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Abstract

This report describes the implementation of a discriminative HMM parameter estimation technique known as Frame
Discrimination (FD) for large vocabulary speech recognition, and reports improvements in accuracy over ML-trained and
MMI-trained models. Features of the implementation include the use of an algorithm called the Roadmap algorithm which
selects the most important Gaussians for a given input frame without calculating every Gaussian probability in the system, a
new distance measure between Gaussian based on overlap (which is used in the Roadmap algorithm), and an investigation of
improvements to the Extended Baum-Welch formulae. Frame Discrimination estimation is found to give error rates at least
as good as MMI with considerably less computational effort.

1 Introduction

Discriminative HMM parameter re-estimation techniques, for example Maximum Mutual Information (MMI), have been
widely reported in the literature to improve recognition results; but there have been relatively few reports of the application of
these techniques to large vocabulary speech recognition. See, for example, [5, 8, 9, 10]. A good part of the reason for this is
the extra computational effort involved in MMI training. In [8, 5], the use of recognition lattices as an approximation to MMI
training was reported, which resulted in a considerable speedup relative to a more naive implementation, but it still took 15
times longer than conventional Maximum Likelihood (ML) training.

A discriminative criterion called Frame Discrimination (FD) was developed in [2]. Its efficient implementation for large
vocabulary speeech recognition (LVCSR) is reported here. To implement FD efficiently the Roadmap algorithm was de-
veloped which finds the Gaussians in the HMM set which best match an input vector (i.e, highest probability), while only
testing a fraction of the Gaussians in the HMM set (in the region of 1-10%). This is done by setting up links, or “roads”
between Gaussians and navigating among them using a hill-climbing algorithm. The links are set up using a new distance
measure, based on overlap of Gaussians. In re-estimating the HMMs the Extended Baum-Welch (EBW) formulae are used,
and improvements to these formulae are proposed and tested here.

The rest of the report is structured as follows: Section 2 introduces the FD objective function; Section 3 details the
optimisation approach used; Section 4 describes the Roadmap algorithm; and Section 5 describes an experimental evaluation
of FD on the speech recognition tests.

2 The FD objective function

The FD objective function is related to the MMI objective function, which was first proposed in [12]. The MMI objective
function is the posterior probability of the speech transcription, given the speech data:
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where
" 
 is the word sequence corresponding to training utterance . and �/� is the composite HMM corresponding to the

word sequence
"

.
� �#"  is the probability of the word sequence

"
, as given by the language model. The MMI objective
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function may be rewritten in terms of the transcription model � � � and the general model of speech production ������� , (which
may be the same as the model used in the speech recogniser), as follows:
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The model � ��� is known as the numerator model, and � �	��� as the denominator model, because the subtraction of logs
may be considered a division.

The FD objective function is an altered form of Equation 2 where the model � ����� has been replaced by a model 
 ,
which allows a superset of the state sequences allowed in � ����� . The hope is that, by allowing these extra state sequences,
the alignment of a given speech frame to the states of the model � ����� will be less dependent on the context of the speech
frame, and more typical of the assignment of states to that frame in the language at large.
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In this report, and in [2], the particular form of frame discrimination used is zero memory frame discrimination. 
 is a zero
memory Markov chain, whose output PDF consists of a weighted sum of all the PDFs in the HMM set so that
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where

� 
 ���  are the vectors of speech data, ! � .  is the length of utterance . , and � �
�"� 
 ���   is the output PDF of state # . The

notation
% �����$�"��� indicates summation over all the states in � �	��� , i.e, all states in the HMM set.

� �" � � 
  is the prior
probability of observing state

 � . The prior probability of each state is set proportionally to its occupation count as calculated
by the forward-backward algorithm for a previous iteration of ML training.

3 Extended Baum-Welch (EBW) re-estimation

3.1 The EBW formulae

To optimise the parameters of HMMs when using discriminative criteria such as MMI or FD, the EBW re-estimation formulae
can be used. The EBW algorithm for rational objective functions was introduced in [1] and extended in [4] for the continuous
density HMMs considered here. The re-estimation formulae presented below have been found to work well in practice
although they can be only proved to converge when a very large value of the constant % is used which in turn leads to very
small changes in the model parameters on each iteration.

In the following, counts and other functions of the alignment will be given a superscript num or den, to indicate whether
they pertain to the numerator models � � � or the denominator model 
 .

The update equations for the mean vector &('�) * of the + ’th mixture component of state , , and the corresponding variance
vector, -�.'	) * , are as follows:

*&/'�) * � 021 �4365'	) * � �  7� 198 ���'	) * ���  ;:=< %>&/'	) *
0@? �43A5'	) * � ? 8 ���'	) * : < % , (4)

*- .'	) * � 021 �4365'	) * � � .  �� 1 8 ���'�) * � � .  ;:B< % � - .'�) * < & .'	) *  
02? �43A5'	) * � ? 8 ���'	) * : < % � *& .'	) * , (5)

where 1 '�) * � �  represents the sum of the vectors of training data weighted by the probability of occupying that mixture
component, i.e.:
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and 1 '	) * ��� .  is a similar sum of squared input values. ? 
'	) * ���  is the probability of occupying mixture + of state , at time
�
,

and ? '	) * is the count of the number of times mixture component + of state , is occupied, i.e.:

? '	) * � �	
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'	) * ���  ��
3.2 Mixture Weight Updates

The formula used for continuous EBW updates is similar to the update for discrete output probabilities originally put forward
in [1]. It is as follows:

*� '�) * � � '	) * ��� � �� � '	) * <��	�
	 &*

� ' &* � � ���� � ' &* <��	� , (6)

where the derivatives 
���

������ � are given by: � ���� � '�) * � �� '	) * ��� �43A5'	) * � � 8 ���'	) *  �� (7)

However, these are not the values commonly used in Equation 6 when performing EBW re-estimation. Merialdo [13] found
while performing gradient optimisation for disriminative training of discrete HMM systems that the gradients were exces-
sively dominated by low valued parameters, due to the division by � '	) * in Equation 7. He therefore improved convergence
by using the alternative formula as follows: � �� � '	) *��

� �43A5'	) *% &* � �4365'�) &* �
� 8 ���'	) *% &* � 8 ���'�) &* (8)

This equation differs considerably from Equation 7. The most we can say is that the sign of the derivatives calculated both
ways is likely to be the same, assuming the total numerator and denominator occupancies for the state are roughly equal. In
experiments reported in [3], this approximation dramatically improved the rate of convergence for discrete HMMs. A look
at Equations 6 and 8 shows why the equations are effective. The value of the approximation to the derivative as calculated in
Equation 8 is normalised to lie between -1 and 1; this means that the same value of � will be appropriate for all mixtures.

A problem encountered in practice with these altered update equations is that, during training, the objective function starts
to decrease again after increasing to near its maximum [3]. This is not surprising, since even the sign of the derivative in the
approximation of Equation 8 may differ from the actual value: i.e, although Equation 8 may give good results, it is not a good
approximation to the derivative.

3.3 New Mixture Weight Updates

A new set of mixture weight update equations were developed. These equations are based on heuristics about how the
occupancies are expected to change as the mixture weights are changed. In the following explanation, mixture weights � '	) *
will be denoted � * , the state , being assumed constant.

It is clear from the way HMMs work that increasing the value of a mixture weight will tend to increase its occupancies,
and decreasing it will tend to decrease the occupancy. If it was known in advance what the effect of changing the mixture
weights � * would be on the occupancies ? �4365* and ? 8 ���* , then gradient descent could be performed efficiently based on this
knowledge, without actually calculating the new occupancies in the normal way, e.g., by the Forward-Backward algorithm.
Of course, this is not possible because it cannot be known exactly what the new occupancies will be. But it is possible to
make non-infinitesimal updates by estimating limits on the change of the occupancies as mixture weights change. The limits
that were estimated were:

3



The occupancy ? * of a mixture with initial weight �� * , initial occupancy �? * and final weight � * is bounded by�? * and � ��� � �? * . This is true for both numerator and denominator occupancies ( ? �4365* and ? 8 ���* ).

From these limits on the occupancies, an update rule is derived as follows. We will consider only the variation in the mixture
weights of one state, so that the parameter set

� � �
becomes a vector of mixture weights

� � 
 ��� � � �  . Consider the function� � *� � � , �� � �  � � � �
� � *� � �  �� � � � � � �� � �  , where �� � � is the initial set of parameters and

*� � �
is the updated set. It is clear that if we ensure

that
� � *� � � , �� � �  ���� we guarantee an increase in the objective function: � � *� � �  �� � � �� � �  . The value of

� � *� � � , �� � �  may be expressed
as the line integral: � � *� � � , �� � �  ��	 �� � ��
 &� � �
� � � � � � � � �  ���� � � �� 	 �� � ��
 &� � � % �* � 
 
��
 
������ � � � � � ����� � *  ��
We can choose to integrate along any path between

*� � �
and �� � � along which

� � � � �  is defined: i.e, any path that preserves the
sum-to-one constraint on the mixture weights. For convenience, we will choose the path corresponding to the straight line
between

� �� 
 � ��� �� �  and
� *� 
 ����� *� �  , which can be mapped on to the space in which

� � �
is defined by taking logs. The values
�� � � �
�� � � � � are given by ? �4365* � ? 8 ���* , so:

� � *� � � , �� � �  ��� �� � ��
 &� � � �	
* ��


� ? �43A5* � ? 8 ���*  �� � ����� � *  ��
We only have bounds on these values as the weights � * change; however, if we set the numerator occupancies at the bound
? �4365* � �? �4365* and the denominator occupancies at the bound ? 8 ���* � � ��� � �? 8 ���* , giving the function

� � *� � � , �� � �  � � �� � ��
 &� � � �	
* ��
�� �? �4365* � � *�� * �? 8 ���*! � � � � � � *  , (9)

then
� � *� � � , �� � �  #" � � *� � � , �� � �  . This is proved by a case split between � * that are increasing and those that are decreasing. The

path along which we are integrating corresponds to a straight line between
� �� 
 ��� � �� �  and

� *� 
 ��� � *� �  , so each value � � � � *is either increasing or decreasing, and does not alternate between the two. In order to prove that
� � *� � � , �� � �  $" � � *� � � , �� � �  , it is

sufficient to prove that for all + and for all valid sets of mixture weights
� � 
 ��� � � �  , as � � � ��� � *  approaches zero,

� �? �43A5* � � *�� * �? 8 ���*  � � � � � � *  %"'& ? �43A5* � ? 8 ���*!( � � � � � � *  �� (10)

For those � * that are increasing, the inequality of Equation 10 can be proved from the facts that � � � � � � *  %�)� and � *+*,�� * ,
and our estimated bounds on the occupancies. Similar reasoning holds for those � * that are decreasing.

We can obtain a closed form for
� � *� � � , �� � �  by integrating. Since each element of the summation in Equation 9 only depends

on one mixture weight � * ,
� � *� � � , �� � �  can be written as:�	

* � 
.- � � �
&� �� � � � � � � � � �� � � �? �43A5* � � *�� * �? 8 ���/  � � ����� � *  ��

Integrating over each of the
�
� � � � *  , and noting that � * �103254 �

� ��� � *  , which is unchanged by integration w.r.t. � � � � * , we
have: � � *� � � , �� � �  ��6 <

�	
* ��
 �? �4365* � � �

*� * � �? 8 ���* *� *�� * � (11)

Since
� � �� � � , �� � �  � � , choosing

� *� 
 ��� � *� �  in order to maximise
� � *� � � , �� � �  can only result in

� � *� � �  * � , which in turn guarantees
an increase (or no change) in the objective function

� � � � �  . This maximisation was done numerically using general purpose
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optimisation routines since there seems to be no analytical solution for an arbitrary number of mixtures.
� *� 
 � ��� *� �  are the

new mixture weights. Note that in the special case where
*? 8 ���* � � for all + , i.e, when we have no denominator occupancies,

there is an analytical solution and it coincides with the BW updates for Maximum Likelihood training.
These equations show a slight departure in approach from previous attempts to derive update rules. Derivations of update

rules have tended to start from assumptions which are valid, leading to update equations that make too little change and which
therefore have to be altered to provide reasonable performance (e.g, by changing values of smoothing constants, or tweaking
the equations). The approach taken here is to start from assumptions which are not guaranteed to be valid, but which seem
likely to result in reasonable updates, and to derive the update equations directly from these assumptions. The techniques
used in proving the validity of the update formulae are derived from those used by previous authors [1, 4].

Experimental results failed to show a significant difference between these update equations and the standard ones. How-
ever, these equations were used in experiments reported here because there seemed to be a slight improvement. Mixture
weights make little difference anyway in mixture-of-Gaussian speech recognition systems, so it is not surprising that little
effect was seen. Work is under way to extend this approach to Gaussian updates. It would also be interesting to try these
update equations on a discrete or semi-tied HMM system, where the choice of mixture weight update is more critical.

3.4 Setting the constant D

% is the smoothing constant in Equations 4 and 5 for updating the Gaussian parameters. In [4], where the EBW updates
for continuous HMMs were introduced, and in subsequent work with continuous HMMs, D was set to twice the minimum
positive value needed to ensure that all variances were positive. Alterations are made to this approach for the current work:
these are described below. These alterations are reported in detail because they were essential in getting the system to register
an improvement from FD training.

The value of the constant D is important: too low a figure results in slow convergence, and too high a figure will result in
instability. Inspection of Equations 4 and 5 shows that D must have about the same magnitude as the occupancies (or counts)
? '�) * . Thus, a value of D which is high enough to smooth a frequently used phone model may be too large for a less frequently
used model. Accordingly, for work with large HMM systems D has been set at a phone level (e.g., [5, 8]).

A suitable value of D is normally found by calculating the minimum positive value which ensures that all variance updates
are positive, and doubling it. Doubling D is supposed to provide a margin which ensures that the value chosen is considerably
larger than any value which gives negative updates. However, it was observed that if the minimum value which ensures
positive updates is close to zero (i.e, considerably smaller than the occupancy counts ? �4365'�) * and ? 8 ���'�) * ), then doubling it will
have little effect. Extreme values of mean and variance could still result. An attempt was made to correct this by introducing
a floor on D.

3.5 Flooring D

In experiments reported here, D was set on a phone-by-phone basis as in [5], subject to a floor at the maximum of ? �43A5'	) * or

? 8 ���'�) * for any mixture component in the phone. The use of a floor was found to improve both convergence of the FD criterion
and recognition performance. Figure 1 shows the effect on FD criterion optimisation and recognition performance of three
different floors on D: zero, the maximum value of any of ? �43A5'	) * or ? 8 ���'�) * for any mixture component in the phone, and the
maximum value of ? 8 ���'	) * in the phone. This was for FD training of a single Gaussian system on the RM corpus; the details of
the experiment are the same as for similar experiments described later.

Figure 2 shows the effect of setting D per mixture component as compared to per phone, both subject to a floor. This is
for the 6-mixture RM system, as described below. In the mixture-level case, D was floored at the greater of the numerator
or denominator counts ? �4365'�) * and ? 8 ���'�) * ; in the phone-level case, it was floored at the largest of either of these counts for any
mixture in the phone. Although the results in Figure 2 seem to recommend the use of a mixture-level D, for other experiments
reported here D is set on a per-phone basis since at the time they were carried out the possibility of setting it on a mixture
level had not been investigated.
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Figure 1: Comparison of various floorings on D, when set on a phone level
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Figure 3: Overlap of univariate Gaussians

3.6 Implementation Considerations

In re-estimating the parameters it is necessary to calculate the denominator occupancies ? 
 ) 8 ���'	) * ���  for each time frame and
each mixture component in the HMM set:

? 
 ) 8 ���'�) * �"�  � � '	) * � '�) * �"� 
 �"�   � �� � � 
  % ' ��� �"��� % � �* � 
 � '	) * � '�) * ��� 
 �"�   � �� ' � 
  (12)

where � '	) *
���  is the Gaussian associated with mixture + of state , , � '	) * is the mixture weight for the Gaussian, � ' is the

number of Gaussians in the mixture for state , and
� �� ' � 
  is the prior probability for state , . It follows from Equation 12

that � '	) *
��� 
 ���   must be calculated for each Gaussian in the system and for every time frame, and thus the overall compu-

tation is dominated by calculation of the denominator occupancies. In the case of the numerator occupancies, beam pruning
applied to the forward-backward algorithm may be used to optimise their computation, and in any case the numerator model
(transcription model) for a given utterance is unlikely to contain all states in the HMM set. To make FD practical for large
HMM systems (12) should be computed for just the most likely Gaussians in the system (which together contribute nearly
all the log likelihood per frame) and the denominator of (12) computed over just those Gaussians. Therefore, the Roadmap
algorithm was developed with the aim of finding the most likely Gaussians in the system for each speech frame.

4 The Roadmap algorithm

The purpose of this algorithm is to reliably find those Gaussians in the system which best match the input for each time frame,
while minimising computation. It operates by setting up for each Gaussian a list of the most similar Gaussians in the system,
forming a “roadmap”– hence the name. Search is local, centering around those Gaussians that have already been found to
score best.

4.1 Distance Measure

A widely used measure of the distance between two Gaussians is the divergence. However for current purposes it was found
that the divergence gives too high a value for the difference between two Gaussians when they have very different variances.
Therefore an alternative distance measure was sought and one based on Gaussian “overlap” developed.
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The overlap between two univariate Gaussians is shown in Figure 3, being defined as:

� ��� 
 
 � � �  , �

 . � ���   � - ���

� ��� � + #
	 ��� 
 
 � ���  , �

 . � ���   � �

where
� 
 
 � � �  and

� 
 . � ���  represent the Gaussian functions. A suitable distance measure between univariate Gaussians is the
negative log of the overlap. To deal with multivariate Gaussians with diagonal covariance matrices, the distance between
corresponding univariate Gaussians is summed over all dimensions to finally give a distance measure:

� �
� 
 
 � ���  , � 
 . � � �   �
/	
� ��
 � � � �

� ��� 
 
 �� ���  , �

 . �� � �   ,

where
�

is a multivariate Gaussian 
 ��� � & & & , � � �  and
� � ���  is the univariate Gaussian 
 ��� � & � , � � �  .

The use of the overlap-based distance measure in the Roadmap algorithm decreases the average reduction in total log
probability per frame by a factor of 7 relative to the case where divergence is used and the measure may have utility in other
applications where a distance measure between two Gaussians is required.

4.2 Setting Up The Similarity Relation

For the roadmap algorithm to operate, for each Gaussian a list of other similar Gaussians is required. Here follows a descrip-
tion of the algorithm used in obtaining it.

The first stage is to obtain, for each Gaussian � , a list of the closest 	 Gaussians in the system, according to the distance
measure defined above. In experiments reported here, 	 ��� � . The algorithm used to do this is described in Section 4.3.

The second stage adds to the similarity list of Gaussians close to � , those � such that � is in the list of � . This avoids the
problem case where a Gaussian is not very close to any other Gaussians, and may never itself appear in any of these lists.

The third stage of building the similarity lists removes redundant entries: entries are not required if there already exists
another indirect route via an intermediate Gaussian. Redundancy is defined more precisely in terms of the distance of the
indirect route from � to � via � . The condition for the path between � and � being redundant is:

� ��� � � � , �  �� � ��� � � � , �  �� � � � , �  �� � � � � � � , �  �� � � � , �  < � � � , �  �� � ��� � � � , �  �� (13)

The removal of all these redundant links causes a modest increase in the performance of the Roadmap algorithm.
Finally the similarity lists for each Gaussian are sorted in order of distance with the closest Gaussians first in the list.

4.3 Setting up the initial similarity lists

As mentioned above, the first stage of the initialisation of the list of similar Gaussians consists of obtaining, for each Gaussian
� , a list of the closest 	 Gaussians in the system. This process dominates the initialisation. A naive implementation would
involve finding the distance between each pair of Gaussians, and would take time proportional to the square of the number
of Gaussians in the system. This is clearly not suitable for very large HMM sets. An approximate scheme was therefore
used which nevertheless found the closest 	 Gaussians almost without fail. The algorithm is iterative, requiring perhaps ten
iterations, indexed by # , to converge. In the following description,  � � �  refers to the approximation at the # ’th iteration to the
list of the 	 closest Gaussians to � ; it is a list of 	 or less Gaussians. Each iteration consists of two stages, as follows:

Initialisation Initialise  � � �  "!  � � 
 � �  for all a, or to the empty set if # � � .
Stage 1 For each pair of Gaussians � and � which are linked by roads via some other Gaussian � , we evaluate the overlap-

based distance measure
� � � , �  , and add � to  � � �  and vice versa. If as a result �  � � �  ��� 	 , we remove from it the

furthest element from � ; likewise for  � � �  .
Stage 2 For each Gaussian � we test a number (20 in this case) of randomly chosen Gaussians, as in Stage 1. This is to “seed”

the algorithm, and is done every time rather than just at the start because this was found to improve performance.
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The algorithm iterates until the percentage change in the summed distances
%�� % � ����� 
 � � � � � , �  is small ( � 0.05%). This

usually happens in about ten iterations. Spot checks are carried out to test the accuracy of the algorithm, by finding the closest
Gaussians to a small number of Gaussians by brute force and comparing them with the results of this algorithm. The 	 closest
Gaussians are found almost without fail.

The essence of the algorithm is as described above. But there are some important details which are required for sufficiently
fast operation. Firstly, it is important not to test the pair

� � , �  any more than necessary, as calculation of overlap is time-
consuming. Therefore, two optimisations are made. This first is that a hash table is used to store those Gaussians � for which
the pair

� � , �  has already been tested, for the current value of � . This avoids calculating the distance between a given pair
more than once per iteration. The second optimisation aims to avoid calculating the distance between a given pair many times
on different iterations. We store for each entry � in  � � �  the iteration at which it was added to that set. These numbers can
be used to work out, for each � , those � which we know to have been tested on a previous iteration, and these distances do
not have to be calculated again. This set of previously tested Gaussians is also stored as a hash table.

For further speedup, an approximation to the overlap formula for a single dimension of a Gaussian was used in finding
the lists of closest Gaussians. The real formula is too inefficient, as it involves working out the places where the Gaussian
likelihoods are equal and using a table of the Gaussian integral to calculate three separate areas. The alternative used was as
follows. It only applies where - . " - 
 ; the Gaussians were swapped in the other case.

- ���
	��� (14)

& ��
 	 � 
 ���� (15)

� ���
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- < � � � � ��� - � � ��� � � � & . � � ��� ��� � & .- < � ����� � � & . - � � � ��� � � � � � � ����� �  (16)

This approximation had very little effect on the lists of closest Gaussians. The real formula for overlap, rather than the
approximation, was used when testing for redundant links using the criterion mentioned in Equation 13.

4.4 Finding the Best Gaussians

This section concerns the run-time operation of the Roadmap algorithm. It is a hill-climbing algorithm which for each speech
frame starts from an initial set of Gaussians and aims to terminate having calculated a set of Gaussians including the most
likely ones for the input speech vector. The initial set of Gaussians could either be a single random Gaussian or a number of
the best Gaussians from the last speech frame. Firstly the log likelihood of each of the initial set of Gaussians is evaluated.
For the Gaussians which are most likely the Gaussians closest to them (as determined by the similarity lists) are examined.
The idea is that the algorithm will eventually go towards the region of Gaussians which are most likely given the input speech
vector.

In this algorithm, we do not know when the most likely Gaussian in the entire system has been evaluated, so we use
heuristics to tell us when to stop. At the end, all Gaussians � '�) * which have been evaluated are returned, along with the
calculated values � '�) *

��� 
 �"�   . These can then be used to calculate the occupancies ? 
'	) * ���  used in the EBW update equations.
In the following description of the Roadmap algorithm, Gaussian functions will be denoted � . The rule by which a

Gaussian is chosen to be computed is as follows: from among those Gaussians which have already been evaluated, take the
Gaussian � which gives the highest likelihood for the input. Then evaluate the first Gaussian in � ’s list, i.e, that closest to � ,
if it has not already been evaluated. Otherwise compute the next in � ’s list. If all Gaussians in � ’s list have been evaluated,
the same procedure is followed for the Gaussian which gives the next best likelihood for the input. If all Gaussians in the
lists of all those which have been computed have themselves also been evaluated, then evaluate a random Gaussian. This
situation can occur if there are no links (“roads”) from an isolated region of Gaussians. The algorithm terminates when all
the Gaussians close to a fixed number (perhaps 20) of the best Gaussians have been tested.

The set of Gaussians which is initially examined may consist of either a single arbitrary Gaussian or the best � Gaussians
from the last input frame. In the experiments reported here, the best 20 from the last input frame were used. It is found that in
practice the Roadmap algorithm can reliably find the most likely Gaussians in the system for each frame while only evaluating
a small percentage of them (typically between 1 and 10%, decreasing with increasing system size).
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4.5 Performance

The performance of the Roadmap algorithm is judged by the average number of Gaussians calculated per time frame and the
average decrease in total likelihood of the input per time frame. This decrease in likelihood represents the sum of the Gaussian
likelihoods that are not calculated by the algorithm. In tests on a HMM system with 9,500 Gaussian mixtures the Roadmap
algorithm gave only a 0.004 decrease in log likelihood per frame while on average calculating 3.7% of the Gaussians in the
system.

For comparison a number of different schemes of Gaussian selection based on vector quantisation (VQ) techniques,
which have been widely reported in the literature to reduce the number of Gaussians computed in an HMM-based speech
recognition, were also examined. One such VQ scheme with 256 codebook entries and using a two level VQ to speed up
codebook entry calculation gave an average decrease in log likelihood per frame of 0.3 while computing 4% of the Gaussians
in the system.

It is important to know what effect the calculation of only a fairly small subset of the Gaussians has on the performance
of the trained models, i.e., what loss in total log likelihood is acceptable. Experiments showed that there was essentially no
loss in recognition performance with a reduction in log likelihood per frame of up to 0.01 and the experiments reported below
aimed to keep the approximation from using the Roadmap algorithm within this bound.

5 Experimental Evaluation

Speech recognition experiments to evaluate FD have been conducted on both the 1,000 word Resource Management (RM)
task and on the North American Business (NAB) News task using a 65k word recognition system. In all cases initial MLE
trained models were used and then subsequent FD training was performed.

5.1 Resource Management Experiments

For the RM experiments, a set of decision-tree state-clustered cross-word triphones were trained using MLE on the SI-109
training set (3990 utterances) using HTK in the manner described in [7]. The input speech for this system was parameterised
as Mel-frequency cepstral coefficients (MFCCs) and the normalised log energy; and the first and second differentials of these
values.

The final RM model set had 1577 clustered speech states and versions with a single Gaussian per state and 6 Gaussians
per state were created. The models were tested using the standard word-pair grammar on the 4 RM speaker independent test
sets (feb89, oct89, feb91 and sep92) which each contain 300 utterances.

After the MLE models had been created a number of iterations of FD training were performed on both the single Gaussian
and 6 mixture component systems. Figure 4 shows that the FD objective function increases as training proceeds and gives the
changes in error rate. Note that the 6-component system shows evidence of over-training.

feb89 oct89 feb91 sep92 overall

MLE 6.99 7.68 7.49 11.61 8.44
FD iter 4 5.51 6.07 6.52 8.73 6.73

Table 1: % word error for single Gaussian RM system with MLE and FD training.

feb89 oct89 feb91 sep92 overall

MLE 2.77 4.02 3.30 6.29 4.10
FD iter 4 2.81 3.39 2.90 5.94 3.76

Table 2: % word error for 6 Gaussian per state RM system with MLE and FD training
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Figure 4: FD criterion and RM feb91 accuracy varying with time

Table 1 and Table 2 show the results of FD on the single and 6 Gaussian per state systems. The single Gaussian system
shows an overall decrease in WER of 20.3% after 4 iterations of FD and the 6 mixture system an 8.3% reduction.

5.2 NAB Experiments

The HMMs used in these experiments were based on the HMM-1 set described in [6]. This decision-tree state-clustered cross-
word triphone set of HMMs had 6399 speech states and was trained using MLE on the Wall Street Journal SI-284 training
set (about 66 hours of data). Here a version of those models trained on cepstra derived from Mel frequency perceptual linear
prediction (MF-PLP) analysis was used. Versions of these models with 1,2,4 and 12 mixture components per state were
created using MLE, and then for each of these 4 iterations of FD training applied.

The models were tested on the 1994 DARPA Hub-1 development and evaluation test sets, which are denoted csrnab1 dt
and csrnab1 et, using a trigram language model estimated from the 1994 NAB 227 million word text corpus. The same
underlying HMM set (but trained using MFCCs) was used in [5] to evaluate the performance of lattice-based MMIE so this
serves as a useful point of comparison.

Num mix csrnab1 dt csrnab1 et % WER
Comps MLE FD MLE FD reduction

1 13.64 11.95 15.64 14.32 10.4
2 11.84 10.58 13.19 12.04 9.7
4 10.67 9.77 11.25 10.84 6.0
12 9.30 8.99 9.96 9.85 2.2

Table 3: % word error rates on NAB test sets

Table 3 gives the performance of the FD on NAB and shows that the reduction in WER decreases as model complexity
increases. The single and two Gaussian per state systems have a 10% relative word error reduction while the 12 mixture
component system has a reduction in error of just 2%. However it should be noted that the FD models gave improvements
over MLE in all cases.

Table 4 compares the NAB reductions in word error for the comparable tests tests reported in [5]. The results are encour-
aging, with FD giving more improvement than MMIE in most cases.
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Num Mix csrnab1 dt csrnab1 et
Comps FD MMIE FD MMIE

2 10.6 8.4 8.7 8.8
12 3.3 0.6 1.1 -1.2

Table 4: Comparison of FD and MMIE systems giving % word error reductions relative to MLE

5.3 Computational Cost of FD

For the experiments above the computational cost of FD is very important. As previously discussed, the most computationally
intensive part of FD training is calculating the occupation probabilities and finding the most likely Gaussians in the system.
Using the Roadmap algorithm, calculation of the these denominator occupancies for FD took about five times as long as
for the numerator, meaning that this implementation of FD is about six times slower than conventional MLE training. The
efficient lattice-based MMIE training procedure discussed in [5] is 15-20 times slower than MLE (ignoring the time to create
the initial word lattices). Therefore it appears that FD is about three times faster than the lattice based MMIE procedure.

6 Conclusions

The report has described an implementation of FD training. FD is a promising objective function which seems to give good
results for the tasks reported here. It has described the Roadmap algorithm which aims to find the most likely Gaussians from
a large set of Gaussians, without calclulating all the conditional probabilities. A distance measure based on overlap (used in
the Roadmap algorithm) was introduced. An investigation was made into the best way to set the smoothing constant in the
EBW equations, with substantial improvements in convergence and recognition performance as a result of the changes made,
and a new set of mixture update equations, with an interesting theoretical basis, was introduced.

Results reported here show that FD gives considerable reductions in word error for simple models and also gives useful
increases in accuracy for more more complex speech models with more mixture components. The improvements from FD
are comparable or greater than those given by MMIE on the tasks reported here, and FD as implemented here is more
computationally efficient.
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