Minimum Phone error and I-Smoothing for improved Discriminative Training

Dan Povey & Phil Woodland

May 8th 2001

Cambridge University Engineering Department

IEEE ICASSP'2002
Overview

• Minimum Phone Error (MPE)
 – General introduction.
 – MPE objective function.
 – Comparison with other discriminative objective functions.

• Lattice implementation of MPE.

• Optimising the MPE criterion with the EB formulae.

• Improving generalization: I-smoothing etc.

• MPE and MMI results on Switchboard (hub5), up to 265 hours training.

• Conclusions
Minimum Phone Error

- Minimum Phone Error (MPE) is a new criterion for discriminative criterion.

- Can give better results than MMI.

- CU-HTK submission for the 2002 Switchboard (hub5) evaluation will use MPE.

- Training time and complexity of implementation not much greater than MMIE.
MPE Objective Function

- Maximise the following function:

\[
\mathcal{F}_{\text{MPE}}(\lambda) = \sum_r \frac{\sum_s p_{\lambda}(O_r|s)^\kappa P(s)^\kappa \text{RawAccuracy}(s)}{\sum_s p_{\lambda}(O_r|s)^\kappa P(s)^\kappa}
\]

where \(\lambda\) are the HMM parameters, \(O_r\) the speech data for file \(r\), \(\kappa\) a probability scale and \(P(s)\) the language model probability pre-scaled by the normal scale factor.

- \(\text{RawAccuracy}(s)\) is a measure of the number of phones correctly transcribed in sentence \(s\).
 (correct phones in \(s\) — inserted phones in \(s\)).

- Weighted average of \(\text{RawAccuracy}(s)\) over all \(s\).

- As \(\kappa \to \infty\), approaches phone error on data.
MPE & Other Discriminative Objective Functions

- MPE function is an average (weighted by sentence likelihood) of a measure of phone accuracy:

\[F_{MPE}(\lambda) = \sum_r^R \frac{\sum_s p_\lambda(O_r|s)^\kappa P(s)^\kappa \text{RawAccuracy}(s)}{\sum_s p_\lambda(O_r|s)^\kappa P(s)^\kappa} \]

- Objective function in MMIE is the probability of the correct utterance given the speech data:

\[F_{MMIE}(\lambda) = \sum_{r=1}^R \log \frac{p_\lambda(O_r|M_{sr})^\kappa P(s_r)^\kappa}{\sum_s p_\lambda(O_r|M_s)^\kappa P(s)^\kappa} \]

- MCE (Minimum Classification Error) objective function is a differentiable approximation to the sentence error rate.

- MWE/MPE objective functions closest to what we want—the word error rate.
Lattice implementation of MPE

• Implement in a lattice framework, for efficiency (as MMIE).

• RawAccuracy(s), defined on sentence level, requires expensive dynamic programming.

• Express RawAccuracy(s) as a sum of
 PhoneAcc(p) for all phones in the sentence:

\[
\text{PhoneAcc}(p) = \begin{cases}
1 & \text{if correct phone} \\
0 & \text{if substitution} \\
-1 & \text{if insertion}
\end{cases}.
\]

• Calculating PhoneAcc(p) is still hard.

• Use an approximation to PhoneAcc(p) based on time-alignment information.
Optimising the MPE criterion with EB

• Use Extended Baum-Welch (EB) update as in MMI.

• Use two sets of statistics (numerator and denominator) as in MMI.

• Data from each phone \(q \) goes in numerator or denominator statistic depending on sign of \(\frac{\partial F_{\text{MPE}}(\lambda)}{\partial \log p(q)} \).

• EB is viewed as a gradient descent technique and can be shown to be a valid update for MPE.

• Up to twice as many iterations of training as MMI to reach best error rates: 8 iterations of instead of 4.
Improving generalisation using I-smoothing

- H-criterion is $h F_{\text{MMIE}}(\lambda) + (1 - h) F_{\text{ML}}(\lambda)$ (Backoff between MMIE and MLE).

- I-smoothing (for MMI) is like H-criterion except proportion of MMI (i.e., h) varies depending on the amount of data for each Gaussian.

- In effect, it is like having τ points of extra MLE data for each Gaussian (do this by scaling up the normal MLE counts before updating Gaussian). Use say $\tau = 100$.

- For MMIE, I-smoothing gives an improvement on some tasks (no improvement over MMIE on others).

- For MPE, I-smoothing makes a lot of difference; without I-smoothing, MPE gives little improvement.
Improving generalisation: other issues

- Use unigram language model in training (as for MMI).

- Set the probability scale κ to the inverse of the normal language model scale factor (as for MMI).

- Use phones not words to calculate accuracy—so MPE not MWE.
Experimental setup on Switchboard.

- HTK large vocabulary recognition system
- PLP cepstral features + first/second derivatives (39 dimensions in total).
- Training on h5train00 (265 hours) or h5train00sub (68 hours)
- HMM sets with tree-clustered triphone context-dependent states: 6165 HMM states, and 12 or 16 Gaussians/state.
- Testing on eval98
Results on Switchboard.

Results trained on h5train00sub (68h train)

<table>
<thead>
<tr>
<th>Method</th>
<th>WER Train</th>
<th>WER Test</th>
<th>Abs test</th>
<th>eval98</th>
<th>improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>26.3</td>
<td>46.6</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMIE</td>
<td>18.6</td>
<td>44.3</td>
<td>2.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMIE+I-smoothing</td>
<td>19.7</td>
<td>43.8</td>
<td>2.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPE+I-smoothing</td>
<td>20.6</td>
<td>43.1</td>
<td>3.5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results trained on h5train00sub (68h train)

<table>
<thead>
<tr>
<th>Method</th>
<th>WER Train</th>
<th>WER Test</th>
<th>Abs test</th>
<th>eval98</th>
<th>improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE baseline</td>
<td>30.1</td>
<td>45.6</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMIE</td>
<td>23.2</td>
<td>41.8</td>
<td>3.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMIE+I-smoothing</td>
<td>22.2</td>
<td>41.4</td>
<td>4.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPE+I-smoothing</td>
<td>23.9</td>
<td>40.8</td>
<td>4.8%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions.

• MPE training gives good improvements, up to about 5% absolute on Switchboard.
 – MPE currently being used in Cambridge University Hub5 evaluation system (2002).

• MPE can be efficiently implemented using lattices.
 – Get around need for dynamic programming by approximating the phone accuracy.
 – Use EB formulae with same setup as MMI, for fast optimisation.