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ABSTRACT

In this paper, we concentrate on Arabic speech recognition.
Taking advantage of the rich morphological structure of the
language, we use morpheme-based language modeling to im-
prove the word error rate. We propose a simple constraining
method to rid the decoding output of illegal morpheme se-
quences. We report the results obtained for word and mor-
pheme language models using medium ( � 64kw) and large
( � 800kw) vocabularies, the morpheme LM obtaining an ab-
solute improvement of 2.4% for the former and only 0.2%
for the latter. The 2.4% gain surpasses previous gains for
morpheme-based LMs for Arabic, and the large vocabulary
runs represent the first comparative results for vocabularies
of this size for any language. Finally, we analyze the perfor-
mance of the morpheme LM on word OOV’s.

1. INTRODUCTION

The Arabic language is characterized by a complex morpho-
logical structure. It is, in fact, a highly inflected language
where prefixes and suffixes are appended to the stem of a
word to indicate tense, case, gender, number, etc. Hence, it
is natural that this leads to rapid vocabulary growth which
is accompanied by worse language model (LM) probability
estimation and a higher out-of-vocabulary (OOV) rate. One
would suspect that words are not the best lexical units in this
case and, perhaps, sub-word units would be a better choice. In
this work, we choose morphemes as our sub-word units and
we generate them using an LM-based approach [1].

Although there has been much research on Arabic speech
recognition such as the IBM � ViaVoiceTM[2] and BBN Tides-
OnTap systems[3], there has not been much work studying
Arabic morpheme-based language modeling. Apart from the
2002 JHU research on Arabic recognition [4] and the related
work of Vergyri et al. [5], most research on morpheme-based
systems has been developed for other inflected languages such
as Turkish[6], German[7], Russian[8], and Korean[9]. In [4],
the authors report an improvement of 0.7% absolute WER by
combining a word model with a morpheme-based model. Ver-
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Arabic Word Morphological Meaning
Decomposition

WB RXSXAAMX WB RXSXAAMX painter
WB AALXRXSXAAMXUXNX WB AALX# the painters

RXSXAAMX
+UXNX

WB RXSXAAMXIXNX WB RXSXAAMX two painters
+IXNX

WB LXLXRXSXAAMXAATX WB LXLX# to the
RXSXAAMX painters
+AATX (feminine)

Table 1. Different variations on the word RXSXMX: paint and
the corresponding morpheme decomposition and meanings.

gyri et al. [5] report a gain of up to 1.5% absolute by utilizing
morphological information within a factored LM.

In this paper, we concentrate our efforts on Modern Stan-
dard Arabic, where we build morpheme-based LMs and study
their effect on the OOV rate as well as the WER. In Section
2, we describe the morpheme-based language modeling used
in our experiments. In Section 3, we describe the Arabic data
sets used for training, testing, and building the LMs. In Sec-
tion 4, we describe the experimental setup. In Section 5, we
give the results and we discuss the difference in OOV rates
for the word and morph models. We conclude in Section 6.
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Fig. 1. The morpheme lattice constrainer

2. MORPHEME-BASED LANGUAGE MODELING

In order to build morpheme-based LMs, the data sets are de-
composed into their morpheme components. An LM-based
morpheme generator previously proposed in [1] is used to de-
compose the data. Every word is split into zero or more pre-
fixes followed by a stem followed by zero or more suffixes.
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where � � ’s are the words and � � ’s are the morpheme units
which could be prefixes, stems, or suffixes. The units are then
used to generate morpheme-based LMs:
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where , is the LM order.
Table 1 depicts the decomposition of sample variations of

the word RXSXAAMX: painter 1 and illustrates the change in
semantic meaning as different prefixes and suffixes are added
to the stem. We append a # to the end of a prefix and a + to
the beginning of a suffix. We also append the symbol WB to
the beginning of each word prior to the morpheme decompo-
sition. This, unfortunately, leads to an increase in morpheme
vocabulary size and a distinction between a stem and the same
stem preceded by a prefix as shown in the first and second
rows of Table 1. However, this is needed to guarantee that the
word boundaries are placed at the right location in the decod-
ing graph for purposes of acoustic context expansion.

2.1. Morpheme Lattice Constrainer

With the morpheme LM comes the problem of decoding il-
legal morpheme sequences which result in outputs that are
non-words. For example, consider the following sequence:

WB PRE � WB PRE � WRD � SUF � WB WRD � WRD �

The sequence has two illegal occurrences. The first is the
presence of two consecutive word boundary prefixes, and the
second is the presence of a non-boundary word at the end al-
though it is not preceded by a boundary prefix. In order to
solve this problem, we propose a simple solution: constrain-
ing the morpheme lattices. Figure 1 illustrates a finite state
acceptor which we will refer to as the constrainer. The rea-
son for that is clear from the figure. The acceptor only allows
legal sequences of morphemes which consist of zero or more
silence tokens followed by zero or more prefixes, the first of
which should be a word-boundary prefix, followed by a stem
(WRD) followed by zero or more suffixes. The next step is
to tag every token in the morpheme lattice as WB PRE, PRE,
WRD, WB WRD, SUF, or WB SL, and finally the constrainer
is composed with the morpheme lattices to remove the illegal
sequences. The acceptor can also be used to filter out an un-
wanted set of words, for example, foreign words, if required,
by tagging them ILL for illegal.

1Arabic symbols are represented here with a two-letter Roman code.

RT’04 (training) Arabic Gigaword
# Utterances - 6000 - 14000000
Word Vocab Size 43260 847935
Word OOV Rate 10.8% 1.43%
Morpheme Vocab Size 20125 811624
Morpheme OOV Rate 3.6% 0.33%

Table 2. Description of the two corpora used for language
modeling.

3. DATA SETS

We use two corpora in our experiments. First, for purposes
of training and testing, we use the RT’04 corpus, which con-
sists of Arabic broadcast news. It contains 82 hours of train-
ing data and 1.2 hours of test data. Next, to build the LMs,
we use the RT’04 (train) and Arabic Gigaword corpora de-
scribed in more detail in Table 2. The Gigaword corpus is
comprised of Arabic newswire text data collected from four
sources: Agence France Presse, Al Hayat News Agency, Al
Nahar News Agency, and Xinhua News Agency. All of the
RT’04 (train) and a portion of the Gigaword corpus were used
in our experiments.

Both data sets are in Arabic and words are the basic lexical
units. To facilitate text manipulation, the data is romanized,
i.e., represented using roman characters. A simple mapping of
each Arabic letter to a 2-roman-letter code is performed. The
Arabic alphabet consists of 29 letters, 3 of which are vowels
(alif, waw, yaa’) and one of which is a glottal stop (hamza).
A hamza can also be combined with the vowels to give glot-
talized vowels. In the case of alif, a hamza can appear above
or below the letter. We normalize the Arabic data such that
several representations of the alif at the beginning of a word
such as those including the hamza are mapped into one ro-
man code. Diacritics that appear below or above a consonant
representing short vowels, consonant doubling, or consonant
stressing are discarded.

4. EXPERIMENTAL SETUP

We construct word and morpheme-based setups in order to
compare their performances for medium and large vocabular-
ies. We use a 3-gram word LM and a 7-gram morpheme LM.
All of the LMs use modified Kneser-Ney smoothing [10]. The
word and morpheme LMs are built for three different pur-
poses: to generate medium vocabulary and large vocabulary
lattices, and to rescore these lattices.

To generate the medium vocabulary lattices, we use an
LM built with the RT’04 (train) corpus. To create the large
vocabulary lattices, we use RT’04 (train) to build one LM and
the Gigaword corpus (divided into four parts due to memory
constraints) to build 4 LMs. The 5 LMs are then interpolated.
Due to limitations of our decoder, the LMs had to be heavily
pruned for lattice generation purposes. In the case of the mor-
pheme LM, the order was reduced to 6 and a pruning thresh-



Word Morph
Initial 35.6% 36.1%

Constraining — 34.8%
Rescoring 31.7% 29.6%

Constraining — 29.3%

Table 3. WER for the medium vocabulary setup.

old of ��� &�� and cutoff values of 0,1,2,2,2,2 were used (i.e.,
bigrams occurring once or less were pruned, trigrams occur-
ring twice or less were pruned, etc.). In the case of the word
LM, a pruning threshold of ��� &�� was used. Finally, for lattice
rescoring purposes, the word and morpheme LMs were built
with no pruning whatsoever.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Number of Words/Morphemes 

W
or

d/
M

or
ph

em
e 

V
oc

ab
 G

ro
w

th

Word

Morpheme

Fig. 2. Growth of the word and morpheme vocabularies.
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Fig. 3. WER of the word-based recognizer.

5. EXPERIMENTAL RESULTS

First, to get an idea of how word and morpheme vocabulary
growth compare for our particular data sets, we generated
Figure 2 using data from the Arabic Gigaword corpus. Fig-
ure 2 illustrates the growth in the number of unique Arabic
words and morphemes as a function of corpus size. The plot
shows a rapid vocabulary growth for words as compared to

Word Morph
Initial 28.3% 30.8%

Rescoring 27.1% 27.1%
Constraining — 26.9%

Table 4. WER for the large vocabulary setup.

(pre)+noun+(suf) (42%)

(pre)+verb+(suf) (24%)

proper noun (city OR person) (24%)

erroneous transcription (4%)
adjective (4%)

preposition (2%)

Fig. 4. The distribution of 50 randomly-selected OOV words.
The label (pre)+noun+(suf), for example, implies zero or
more prefixes, a noun, and zero or more suffixes.

morphemes. Also, Figure 3 illustrates the drop in WER as a
function of vocabulary size in words. The plot is generated
using the Arabic Gigaword corpus but with a different setup
than the one used in our other experiments.

5.1. Word Error Rates

Table 3 shows the WER results for the medium vocabulary
setup. The first row shows the results obtained for the highest-
scoring paths in the original lattices obtained using the pruned
medium vocabulary LMs. The second row shows the result
for the morpheme-based system upon constraining the lat-
tices. The third row shows the results after rescoring the
lattices with the large LMs built using the Arabic Gigaword
corpus. We observe a significant improvement as compared
to the initial results. Finally, we constrain the rescored mor-
pheme lattices and obtain our best result for the medium vo-
cabulary system. We notice that the constraining factor has
a smaller effect when applied to the rescored lattices than
when applied to the original ones. This makes sense, since
the larger the morpheme LM, the smaller the probabilities as-
signed to illegal sequences and the less likely they occur.

Type # of Occurrences # Recognized
(pre)+noun+(suf) 17 8
(pre)+verb+(suf) 9 2

proper name (person) 3 1
adjective 2 0

preposition 1 1

Table 5. The distribution of the 32 OOV words that can be
recognized by the morpheme-based recognizer as well as the
number of words recognized for the medium vocabulary case.



(pre)+noun+(suf) (18.5%)

(pre)+verb+(suf) (10%)

proper noun (city OR person) (27.1%)

erroneous transcription (21.4%)

adjective (1.4%)

foreign word(21.4%)

Fig. 5. The distribution of 70 OOV words obtained with the
large vocabulary.

Type # of Occurrences # Recognized
(pre)+noun+(suf) 12 0
(pre)+verb+(suf) 5 1

proper name (person) 4 0
foreign 6 1

Table 6. The distribution of the 27 OOV words that can be
recognized by the morpheme-based recognizer as well as the
number of words recognized for the large vocabulary case.

Table 4 lists the WER results for the large vocabulary
setup. Again, the first row shows the WER results for the
original lattices obtained using the pruned large vocabulary
LMs. The second row shows the results after rescoring the
lattices with the large LMs. The last row gives the result of
the morpheme-based system after being constrained. The im-
provement of the morpheme-based setup as compared to the
word-based one is minimal in this case.

5.2. OOV Results

We first look at the out-of-vocabulary words for the medium
vocabulary task. As mentioned in Section 3, the OOV rate
for the word vocabulary is quite high at 10.8% while that of
the morph is 3.6%. Comparing between the word and morph
decoding outputs, we find that there are 761 unique OOV
words of which 159 are decoded correctly at least once by
the morpheme-based system. In order to get a better idea of
the distribution of OOV words, we randomly select 50 sam-
ples. Figure 4 illustrates the different types of OOV’s as well
as their percentages. Of the 50 OOV words, 32 can be poten-
tially recognized by the morpheme-based system, i.e., their
corresponding morphemes exist in the morpheme-based lat-
tices. Of these 32, 12 are indeed recognized correctly (37.5%).
Table 5 gives a description of the categories of these 32 words.

Next, we look at the large vocabulary task. We recall
that OOV rates are much lower, 1.43% and 0.33% for the
word and morpheme vocabularies, respectively. There are 70
unique OOV words, of which 27 can be recognized by the
morpheme-based recognizer, and only 2 are. Figure 5 illus-

trates the distribution of all 70 OOV words.

6. DISCUSSION

We have proposed morpheme-based language modeling for
Arabic speech recognition, and we have compared its perfor-
mance against word-based models. For medium-sized vocab-
ularies ( � 64kw), we achieve a 2.4% absolute WER improve-
ment using a simple morpheme � -gram model, which com-
pares favorably to the gains found in other morpheme-based
work for Arabic [4, 5] while using a simpler model. In par-
ticular, we address the issue that more morphemes are needed
to comprise the same LM context as compared to words by
using a 7-gram model rather than a trigram. Previous work
uses stream models, factored LMs, and/or combination with
a word LM to incorporate morpheme information.

Much existing ASR software supports vocabularies of at
most 64k words; thus, previous work with morpheme-based
LMs (for any language) almost exclusively investigates vo-
cabularies of this size or less. In this work, we show that the
OOV issue for Arabic word LMs can largely be addressed by
using a very large vocabulary and training set. With a vo-
cabulary of 800k words, we found an OOV rate of 1.4% and
morpheme LMs yielded a gain of only 0.2% absolute WER.
A detailed analysis of the OOV words that morpheme LMs
can potentially recognize reveal that most are foreign words,
proper nouns, and erroneous transcriptions. It remains to be
seen whether similar behavior holds for other highly-inflected
languages.
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