# Minimum Phone error and I-Smoothing for improved Discriminative Training

Dan Povey & Phil Woodland

May 8th 2001



#### Cambridge University Engineering Department

IEEE ICASSP'2002

#### **Overview**

- Minimum Phone Error (MPE)
  - General introduction.
  - MPE objective function.
  - Comparison with other discriminative objective functions.
- Lattice implementation of MPE.
- Optimising the MPE criterion with the EB formulae.
- Improving generalization: I-smoothing etc.
- MPE and MMI results on Switchboard (hub5), up to 265 hours training.
- Conclusions



## **Minimum Phone Error**

- Minimum Phone Error (MPE) is a new criterion for discriminative criterion.
- Can give better results than MMI.
- CU-HTK submission for the 2002 Switchboard (hub5) evaluation will use MPE.
- Training time and complexity of implemetation not much greater than MMIE.



# **MPE Objective Function**

• Maximise the following function:

$$\mathcal{F}_{\text{MPE}}(\lambda) = \sum_{r}^{R} \frac{\sum_{s} p_{\lambda}(\mathcal{O}_{r}|s)^{\kappa} P(s)^{\kappa} \text{RawAccuracy}(s)}{\sum_{s} p_{\lambda}(\mathcal{O}_{r}|s)^{\kappa} P(s)^{\kappa}}$$

where  $\lambda$  are the HMM parameters,  $\mathcal{O}_r$  the speech data for file r,  $\kappa$  a probability scale and P(s) the language model probability pre-scaled by the normal scale factor.

- RawAccuracy(s) is a measure of the number of phones correctly transcribed in sentence s.
  (correct phones in s inserted phones in s).
- Weighted average of RawAccuracy(s) over all s.
- As  $\kappa \to \infty$ , approaches phone error on data.

# **MPE & Other Discriminative Objective Functions**

• MPE function is an average (weighted by sentence likelihood) of a measure of phone accuracy:

$$\mathcal{F}_{\text{MPE}}(\lambda) = \sum_{r}^{R} \frac{\sum_{s} p_{\lambda}(\mathcal{O}_{r}|s)^{\kappa} P(s)^{\kappa} \text{RawAccuracy}(s)}{\sum_{s} p_{\lambda}(\mathcal{O}_{r}|s)^{\kappa} P(s)^{\kappa}}$$

• Objective function in MMIE is the probability of the correct utterance given the speech data:

$$\mathcal{F}_{\text{MMIE}}(\lambda) = \sum_{r=1}^{R} \log \frac{p_{\lambda} \left(\mathcal{O}_{r} | \mathcal{M}_{s_{r}}\right)^{\kappa} P(s_{r})^{\kappa}}{\sum_{s} p_{\lambda} \left(\mathcal{O}_{r} | \mathcal{M}_{s}\right)^{\kappa} P(s)^{\kappa}}$$

- MCE (Minimum Classification Error) objective function is a differentiable approximation to the sentence error rate.
- MWE/MPE objective functions closest to what we want– the word error rate.



# Lattice implementation of MPE

- Implement in a lattice framework, for efficiency (as MMIE).
- RawAccuracy(s), defined on sentence level, requires expensive dynamic programming.
- Express RawAccuracy(s) as a sum of PhoneAcc(p) for all phones in the sentence:

PhoneAcc(p) =  $\left\{ \begin{array}{l} 1 \text{ if correct phone} \\ 0 \text{ if substitution} \\ -1 \text{ if insertion} \end{array} \right\}.$ 

- Calculating  $\operatorname{PhoneAcc}(p)$  is still hard .
- Use an approximation to PhoneAcc(p) based on time-alignment information.



# **Optimising the MPE criterion with EB**

- Use Extended Baum-Welch (EB) update as in MMI.
- Use two sets of statistics (numerator and denominator) as in MMI.
- Data from each phone q goes in numerator or denominator statistic depending on sign of  $\frac{\partial \mathcal{F}_{\text{MPE}}(\lambda)}{\partial \log p(q)}$ .
- EB is viewed as a gradient descent technique and can be shown to be a valid update for MPE.
- Up to twice as many iterations of training as MMI to reach best error rates: 8 iterations of instead of 4.



# Improving generalisation using I-smoothing

- H-criterion is  $h\mathcal{F}_{MMIE}(\lambda) + (1-h)\mathcal{F}_{ML}(\lambda)$ (Backoff between MMIE and MLE).
- I-smoothing (for MMI) is like H-criterion except proportion of MMI (i.e., h) varies depending on the amount of data for each Gaussian.
- In effect, it is like having  $\tau$  points of extra MLE data for each Gaussian (do this by scaling up the normal MLE counts before updating Gaussian). Use say  $\tau = 100$ .
- For MMIE, I-smoothing gives an improvement on some tasks (no improvement over MMIE on others).
- For MPE, I-smoothing makes a lot of difference; without I-smoothing, MPE gives little improvement.



#### Improving generalisation: other issues

- Use unigram language model in training (as for MMI).
- Set the probability scale  $\kappa$  to the inverse of the normal language model scale factor (as for MMI).
- Use phones not words to calculate accuracyso MPE not MWE.



## **Experimental setup on Switchboard.**

- HTK large vocabulary recognition system
- PLP cepstral features + first/second derivatives (39 dimensions in total).
- Training on h5train00 (265 hours) or h5train00sub (68 hours)
- HMM sets with tree-clustered triphone context-dependent states: 6165 HMM states, and 12 or 16 Gaussians/state.
- Testing on eval98



#### **Results on Switchboard.**

#### Results trained on h5train00sub (68h train)

|                                             | WER Train | WER Test | Abs test    |
|---------------------------------------------|-----------|----------|-------------|
|                                             |           | eval98   | improvement |
| MLE                                         | 26.3      | 46.6     | _           |
| MMIE                                        | 18.6      | 44.3     | 2.3%        |
| MMIE+I-smoothing                            | 19.7      | 43.8     | 2.8%        |
| MPE+I-smoothing                             | 20.6      | 43.1     | 3.5%        |
| Results trained on h5train00sub (68h train) |           |          |             |
|                                             | WER Train | WER Test | Abs test    |
|                                             |           | eval98   | improvement |
| MLE baseline                                | 30.1      | 45.6     | _           |
| MMIE                                        | 23.2      | 41.8     | 3.8%        |
| MMIE+I-smoothing                            | 22.2      | 41.4     | 4.2%        |
| MPE+I-smoothing                             | 23.9      | 40.8     | 4.8%        |



#### **Conclusions.**

- MPE training gives good improvements, up to about 5% absolute on Switchboard.
  - MPE currently being used in Cambridge University Hub5 evaluation system (2002).
- MPE can be efficiently implemented using lattices.
  - Get around need for dynamic programming by approximating the phone accuracy.
  - Use EB formulae with same setup as MMI, for fast optimisation.

