix M̂ that was accu-
mulated for training the basis for the IVR system. The singular values were
divided by twice the number of frames in these utterances to get a per-frame
log likelihood quantity; for an explanation of the factor of 1

2
see the text af-

ter Eq. (25). We display the absolute and cumulative singular values. From

20



0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e 

S
in

g.
 V

al
.

Dimension

0

0.05

0.1

0.15

0.2

0 200 400 600 800 1000 1200 1400

S
in

gu
la

r 
V

al
ue

Figure 1: Singular values for basis training (IVR)
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Figure 2: Convergence of update phase: three randomly chosen utterances

the cumulative plot, it is clear that about half the “energy” is in the first
75 or so singular values. The total cumulative value (about 3.25) is roughly
comparable to the amount of log-likelihood improvement we would get on
these utterances without any dimensionality reduction. A similar plot for
the EVM data (not shown) has even more energy concentrated in the first
singular values.

Fig. 2 shows the convergence of the iterative update phase for three ran-
domly chosen utterances, against iteration q. We show this for both the
baseline and conjugate-gradient updates. It can be seen that the conjugate
gradient method converges faster than the baseline method, with about the
same auxiliary function after 5 iterations that the baseline reaches after 10.
Word Error Rates were also measured for the baseline and Conjugate Gradi-
ent methods, for various numbers of iterations, and these results (not shown)
broadly reflect the auxiliary function behavior visible in the graph. Results
in this paper are with the baseline (not Conjugate Gradient) method with
Q = 10 iterations, and R = 3 inner iterations.
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Proposed Baseline
Method Full 3-Block Diagonal

IVR (Digits) 5.75% 35.1% 1.84% 0.45%
EVM (Voicemail) 0.10% 0.68% 0.03% 0.01%

Table 2: Time taken in CMLLR update phase (% of total CPU)

Table 2 shows the time taken in the update phase of the different CMLLR
update methods, as a percentage of total CPU (the time taken for accumula-
tion is the same for all methods in our code, since we always accumulate the
same statistics). We do not show the fMAPLR based methods since the time
taken is the same as the corresponding baseline CMLLR update. The time
taken is a much larger percentage of total CPU for the digits task than for
voicemail, because of differences in search speed and utterance length. The
average lengths of the digits and voicemail utterances we used for this test
were 5.8 seconds and 35.4 seconds respectively. For these amounts of data
our method is faster in test time than the traditional CMLLR update. We
expect our method to get closer to the speed of the traditional approach as
the amount of adaptation data becomes very large, since both methods are
O(D4) per iteration in this case. The total real-time factor for IVR is 0.22
(i.e. faster than real time), and for EVM it is 1.33; these figures include two
decoding passes.

Fig. 3 relates to tuning the proportionality factor η used to control the
per-speaker basis size N(s), on IVR digits. The best factor is η = 0.2. Fig. 4
shows the same for EVM, but this time we compare with tuning a fixed basis
size N that does not depend on the utterance length. Again the best factor
is η = 0.2, and this is better than any fixed basis size. The fact that the
same value of η works well in domains with very different average utterance
lengths confirms to us that our linear rule of (26) is reasonable. On IVR
we did not see any clear difference between choosing a fixed versus adaptive
basis size, probably because the range of utterance durations is much smaller.
Fig. 5 investigates tuning the scale on the log prior in fMAPLR, for EVM.
The optimal scale appears to be about 2.5, and we used this for EVM (for
IVR, the optimized scale was 5).

6.5. Main results

Our main results are in Fig. 6. This shows the relative WER improvement
of various CMLLR adaptation strategies, compared with using no CMLLR
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adaptation, for the duration bins described in Table 1. It can be seen that
our method is generally best, followed by fMAPLR, followed by standard
CMLLR; depending on the utterance length, either full, block-diagonal or
diagonal CMLLR was best. The points on the left half of the graph are from
IVR, and those on the right half are from EVM. Note that in this graph,
the fMAPLR line does not represent a single technique: on the left half, it
is block diagonal, and on the right half it is the full transform. However,
this does roughly represent “the best we can do with fMAPLR”. The line
with full CMLLR (triangles) substantiates our claim in the introduction that
CMLLR does not give improvements below about five seconds of data.

Note that the various bins of data are at very different absolute WERs
(see Table 1, last row), and the relative improvements tend to be higher when
the absolute WER is low. This explains the wide variations seen in Fig. 6.
Until about 20 seconds of adaptation data, our technique gives a substantial
improvement over fMAPLR and the other baselines, and after that the dif-
ferences are small. In addition, for less than about 3 seconds of data (first
bin), none of the adaptation methods give very much improvement. The im-
provement that our method gives versus CMLLR is greatest between about
5 and 15 seconds of speech. For less than 20 seconds of speech our technique
gives more than twice the improvement of fMAPLR, taking CMLLR as the
baseline. For 20 seconds or more, the differences are small.

As mentioned in Section 6.2, the online manner in which the CMLLR
transforms are estimated can be approximated by a factor of 2/3 on the ut-
terance length, so we should modify our statements above when generalizing
to systems in which the CMLLR is estimated after seeing the whole utter-
ance. With this correction, we anticipate that the greatest improvement from
our method will be between about 3 and 10 seconds of adaptation data.

Baseline IVR, W per bin EVM, W per bin
CMLLR 2.56 2.83 3.89 3.81 3.87 1.78 1.21 0.39
fMAPLR 1.10 1.61 1.94 2.60 1.14 1.93 0.43 0.07

Two-sided significance levels (if ≥ 85%)
CMLLR 98.95% 99.53% 99.99% 99.99% 99.99% 92.5% - -
fMAPLR - 89.26% 94.76% 99.07% - 94.6% - -

Table 3: Significance results per bin, our method versus selected baselines
(W statistic)
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Significance tests per bin are given in Table 3, in terms of the statistic W
of the matched-pair test of [7], which is a number of standard deviations; W
is signed but is always positive here because our method was always better).
We also provide significance levels, where relevant. The columns correspond
to the duration intervals defined in the corresponding columns of Table 1, and
also correspond to the points in Fig. 6, in order from left to right. These are
pairwise significance tests, in which we compare our method to CMLLR and
fMAPLR. If we pool the data for each task, for IVR and EVM respectively
(the left four and right four bins of the table), the improvements versus
CMLLR are significant, in the two-tailed sense, to 99.99% and 99.95%, and
versus fMAPLR to 99.07% and 93.71%.

7. Conclusions

We have described a practical algorithm for estimating Constrained MLLR
transforms robustly by training a set of basis matrices and, in test time,
restricting the estimated matrix to a leading subset of the basis matrices.
Stated very crudely, our method reduces the amount of adaptation data that
is needed to obtain a substantial improvement, from about 10 seconds to
about 3 seconds. We have shown that it gives significant improvement ver-
sus the next best baseline we tested, fMAPLR, and is faster than conventional
CMLLR.
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