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ABSTRACT

In this paper we describe a method for Minimum Bayes Risk deco
ing for speech recognition. This is a technique similar to&&msus
a.k.a. Confusion Network Decoding, in which we attempt td fime
hypothesis that minimizes the Bayes’ Risk with respect éowiord
error rate, based on a lattice of alternative outputs. Ouhaotkis

an E-M like technique which makes approximations which we be
lieve are less severe than the approximations made in Censen
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Sentence Model Reference| Expected Errors
Prob
Sentence| Sent | Word
ABC 0.4
ABC 0.6/ | 1.2
ADX 03 ADC 1.0 1.0/
ADY 0.3

(a) Modeled probabilities (b) Expected errors

Fig. 1. Example of MBR estimate differing from MAP estimate

and our experimental results show an improvement in WER both

for lattice rescoring and lattice-based system combinati@rsus
baselines such as Consensus, Confusion Network Combireatid
ROVER.

Index Terms— Minimum Bayes Risk (MBR), Consensus, Con-
fusion Network, Speech Recognition, Lattice Rescoring

1. INTRODUCTION

The standard decoding formula used in speech recognitidheis
Maximum A Posteriori (MAP) rule:

wr o =

argmax,,, P(W|0)
argmaxy, P(W)p(O|W),

@)
@)

whereWV is the word-sequence arfd is the observation sequence.
This gives the Minimum Bayes Risk estimate with respect ® th
sentence error. Unfortunately sentence error is not therimn by
which speech recognition systems are usually judged; wiedlp
use a Word Error Rate based on the Levenshtein edit distdice [
A natural solution to this problem is to use a Minimum BayeskRi
estimate with respect to the word error rate. This is given by

©)

wr =

argminy, »  P(W'|O)L(W, W),
W/

We mention an essential detail at this point: in practice we p
a larger weight on the language model log probabilities thathe
acoustic model log likelihoods because the latter typjchlve a
very high dynamic range. This weight (typically between #0 t
20) can be applied as a scale on either information sourceji£
tion 2 (MAP decoding), but in Equation (3) it is important tcage
down the acoustic likelihoods rather than scale up theilikelds
(e.g. P(W]O) x P(W)p(O|]W)" with x = 1/13 or s0). In
practice, in our method as in Confusion Networks [2] we gaher
ize this slightly and make a separate tunable parameter so we have
P(W)**p(O|W)" if « is the normal language model scale (e.g.
12). Note that? (W) would also contain the word insertion penalty
that is used in some speech recognition systems.

In order to better illustrate the principle of MBR decodings
give an example (Figure 1) where the MAP and MBR estimates dif
fer. This is similar to the example in [3].

Itis quite difficult to do the computation implied in Equati¢3).
Using lattices and implemented in the obvious way, we woeleich
two nested loops over word sequené®s one for theargmin and
one for the} , both of which would range over the astronomically
large number of word sequences in the lattice, and the inagr p
where we computd, (W, W’) takes time quadratic in the length of
the sequenced’. Thus some kind of approximation or clever com-
putation is needed.

where L(W, W) is the Levenshtein edit distance between word se-

quencesW and W’ and P(W’|©) is the posterior probability as-
signed tolW’ by the model. We would typically limit summations
over word sequences to a finite set covered by a lattice. Nate t

Minimum Bayes Risk decoding is an umbrella term for the vari-

ous techniques (such as Consensus) that attempt to optiqiza-
tion (3), but it is a slight misnomer because the standardoagi of
Equation (2) is a Minimum Bayes’ Risk estimate with respedhie
sentence error.

Thanks to Andreas Stolcke and Bjorn Hoffmeister for helfW@RILM
tools, and to Geoff Zweig for useful discussions

1.1. Previous work with Minimum Bayes Risk decoding

The first paper to introduce the concept of Minimum BayesoErr
decoding was [3]. In that paper, the was approximated by a long
N-best list and it was noted that thegmin could be approximated
by a short N-best list (e.g. 10);(W, W') was computed using the
standard quadratic-time algorithm. That paper was a prbobwo-
cept but not practical. Soon afterwards, two different vadile ap-
proximations were published [2, 4], of which the latter (S8ensus
a.k.a. Confusion Network Decoding) has become a widely aped



proach, and building on it is the approach for system continina
known as Confusion Network Combination (CNC) [5], which im-
proves on ROVER [6].

Algorithm 1 R = Rescoré”l)

1: R — MAP (1-best) estimate from latticé
2. R <« normaliz&€ R) // Inserte between each word

We also note various more recent pieces of relevant work: [7] 3: while true do

which exactly optimizes a frame-by-frame word correctness
terion over a lattice, and our own previous work [8] which sise

similar approximations as used in Minimum Phone/Word Error

(MPE/MWE) training to approximate the summation in (3). §hi
is similar to one of the approaches described in [9]. An EgEng
piece of related work is [10], applied to MPE/MWE trainingdan
using Weighted Finite State Transducer (WFST) based tqubsi

2. OVERVIEW OF OUR APPROACH

We use a lattice-based approach that is a hybrid of the fokwar
backward algorithm on lattices and the basic dynamic-@nogning
edit-distance computation. The algorithm has an estimgiltase
in which we compute, for each position in the current refeegn
statistics about the symbol (or no symbelthat aligned to it. We
accumulate statistics about insertions by including inrégference
“dummy” symbolse to which extra words in the lattice can align. We
do a kind of discrete E-M where each time we change the referen
we can be sure it will decrease the average error. Howeee ib

a slight approximation in the lattice-based recursion ghel what
we are optimizing is not exactly the same as (3). In a futute-jo
nal publication we will provide extensive theroetical giséd with
proofs.

Note that the time complexity of our algorithmdsof the num-
ber of arcs in the lattice times the average number of wordeof
tences in the lattice. Thus, for a given lattice depth it iadratic in
the length of the utterance. This is asymptotically fagtantCon-
sensus, which is cubic in the number of arcs in the lattice.

4:  Accumulate statistics(k, a) from £ andR

5. Choose symbat at each positioft in R with highesty(k, a)
6: If nothing changed, exit loop.

7. R < normaliz€ R) // Make sure one between each word

8. end while
9. R < remove-epER) // Removee's between words

3. LATTICE FORWARD-BACKWARD EDIT-DISTANCE
COMPUTATION

The core of our algorithm is the forward-backward edit-aliste
computation, which we break into two separate parts (thedot

and backward part) to make the discussion of each part mabkge
although they really comprise one algorithm. This entirmpata-

tion equates to line 4 in Algorithm 1, and its output is thdistas
v(k,a) wherel < k < |R| is a position in the reference ands a
symbol (ore). The algorithm also gives us the expected edit-distance
E between the lattic€ and the referenc®.

3.1. Inputs

The inputs to the process are a refereit@nd a latticeC. The
reference is a sequenee...rz. Each element; is a symbol
r; € S U {e}, whereS is the set of words andis a dummy sym-
bol meaning no word is present. The lattice has a number aésrod
N = |£], with nodesl < n < N. The nodes are assumed to be

Before we proceed, in order to establish some notation and mesorted in topological order, so nodeis the start node and’ the

tivate the algorithm we write the Levenshtein edit distafideom-
putation as a recursion. We have the base cases

L(a,a) = 0,a#c¢ (4)
L(a,b) = 1l,a#b 5)
L(e,a) = 1 (6)
L(a,e) = 1 @)
L(e,e) = 0, (8)

wheree is a special symbol that means “no symbol” and the last bas

case is not normally used but is necessary in our approachedib
distance on strings can then be written as:

L(ax,br) + L(AY, B!y
L(a1,€) + LAY, B)
L(e,b1) + L(A, BY))

L(A, B)

min 9

with the base case d5( (), ()) = 0, and wherez; is the first el-
ement of the sequencé andA‘zA‘ is the rest of the sequence. The
simplest way to understand the alignment computatiof (of, B)
is to think of an arrayL(k, 1) where0 < k < |A| is the position
in Aand0 < ! < |B]is the position inB, and we fill in the array
starting from positior{0, 0); the answer is positiofj 4|, | B|) in the
array.

Before introducing the forward-backward algorithm, we Iwil
give an overview of the entire process. It is summarized igoAl
rithm 1.

end node (the sorting is necessary). Each node has a selowfifa
arcsfoll(n) and preceding arcsred(n). For an arca, s(a) is its
starting node and(a) is its ending node. Each arc has a word label
w(a) € SU {e} (we allowe in order to handle non-scored words
such as silence). It also has a “total likelihoge('a) which is the
appropriately weighted product of the acoustic and languagdel
likelihoods, including the scale.

3.2. Forward part

he key quantities in our forward algorithm are the standandard
ikelihood «(n) for a lattice noden, and the forward average error
o/(n, k) for noden and position0 < k < |R| in the reference.
This is a weighted average edit distance up to the current jpoid
is reminiscent of they" quantity in the MPE computation [11]. We
also have the Boolean quantiiyn, k). This does not actually con-
tain any information not present in tkeor o’ quantities but it is
used to speed up the backward computation by rememberitajrcer
traceback information. We note thafn) should be stored as a log
guantity in practical implementations. The algorithm betefers to
a quantitys. This is a small positive quantity e.§.= 10~°, which
is used to break a symmetry and force inserted words to atign t
positions in the lattice.

Algorithm 2 can be thought of as a lattice-based version ef th
recursion of Equation (9), with the first and second recursjations
of (9) on line 16 and the third one on line 22. At each point weta
a weighted average of incoming paths. There is a slight appes
tion involved because in effect we are making a single decikbw
to recurse for whole groups of paths through the latticeerathan



for individual paths. At the endP is the likelihood of the whole  Algorithm 3 BackwardZ, R, a, o', b, P)

utterance andv is the average approximated edit distance. 1 N — |L|, K — |R|
2: Initialize arraysg(1 : N,0: K), v(1 : K,S U {e}).

Algorithm 2 Forward £, R) 3: V(n, k), B(n, k) «—

1: N —|L], K < |R] 4: Y(k,a), v(k,a) < 0O /lin practicey would not be a simple array

2: Initialize arraysa (1 : N), o/(1: N,0: K),b(1: N,0: K) 5 B(N,K) <1

3: Y(n, k), b(n, k) = false 6: for n<— N...1 do

4: a(1) —1,0/(1,0) — 0 7: fOI’.k<—K...0 do

5. for k«—1...K do 8 if b(n, k) then

6: o/ (1,k)—a'(1,k—1)+ Le, i) 9: V(k,€) — v(k,€) + a(n)B(n, k)/ P

7. b(1,k) — true 10: B(n,k —1) « B(n,k —1) + B(n, k)

8- end for 11: end if

9: for n«—2...N do 12: ;endfor i) d

10 aln) <« 3 . corearm e(s(a))pla 13: or a € pred(n) do

11t <(—)0 " %i:s gﬁlydl}séd tE) £021)tro(| f<))r numerical problems 14: for k—0...K do

12:  for a € pred(n) do 1s: if —b(n, k) A B(n, k ,75(0 )thken 1) Lw(a),ra) <
13: p — a(s(a))p(a)/an) I 0<p<1 ) ; a(s(a),r — 1)+ L(w(a), Ty
i pip Do 16' TR 0N (sla), B+ Lw(a), )+
15: for k—0...Kdo then (ks w(a) 4

o ek S0 (wL((a%(e)) o R w(@) = o (5()) 3, K)pla)/P

Il Takeo! (s(a), k — 1) to beco for k = 18: B(s(a),k —1) < B(s(a),k — 1) + B(n, k)p(a)

17: end for 19: else

18:  end for 20: B(s(a), k) — B(s(a),k) + B(n, k)p(a)

190 o/(n,k) — o/ (n,k)/t, k € {0...K} /I Renormalize for 21 end if

numerical reasons; mathematically, t=1. 22: end if

20: for k—1...K do 23 end for

21: if o/(n,k) > a'(n,k—1)+L(e, i) then 24: end for

22: o' (n, k) =a'(n,k— 1)+ L(e, r) 25: end for

23: b(n, k) = true // Remember how we recursed 26: Check that3(1,0) = Pand}_, v(k,a) = 1for1 <k < K.
24: end if

25:  end for

26: end for 5. LATTICE COMBINATION

27: P «— «(N) /I Pis the total probability of the utterance

28: E «— o'(N, K) /I Eis the average approximated error System combination with this scheme is very trivial: we cast |

assume that we want to find th&™ that minimizes an average of
the quantitiy)_,,,, P(W'|O)L(W, W) over different systems, i.e.

3.3. Backward part N , ,
W* =argming, » &> P.(W/O)L(W,W'),  (10)
The next stage of the algorithm (the backward part) accuesila

statistics about which symbols aligned to which positibns k£ <
N in the referenceR. The statistics arg(k,a) witha € SU{¢} ~ Where P,(W'|O) is the posterior in thex'th lattice. We can also
and in practice these would be stored for each positi@ither as  consider weighted combinations. The only modification tgaAl
an associative array indexed hyor as a list of pairga, p) which  rithm 1 is that we need to average the statistits, a) over the dif-
would be sorted on and the probability summed up for each unique ferent systems before updatifiy In our experiments we picked the
a. The “backward” quantity3(n, k) is a backward likelihood com- best individual system to initializ&.
parable to the “forward(n), and it should be stored in log form.

6. EXPERIMENTAL SETUP

4. UPDATE PHASE AND NORMALIZATION Experiments are performed using the HUB4-98 English brasidc

The “update phase” of this process (line 5 of Algorithm 1) is corpus obtained from the LDC, which has ab@@ihours of training
very simple: for each position < k < |R|, we takes) «— data after cleaning, and the HUB4-97 corpus which is aBétiburs
max, v(k, a), wherea will either be a word or. We can formu- long. We use two test sets named BN99EN-1 and BN99EN-2, with
late this whole problem as a kind of discrete E-M process; e w 1.0 and1.5 hours respectively.

not go into details here due to space constraints, but we @am p ~The data is parameterized as Perceptual Linear Prediction ¢
that the average errdt computed in Algorithm 2 will decrease by éfficients (PLPs) with energy, plus and AA features yielding a
atleasty", v(k,7r) — v(k, 7). standard 39 dimensional feature vector. Our systems wairgett

The normalization process referred to in Algorithm 1 asWwith HTK. We first trained a triphone cross-word MLE systenttwi
normalizé R) simply ensures that between every noword in R 3. 7_k clustereq states and® Gaussians per state, on HUB4-98 on_Iy
is exactly one, including at the start and end. This is accomplishedThis system is referred to as MLE12. In order to have a variety

by adding and removing symbols. The process remove-ép3  Of systems to combine, we used different discriminativaning ap-
simply consists of removing adlsymbols. proaches. We trained a system with MPE [11], and two systeiths w



Boosted MMI [12]; the BMMIO1 system was trained in the normal
way for 4 iterations and for the BMMIO2 system was trainechgsi
MPE for one iteration, lattices were regenerated and thetraired
for 4 iterations with Boosted MMI. We also trained a larger Bifs-
tem, on both HUB4-97 and HUB4-98, with3k clustered states and
with 16 Gaussians per state, which we refer to as MLE16. Language
models are trigram and trained with the HTK tools on the texttad
provided for the HUB4 task. We used a 60k word dictionary.

Lattices for rescoring were generated witbecode (note that
this is the HTKV3.4 version oHDecode which has improved lat-
tice generation). We tested with language model scale 110y
insertion probability -10.0 (i.e. insertion penalty 10)e\Md exper-
iments with two scales: 0.065 which had been optimized for MPE
training, and 0.0833 which was the inverse of the languagéeino
scale. Confusion network experiments worked better wil883
and our approach with 0.065 so we chose those settings. tAfterg
the pruning beam in the confusion network computation weseho
25 (applied before:). We worked with two Consensus/CNC imple-
mentations: our own, and the SRILM toolkit [13], creating fBNs
with | attice-tool -wite-nesh and combinng them with
nbest-lattice -use-nesh -lattice-files ....We
had the best results with our own implementation for singktesm
decoding, and SRILM for CNC; we report these results. Failtes
with our method reported here, we iterated our algorithmtfioee
iterations; typically if allowed to run till completion thalgorithm
takes two to four iterations.

Tal

We
latti

per

Combination Method| BN99EN-1 | BN99EN-2 || Overall
Pick best system 27.66 25.70 26.50
MAP+ROVER 27.63 25.30 26.26
CN+ROVER 27.36 25.11 26.03
Proposed+ROVER 27.04 24.94 25.80
CNC 27.09 25.03 25.88
Proposed 26.91 24.84 25.69

ble 2. 3-system combinatiorMPE, BMMI01, BMMI02: %WER
Combination Method| BN99EN-1 | BN99EN-2 || Overall
Pick best system 27.66 25.70 26.50
MAP+ROVER 27.36 25.40 26.20
CN+ROVER 27.31 25.23 26.09
Proposed+ROVER 27.13 25.00 25.88
CNC 26.49 24.54 25.34
Proposed 26.25 24.46 25.20

Table 3. 4-system combinatiorMPE, BMMIO1, BMMIO2, MLE16

8. CONCLUSIONS

have introduced a Minimum Bayes Risk decoding technique f
ce rescoring and system combination. It has similacfion-

ality to Consensus, but is simpler to implement. Based oreihae

iments reported here, it seems to give slightly bettaulte than

Consensus/CNC in both lattice rescoring and system cortibma
scenarios. We believe it is a good replacement for ConséDN@G
because it is simpler and (as we will describe in future) helearer

theoretical basis.

7. RESULTS

(1]
System Decoding BN99EN-1| BN99EN-2|| Overall [2]

MAP baseline 3151 29.61 29.39

MLE12 Consensus 30.24 28.34 29.11
Proposed method 29.99 28.18 28.92 3]

MAP baseline 28.42 26.96 27.56

MLE16 Consensus 28.15 26.62 27.25
Proposed method  28.07 26.58 27.19 [4]

MAP baseline 27.92 25.74 26.64
MPE Consensus 27.46 25.42 26.26 5]

Proposed method 27.35 25.25 26.11

MAP baseline 28.60 26.17 27.17
BMMIO1 Consensus 28.34 25.93 26.92 6
Proposed method 28.14 25.69 26.70 (6]

MAP baseline 27.66 25.70 26.50

BMMI02 Consensus 27.31 25.24 26.09
Proposed method  27.18 25.14 || 25.98 [7]
Table 1. Single-system lattice rescoring: %WER [8]

Table 1 shows traditional (MAP) decoding versus Consensus|[9]
and our proposed method, for the four models and two differen
test sets. In each case Consensus gives an improvementhever t
baseline, and our method gives a further improvement. Teege  [10]
relative WER reduction is 1.2% from Consensus and 1.7% from o
proposed method.

For system combination experiments we experimented with tw
different scenarios: three-system combination and fgatesn com- (12]
bination, as seen in Tables 2 and 3. We applied ROVER to the var
ious individual results of Table 1 and also used CNC and our ap[13]
proach of Section 5. In all cases our system combination oadeith
slightly better than Consensus/CNC.

(11]
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