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Abstract

This paper investigates the use of discriminative schemes based
on the maximum mutual information (MMI) and minimum phone
error (MPE) objective functions for both task and gender adap-
tation. A method for incorporating prior information into the
discriminative training framework is described. If an appropri-
ate form of prior distribution is used, then this may be imple-
mented by simply altering the values of the counts used for pa-
rameter estimation. The prior distribution can be based around
maximum likelihood parameter estimates, giving a technique
known as I-smoothing, or for adaptation it can be based around
a MAP estimate of the ML parameters, leading to MMI-MAP,
or MPE-MAP. MMI-MAP is shown to be effective for task adap-
tation, where data from one task (Voicemail) is used to adapt a
HMM set trained on another task (Switchboard). MPE-MAP is
shown to be effective for generating gender-dependent models
for Broadcast News transcription.

1. Introduction
In recent years the use of discriminative training techniques
such as Maximum Mutual Information Estimation (MMIE) have
been shown to outperform conventional Maximum Likelihood
Estimation (MLE) for large vocabulary HMM-based speech recog-
nition [8]. However adaptation techniques for these models
such are still generally based on MLE: for instance, Maximum
Likelihood Linear Regression (MLLR) and Maximum A Pos-
teriori (MAP) adaptation. While it has been shown that MLLR
can be effective for speaker adaptation of MMI-trained models
[8], and that conventional MAP can be effective for task adapta-
tion of MMI-trained models [1], it is interesting to investigate if
there are additional benefits from the use of discriminative ob-
jective functions in adaptation. Previous work in discriminative
adaptation includes a MAP-type scheme described in [4] and
discriminative transform estimation [7].

This paper describes a framework, originally discussed in [6],
for incorporating prior information into the estimation of model
parameters via the use ofweak-senseauxiliary functions. Using
the appropriate prior distribution, the MAP adaptation for stan-
dard MLE (ML-MAP) may be viewed as simple count smooth-
ing in contrast to the standard MAP scheme described in [2].
Furthermore, using weak-sense auxiliary functions it is simple
to extend the MAP scheme to incorporate discriminative train-
ing criteria. This again results in smoothing the usual discrimi-
native update counts with the prior counts.

The paper is arranged as follows. In Section 2 the concept
of weak-sense auxiliary functions are described. Section 3 de-
scribes how prior information can be incorporated into the pa-
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rameter estimation and describes specific discriminative MAP
schemes. Section 4 presents the experimental results.

2. Weak-Sense Auxiliary Functions
The discriminative MAP procedures used in this paper are de-
rived using weak-sense auxiliary function [6]. The theory be-
hind the use of these functions is described in the next section.
It is then shown how it may be applied to MMI training.

2.1. Strong- and Weak-Sense Auxiliary Functions

In [6] strong-sense and weak-sense auxiliary functions were de-
scribed. The attributes of these functions are briefly summarised
below. In this paper̂λ is used to represent the current model pa-
rameters andλ the parameters to be estimated.

• Strong-senseauxiliary function: a functionG(λ, λ̂) is
a strong-sense auxiliary function for a functionF(λ)
aroundλ̂, if

G(λ, λ̂)− G(λ̂, λ̂) ≤ F(λ)−F(λ̂), (1)

whereG(λ, λ̂) is a smooth function ofλ. This is the stan-
dard form of auxiliary function used in expectation max-
imisation. Maximisation of the auxiliary is guaranteed to
not decrease the value ofF(λ), and hence iterative use
of auxiliary functions around each new parameter esti-
mate will find a local maximum of the function.

• Weak-senseauxiliary function: a functionG(λ, λ′) is a
weak-sense auxiliary function for a functionF(λ) around
λ̂, if

∂
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G(λ, λ̂)
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∂
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F(λ)

����
λ=λ̂

. (2)

The condition of being a weak-sense auxiliary function
can be considered a minimum condition for an auxiliary
function to be useful for optimisation. If the objective
function has a maximum at̂λ, the weak-sense auxiliary
function is also bound to have its maximum atλ̂. How-
ever, in contrast to the strong-sense auxiliary function in-
creasing the value of the weak-sense auxiliary does not
necessarily increase the value of the original.

Despite the limitations of weak-sense auxiliary functions com-
pared to strong-sense functions,there are advantages to their
use. The primary advantage is that a weak-sense function may
be specified for many situations where strong-sense functions
cannot be used. As weak-sense auxiliary functions do not guar-
antee an increase in the original function, they are comparable
to standard gradient descent techniques. However, the advan-
tage of using a weak-sense auxiliary function is that there is no



need to determine the appropriate learning rate, or use second-
order statistics. The weak-sense auxiliary function may be se-
lected so that it has a simple closed-form for the parameter esti-
mation. Normally these will need to be smoothed in some form
to try to ensure that the value of the original function increases.

There are thus two functional forms to select when using
weak-sense auxiliary functions. First the auxiliary function of
the function to be optimised is required. Second an appropriate
form of smoothing function is required; it must be some func-
tion with its maximum at̂λ.

2.2. Weak-sense auxiliary functions for MMIE

This section describes how a weak-sense auxiliary function may
be used to optimise the MMI criterion for training HMMs and
how, given the appropriate smoothing function, it yields the
standard extended Baum-Welch (EBW) update rules. Consid-
ering only a single training utterance,O = {o1, . . . ,oT } and
using a fixed language model1, the MMI criterion may be ex-
pressed as

F(λ) = log p(O|Mnum)− log p(O|Mden) (3)

whereMnum andMden are HMMs corresponding to the cor-
rect transcription (numerator term) and all possible transcrip-
tions (denominator term) respectively. It is not possible to de-
fine a strong-sense auxiliary function for this expression, since
the second term is negative. Therefore the inequality of equa-
tion (1) will no longer hold. However, it is possible to linearly
combine individual weak-sense auxiliary functions to form an
overall weak-sense auxiliary function, even when there is nega-
tion.

As a strong-sense auxiliary function is by definition also a
weak-sense auxiliary function, it is natural to use the standard
strong-sense auxiliary function associated with ML estimation
as an appropriate form for the weak-sense auxiliary function.
Thus a possible weak-sense auxiliary function for the numera-
tor term (considering a single Gaussian per state with a single
dimension) is

Gnum(λ, λ̂) =
TX

t=1

JX
j=1

γnum
j (t) log (pλ(ot|sj))

=
JX

j=1

Q(γnum
j , θnum

j (O), θnum
j (O2), λj)(4)

whereλj = {µj , σ2
j },

Q(γj , θj(O), θj(O2), λj) =

−1
2
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j
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j

�
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sj indicates statej of the system,γj(t) is the posterior proba-
bility of being in statesj at timet given λ̂, and the sufficient
statistics to evaluate the function for the numerator are given by
θnum

j (O) =
PT

t=1 γnum
j (t)ot, θnum

j (O2) =
PT

t=1 γnum
j (t)o2

t

andγnum
j =

PT
t=1 γj(t) the occupancy of the state. Similarly

the auxiliary function for the denominator term alone can be
defined. These two may then be combined to yield a candidate
weak-sense auxiliary function for the MMI criterion.

1This is sometimes known as conditional maximum likelihood train-
ing.

As previously mentioned, in order to improve stability of
the training process, a smoothing function,Gsm(λ, λ̂), can be
added. This may be any function with a zero differential w.r.t.
λ around the current estimateλ = λ̂. As such combining this
with any weak-sense auxiliary will still be a valid weak-sense
auxiliary function. Hence, for MMIE the complete weak sense
auxiliary function will have the form

Gmmi(λ, λ̂) = Gnum(λ, λ̂)− Gden(λ, λ̂) + Gsm(λ, λ̂). (6)

One possible form forGsm(λ, λ̂) is to useDj “effective” obser-
vations which yield the current state parameters,λ̂, as the ML
estimate, thus automatically satisfying the requirements for the
smoothing function. This may be written in the same form as
equation (4)

Gsm(λ, λ̂) =
JX

j=1

Q(Dj , Dj µ̂j , Dj(µ̂2
j + σ̂2

j ), λj), (7)

whereDj are positive smoothing constants for each statej. The
above analysis can be simply extended for multiple Gaussian
components per state.

Optimising the weak-sense auxiliary function simply re-
quires combining the sufficient statistics for each of the individ-
ual auxiliary functions. The global maximum ofGmmi(λ, λ̂)
for the mean and variance of componentm of statej are given
by

µjm =

�
θnum

jm (O)− θden
jm (O)

	
+ Djmµ̂jm�

γnum
jm − γden

jm

	
+ Djm

(8)
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γnum
jm − γden

jm

	
+ Djm

− µ2
jm

(9)

whereDjm is set on a per-Gaussian level as described in [8] and
determines the convergence-rate and stability of the update rule.
These are the standard update rules obtained from the extended
Baum-Welch (EBW) algorithm [3], though derived using weak-
sense auxiliary functions. Similarly, update equations may also
be derived for the component priors and transition probabilities.

3. Incorporating Prior Information
In this section the incorporation of a prior into the weak-sense
auxiliary function framework is discussed. The derivation of
I-smoothing and discriminative MAP based on MMI (MMI-
MAP) and MPE (MPE-MAP) is described.

By definition, any function is both a weak and strong-sense
auxiliary function of itself around any point. Thus it is pos-
sible to add any form of log prior distribution over the model
parameters to a weak-sense auxiliary function and still have a
weak-sense auxiliary function for a MAP version of the origi-
nal function. Adding a log-prior to the MMI criterion yields

F(λ) = log p(O|Mnum)− log p(O|Mden) + log p(λ)
(10)

The extra term can be directly added to the associated weak-
sense auxiliary function leading to

G(λ, λ̂) = Gmmi(λ, λ̂) + log p(λ). (11)

The exact form of the log-prior distribution affects the nature of
the MAP update. One of the major issues, and choices, in MAP
estimation is how to obtain this prior distribution.



3.1. I-smoothing

I-smoothing for discriminative training [5] may be regarded as
the use of a prior over the parameters of each Gaussian, with the
prior being based on the ML statistics. The log prior likelihood
is defined as

log p(λjm) = Q
�

τ I , τ I θnum
jm (O)
γnum

jm
, τ I θnum

jm (O2)
γnum

jm
, λjm

�
(12)

This log-prior is the log-likelihood ofτ I points of data with
mean and variance equal to the numerator (correct model) mean
and variance. The MMIE update formula for the mean is then

µjm =
{θnum

jm (O)− θden
jm (O)}+ Djmµ̂jm + τ Iµml

jm

{γnum
jm − γden

jm }+ Djm + τ I
(13)

whereµml
jm =

θnum
jm (O)
γnum

jm
.

I-smoothing can also be directly implemented by altering
the numerator statistics [6]. A similar form of prior with MPE
training yields I-smoothing for MPE.

3.2. MMI-MAP

In the context of adapting a HMM set, the use of ML statistics
accumulated from the adaptation data as the center of the prior
may not be robust since there may not be enough data to esti-
mate the ML Gaussian parameters. In this case it is preferable
to estimate the center of the prior in a fashion similar to stan-
dard ML-MAP. The technique denoted MMI-MAP is the use of
ML-MAP estimates of the Gaussian parameters to estimate the
centre of a prior used to smooth the MMI-trained parameters.
MMI-MAP has two distinct levels of operation.

In the first level of MAP the unadapted mean and variance
µ̃jm and σ̃jm are used as the prior, and the numerator (ML)
statistics as the adaptation data. The parameters are effectively
estimated by using count smoothing, related to the weak-sense
auxiliary functions described here, rather than the ML-MAP de-
scribed in [2]. The expressions for the ML-MAP mean and vari-
ance are:

µmap
jm =

θnum
jm (O) + τ µ̃jm

γnum
jm + τ

(14)

σmap
jm

2 =
θnum

jm (O2) + τ(µ̃2
jm + σ̃2

jm)
γnum

jm + τ
− µmap

jm
2.(15)

The ML-MAP parameters are then used to generate the prior
for the second level of MMI-MAP. The count weighting for this
prior is set using an additional variableτ I . The estimate of the
MMI-MAP mean is given by

µjm =
{θnum

jm (O)− θden
jm (O)}+ Djmµ̂jm + τ Iµmap

jm

{γnum
jm − γden

jm }+ Djm + τ I
(16)

As with MMI training, this is an iterative process. At each stage
the values ofµmap

jm andσmap2
jm are updated to reflect the changes

in the numerator statistics.
The two free variables associated with MMI-MAP,τ and

τ I , have different effects.τ determines the center of the prior
distribution for MMI-MAP. The smaller the value ofτ the closer
the prior distribution is to the ML model estimates. The value
of τ I determines the weight of the prior in the discriminative
update. The largerτ I is the closer the update will be to the
prior distribution used. The value ofτ I is typically in the same
range as used for I-smoothing (e.g. 100) andτ is normally in
the range used for ML-MAP (e.g. 10).

3.3. MPE-MAP

In MPE [5], as for MMI, the auxiliary function to be optimised
is represented in the form given in equation (11); but the statis-
ticsγnum

jm , γden
jm etc. are accumulated from the training data in a

different way as described in [5]. The combination of the aux-
iliary function with the prior distribution used in I-smoothing
follows the same pattern, with one difference: in MPE the nu-
merator (“num”) statistics are defined differently and do not
correspond to the correct transcription. Therefore, where the
correct-model statistics are needed (e.g., in equation 15) a sepa-
rate set of statistics with the superscript “mle” are used in place
of the “num” statistics; the “mle” statistics are the same statis-
tics used in normal ML training.

4. Experiments
The performance of discriminative MAP was evaluated on two
tasks. The first is to port a well-trained Switchboard system
to the Voicemail task using limited training data. These results
have previously been published in [6] and are summarised in
this paper to allow an overview of the scheme. The second
application examined is to build gender-specific HMMs using
Broadcast News data by discriminative adaptation from gender
independent models.

4.1. Porting Switchboard to Voicemail

Initial Switchboard HMMs were trained used 265 hours of data.
Cross-word state-clustered triphones were generated. The sys-
tem had 6684 distinct states and 16 Gaussians per state. For
further details of the acoustic training see [1]. Two “initial”
models were trained: an MLE-trained system and one discrim-
inatively trained using MMIE. The Voicemail database consists
of voicemail messages left by IBM employees. This data was
partitions into a 94 minute test set and 28.1 hours of training
data. The training data was further partitioned into nested sub-
sets of approximately 1h, 4h, 15h and 20h. See [1] for more
details of the database set-up.

All test set WERs reported here are from testing with a
Switchboard language model (LMs). The baseline acoustic-
model porting used a single iteration of ML-MAP. It was found
that additional iterations yielded no further gains in performance.
MMI-MAP task adaptation used four iterations of model pa-
rameter updates.The various forms ofτ were approximately
tuned, but there was little sensitivity to the precise values used.
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Figure 1: WERs for MMI-MAP and ML-MAP from MMI and
ML baselines against amount of Voicemail adaptation data.



Figure 1 shows the word error rate (WER) when adapting
either an ML or MMI-trained initial HMM set with ML-MAP or
with MMI-MAP. The improvement from using an initial MMI-
trained HMM set is retained if adaptation is with MMI-MAP but
is partly lost with ML-MAP, especially with increasing amounts
of adaptation data. There is 7.5% relative improvement from
ML to MMI on the Switchboard-trained HMM set; the differ-
ence between ML-MAP-adapted ML and MMI-MAP-adapted
MMI with 30h adaptation data is 8.0% relative. So the total im-
provement from discriminative training is 8.0%. Starting from
the MMI-trained model, the improvement from using discrimi-
native adaptation rather than ML adaptation is 4.6% relative.

4.2. Gender Dependent Broadcast News Models

The Broadcast News acoustic model training data consists of
two sub-sets referred to asBNtrain97 andBNtrain98 , re-
flecting the years of their release. The combined set gives a total
of 142 hours of training data [9]. A cross-word state-clustered
triphone system was built using MLE with 6,976 speech states
and 16 Gaussian components per state using MF-PLP param-
eterised speech with static, first and second order differences.
MMIE and MPE trained models were also built. In addition a
gender dependent system was generated using the training data
speaker gender labels and only updating the Gaussian mixture
weights and mean values. All experiments reported below used
single pass decoding without adaptation. The decoder used a
65k word trigram language model which was taken from the
1998 Cambridge University broadcast news evaluation system
[9]. The pronunciation dictionary was based on the 1993 LIMSI
WSJ lexicon with many additions.

System WER (%)
Std HLDA

MLE-GI 19.6 17.9
MLE-GD 18.8 17.1

MMI-GI 17.0 —

MPE-GI 16.2 15.0
→MPE-MAP 15.7 14.5

Table 1: WER onBNeval98 using gender independent (GI)
and gender dependent (GD) models with ML, MMI and MPE
training and also MPE-MAP adaptation to GD models.

The error rates of the gender independent (GI) and gender
dependent (GD) systems on the 1998 NIST Broadcast News
evaluation data (BNeval98 ) is shown in table 1. Initially the
system was tested using the standard front-end. The ML-GD
system reduced the error rate by about 4% relative, 0.8% ab-
solute, over the ML-GI system. Table 1 also shows the perfor-
mance of MMI training and MPE training. Both discrimina-
tive training schemes show significant gains over ML training.
MPE training gave a lower WER than MMI training yielding
a 17% relative reduction in error rate over the MLE-GI system
and 14% over the MLE-GD performance. As GD systems sig-
nificantly reduced the error rate for the MLE system, it would
be useful to generate gender dependent systems for the discrimi-
native models. As the MPE-GI system outperformed the MMI-
GI system, the MPE system was used as the original models
for adaptation and MPE-MAP was applied. Table 1 lists the
error rate for the MPE-GI system adapted with MPE-MAP to
form GD models. These gender-dependent discriminative mod-
els gave an additional 3% relative reduction in WER over the

MPE-GI system.
Table 1 also shows the performance of using the various

training schemes with an HLDA frontend. Here third order dif-
ferences were added to the feature vector and then projected
down to 39 dimensions. The use of HLDA significantly reduced
the WER for all systems. Using MPE-MAP yielded a 0.5% ab-
solute reduction in error rate over the gender-independent sys-
tem. An alternative approach to generating the GD model would
rely on the I-smoothing to perform the regularisation and to sim-
ply do MPE training on the male and female training data sepa-
rately. This gave an error rate of 14.8%, 0.3% higher than using
MPE-MAP.

5. Conclusions
This paper has described techniques for incorporating prior in-
formation into discriminative training schemes. Versions based
on both MPE, MPE-MAP, and MMI, MMI-MAP, have been de-
scribed. It was shown that by using the appropriate form of the
prior, these discriminative MAP schemes may be implemented
by count smoothing. Depending on the exact form of the prior
distribution used, this yields either versions of MAP estimation
or I-smoothing. The discriminative adaptation schemes were in-
vestigated for both task porting, in this case from Switchboard
to Voicemail, and for generating gender dependent models on
the Broadcast News task. In both cases the methods were effec-
tive and allowed the performance advantage of discriminatively
trained HMMs to be retained.
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