
AN IMPROVED CONSENSUS-LIKE METHOD FOR MINIMUM BAYES RISK DE CODING
AND LATTICE COMBINATION

Haihua Xu1, Daniel Povey2, Lidia Mangu3, Jie Zhu1

1Department of Electronic Engineering
Shanghai Jiao Tong University,Shanghai,200240,China

2Microsoft Research, Redmond, WA, USA
3 IBM T.J. Watson Research Center, Yorktown Heights, NY

{haihua xu,zhujie}@sjtu.edu.cn, dpovey@microsoft.com, mangu@us.ibm.com

ABSTRACT

In this paper we describe a method for Minimum Bayes Risk decod-
ing for speech recognition. This is a technique similar to Consensus
a.k.a. Confusion Network Decoding, in which we attempt to find the
hypothesis that minimizes the Bayes’ Risk with respect to the word
error rate, based on a lattice of alternative outputs. Our method is
an E-M like technique which makes approximations which we be-
lieve are less severe than the approximations made in Consensus,
and our experimental results show an improvement in WER both
for lattice rescoring and lattice-based system combination, versus
baselines such as Consensus, Confusion Network Combination and
ROVER.

Index Terms— Minimum Bayes Risk (MBR), Consensus, Con-
fusion Network, Speech Recognition, Lattice Rescoring

1. INTRODUCTION

The standard decoding formula used in speech recognition isthe
Maximum A Posteriori (MAP) rule:

W ∗ = argmax
W

P (W |O) (1)

= argmaxW P (W)p(O|W), (2)

whereW is the word-sequence andO is the observation sequence.
This gives the Minimum Bayes Risk estimate with respect to the
sentence error. Unfortunately sentence error is not the criterion by
which speech recognition systems are usually judged; we typically
use a Word Error Rate based on the Levenshtein edit distance [1].
A natural solution to this problem is to use a Minimum Bayes Risk
estimate with respect to the word error rate. This is given by:

W ∗ = argmin
W

X

W ′

P (W ′|O)L(W, W ′), (3)

whereL(W,W ′) is the Levenshtein edit distance between word se-
quencesW andW ′ andP (W ′|O) is the posterior probability as-
signed toW ′ by the model. We would typically limit summations
over word sequences to a finite set covered by a lattice. Note that
Minimum Bayes Risk decoding is an umbrella term for the vari-
ous techniques (such as Consensus) that attempt to optimizeEqua-
tion (3), but it is a slight misnomer because the standard approach of
Equation (2) is a Minimum Bayes’ Risk estimate with respect to the
sentence error.

Thanks to Andreas Stolcke and Björn Hoffmeister for help with SRILM
tools, and to Geoff Zweig for useful discussions

Sentence
Model
Prob

A B C 0.4
A D X 0.3
A D Y 0.3

(a) Modeled probabilities

Reference Expected Errors
Sentence Sent Word
A B C 0.6X 1.2
A D C 1.0 1.0X

(b) Expected errors

Fig. 1. Example of MBR estimate differing from MAP estimate

We mention an essential detail at this point: in practice we put
a larger weight on the language model log probabilities thanon the
acoustic model log likelihoods because the latter typically have a
very high dynamic range. This weight (typically between 10 to
20) can be applied as a scale on either information source in Equa-
tion 2 (MAP decoding), but in Equation (3) it is important to scale
down the acoustic likelihoods rather than scale up the likelihoods
(e.g. P (W |O) ∝ P (W)p(O|W)κ with κ = 1/13 or so). In
practice, in our method as in Confusion Networks [2] we general-
ize this slightly and makeκ a separate tunable parameter so we have
P (W)ακp(O|W)κ if α is the normal language model scale (e.g.
12). Note thatP (W)α would also contain the word insertion penalty
that is used in some speech recognition systems.

In order to better illustrate the principle of MBR decoding,we
give an example (Figure 1) where the MAP and MBR estimates dif-
fer. This is similar to the example in [3].

It is quite difficult to do the computation implied in Equation (3).
Using lattices and implemented in the obvious way, we would need
two nested loops over word sequencesW , one for theargmin and
one for the

P

, both of which would range over the astronomically
large number of word sequences in the lattice, and the inner part
where we computeL(W,W ′) takes time quadratic in the length of
the sequencesW . Thus some kind of approximation or clever com-
putation is needed.

1.1. Previous work with Minimum Bayes Risk decoding

The first paper to introduce the concept of Minimum Bayes’ Error
decoding was [3]. In that paper, the

P

was approximated by a long
N-best list and it was noted that theargmin could be approximated
by a short N-best list (e.g. 10);L(W,W ′) was computed using the
standard quadratic-time algorithm. That paper was a proof of con-
cept but not practical. Soon afterwards, two different workable ap-
proximations were published [2, 4], of which the latter (Consensus
a.k.a. Confusion Network Decoding) has become a widely usedap-

proach, and building on it is the approach for system combination
known as Confusion Network Combination (CNC) [5], which im-
proves on ROVER [6].

We also note various more recent pieces of relevant work: [7]
which exactly optimizes a frame-by-frame word correctnesscri-
terion over a lattice, and our own previous work [8] which uses
similar approximations as used in Minimum Phone/Word Error
(MPE/MWE) training to approximate the summation in (3). This
is similar to one of the approaches described in [9]. An interesting
piece of related work is [10], applied to MPE/MWE training and
using Weighted Finite State Transducer (WFST) based techniques.

2. OVERVIEW OF OUR APPROACH

We use a lattice-based approach that is a hybrid of the forward-
backward algorithm on lattices and the basic dynamic-programming
edit-distance computation. The algorithm has an estimation phase
in which we compute, for each position in the current reference,
statistics about the symbol (or no symbol,ǫ) that aligned to it. We
accumulate statistics about insertions by including in thereference
“dummy” symbolsǫ to which extra words in the lattice can align. We
do a kind of discrete E-M where each time we change the reference
we can be sure it will decrease the average error. However, there is
a slight approximation in the lattice-based recursion suchthat what
we are optimizing is not exactly the same as (3). In a future jour-
nal publication we will provide extensive theroetical analysis with
proofs.

Note that the time complexity of our algorithm isO of the num-
ber of arcs in the lattice times the average number of words ofsen-
tences in the lattice. Thus, for a given lattice depth it is quadratic in
the length of the utterance. This is asymptotically faster than Con-
sensus, which is cubic in the number of arcs in the lattice.

Before we proceed, in order to establish some notation and mo-
tivate the algorithm we write the Levenshtein edit distance[1] com-
putation as a recursion. We have the base cases

L(a, a) = 0, a 6= ǫ (4)

L(a, b) = 1, a 6= b (5)

L(ǫ, a) = 1 (6)

L(a, ǫ) = 1 (7)

L(ǫ, ǫ) = 0, (8)

whereǫ is a special symbol that means “no symbol” and the last base
case is not normally used but is necessary in our approach. The edit
distance on strings can then be written as:

L(A, B) = min

8

>

<

>

:

L(a1, b1) + L(A
|A|
2 , B

|B|
2)

L(a1, ǫ) + L(A
|A|
2 , B)

L(ǫ, b1) + L(A, B
|B|
2)

9

>

=

>

;

(9)

with the base case asL((), ()) = 0, and wherea1 is the first el-
ement of the sequenceA andA

|A|
2 is the rest of the sequence. The

simplest way to understand the alignment computation ofL(A,B)
is to think of an arrayL(k, l) where0 ≤ k ≤ |A| is the position
in A and0 ≤ l ≤ |B| is the position inB, and we fill in the array
starting from position(0, 0); the answer is position(|A|, |B|) in the
array.

Before introducing the forward-backward algorithm, we will
give an overview of the entire process. It is summarized in Algo-
rithm 1.

Algorithm 1 R = Rescore(L)

1: R←MAP (1-best) estimate from latticeL
2: R← normalize(R) // Insertǫ between each word
3: while true do
4: Accumulate statisticsγ(k, a) fromL andR
5: Choose symbola at each positionk in R with highestγ(k, a)

6: If nothing changed, exit loop.
7: R← normalize(R) // Make sure oneǫ between each word
8: end while
9: R← remove-eps(R) // Removeǫ’s between words

3. LATTICE FORWARD-BACKWARD EDIT-DISTANCE
COMPUTATION

The core of our algorithm is the forward-backward edit-distance
computation, which we break into two separate parts (the forward
and backward part) to make the discussion of each part manageable,
although they really comprise one algorithm. This entire computa-
tion equates to line 4 in Algorithm 1, and its output is the statistics
γ(k, a) where1 ≤ k ≤ |R| is a position in the reference anda is a
symbol (orǫ). The algorithm also gives us the expected edit-distance
E between the latticeL and the referenceR.

3.1. Inputs

The inputs to the process are a referenceR and a latticeL. The
reference is a sequencer1 . . . r|R|. Each elementri is a symbol
ri ∈ S ∪ {ǫ}, whereS is the set of words andǫ is a dummy sym-
bol meaning no word is present. The lattice has a number of nodes
N = |L|, with nodes1 ≤ n ≤ N . The nodes are assumed to be
sorted in topological order, so node1 is the start node andN the
end node (the sorting is necessary). Each node has a set of following
arcsfoll(n) and preceding arcspred(n). For an arca, s(a) is its
starting node ande(a) is its ending node. Each arc has a word label
w(a) ∈ S ∪ {ǫ} (we allow ǫ in order to handle non-scored words
such as silence). It also has a “total likelihood”p(a) which is the
appropriately weighted product of the acoustic and language model
likelihoods, including the scaleκ.

3.2. Forward part

The key quantities in our forward algorithm are the standardforward
likelihood α(n) for a lattice noden, and the forward average error
α′(n, k) for noden and position0 ≤ k ≤ |R| in the reference.
This is a weighted average edit distance up to the current point and
is reminiscent of theα′ quantity in the MPE computation [11]. We
also have the Boolean quantityb(n, k). This does not actually con-
tain any information not present in theα or α′ quantities but it is
used to speed up the backward computation by remembering certain
traceback information. We note thatα(n) should be stored as a log
quantity in practical implementations. The algorithm below refers to
a quantityδ. This is a small positive quantity e.g.δ = 10−5, which
is used to break a symmetry and force inserted words to align to ǫ
positions in the lattice.

Algorithm 2 can be thought of as a lattice-based version of the
recursion of Equation (9), with the first and second recursion options
of (9) on line 16 and the third one on line 22. At each point we take
a weighted average of incoming paths. There is a slight approxima-
tion involved because in effect we are making a single decision how
to recurse for whole groups of paths through the lattice rather than

for individual paths. At the end,P is the likelihood of the whole
utterance andE is the average approximated edit distance.

Algorithm 2 Forward(L,R)

1: N ← |L|, K ← |R|
2: Initialize arraysα(1 : N), α′(1 : N, 0 : K), b(1 : N, 0 : K)
3: ∀(n, k), b(n, k) = false
4: α(1)← 1, α′(1, 0)← 0
5: for k ← 1 . . . K do
6: α′(1, k)← α′(1, k − 1) + L(ǫ, rk)
7: b(1, k)← true
8: end for
9: for n← 2 . . . N do

10: α(n)←
P

a∈pred(n) α(s(a))p(a)
11: t← 0 // t is only used to control for numerical problems
12: for a ∈ pred(n) do
13: p← α(s(a))p(a)/α(n) // 0 < p ≤ 1

14: t← t + p
15: for k← 0 . . . K do

16: α′(n, k)+= p min



α′(s(a), k − 1) + L(w(a), rk)
α′(s(a), k) + L(w(a), ǫ) + δ

ff

// Takeα′(s(a), k − 1) to be∞ for k = 0

17: end for
18: end for
19: α′(n, k) ← α′(n, k)/t, k ∈ {0 . . . K} // Renormalize for

numerical reasons; mathematically, t=1.
20: for k ← 1 . . . K do
21: if α′(n, k) > α′(n, k − 1)+L(ǫ, rk) then
22: α′(n, k) = α′(n, k − 1) + L(ǫ, rk)
23: b(n, k) = true // Remember how we recursed
24: end if
25: end for
26: end for
27: P ← α(N) // P is the total probability of the utterance
28: E ← α′(N, K) // E is the average approximated error

3.3. Backward part

The next stage of the algorithm (the backward part) accumulates
statistics about which symbols aligned to which positions1 ≤ k ≤
N in the referenceR. The statistics areγ(k, a) with a ∈ S ∪ {ǫ}
and in practice these would be stored for each positionk either as
an associative array indexed bya, or as a list of pairs(a, p) which
would be sorted ona and the probability summed up for each unique
a. The “backward” quantityβ(n, k) is a backward likelihood com-
parable to the “forward”α(n), and it should be stored in log form.

4. UPDATE PHASE AND NORMALIZATION

The “update phase” of this process (line 5 of Algorithm 1) is
very simple: for each position1 ≤ k ≤ |R|, we take r̂k ←
maxa γ(k, a), wherea will either be a word orǫ. We can formu-
late this whole problem as a kind of discrete E-M process; we will
not go into details here due to space constraints, but we can prove
that the average errorE computed in Algorithm 2 will decrease by
at least

P

k
γ(k, r̂k)− γ(k, rk).

The normalization process referred to in Algorithm 1 as
normalize(R) simply ensures that between every non-ǫ word in R
is exactly oneǫ, including at the start and end. This is accomplished
by adding and removingǫ symbols. The process remove-eps(R)
simply consists of removing allǫ symbols.

Algorithm 3 Backward(L, R,α, α′, b, P)

1: N ← |L|, K ← |R|
2: Initialize arraysβ(1 : N, 0 : K), γ(1 : K,S ∪ {ǫ}).
3: ∀(n, k), β(n, k)← 0
4: ∀(k, a), γ(k, a)← 0 // in practiceγ would not be a simple array
5: β(N, K)← 1
6: for n← N . . . 1 do
7: for k← K . . . 0 do
8: if b(n, k) then
9: γ(k, ǫ)← γ(k, ǫ) + α(n)β(n, k)/P

10: β(n, k − 1)← β(n, k − 1) + β(n, k)
11: end if
12: end for
13: for a ∈ pred(n) do
14: for k← 0 . . . K do
15: if ¬b(n, k) ∧ β(n, k) 6= 0 then

16: if k > 0 ∧
α′(s(a), k − 1)+L(w(a), rk) ≤

α′(s(a), k)+L(w(a), ǫ) + δ
then

17: γ(k, w(a))←
γ(k, w(a))+

α(s(a))β(n, k)p(a)/P
18: β(s(a), k − 1)← β(s(a), k − 1) + β(n, k)p(a)
19: else
20: β(s(a), k)← β(s(a), k) + β(n, k)p(a)
21: end if
22: end if
23: end for
24: end for
25: end for
26: Check thatβ(1, 0) = P and

P

a
γ(k, a) = 1 for 1 ≤ k ≤ K.

5. LATTICE COMBINATION

System combination with this scheme is very trivial: we can just
assume that we want to find theW ∗ that minimizes an average of
the quantitiy

P

W ′ P (W ′|O)L(W, W ′) over different systems, i.e.

W ∗ = argmin
W

N
X

n=1

1
N

X

W ′

Pn(W ′|O)L(W, W ′), (10)

wherePn(W ′|O) is the posterior in then’th lattice. We can also
consider weighted combinations. The only modification to Algo-
rithm 1 is that we need to average the statisticsγ(k, a) over the dif-
ferent systems before updatingR. In our experiments we picked the
best individual system to initializeR.

6. EXPERIMENTAL SETUP

Experiments are performed using the HUB4-98 English broadcast
corpus obtained from the LDC, which has about70 hours of training
data after cleaning, and the HUB4-97 corpus which is about74 hours
long. We use two test sets named BN99EN-1 and BN99EN-2, with
1.0 and1.5 hours respectively.

The data is parameterized as Perceptual Linear Prediction co-
efficients (PLPs) with energy, plus∆ and∆∆ features yielding a
standard 39 dimensional feature vector. Our systems were trained
with HTK. We first trained a triphone cross-word MLE system with
3.7k clustered states and12 Gaussians per state, on HUB4-98 only.
This system is referred to as MLE12. In order to have a variety
of systems to combine, we used different discriminative training ap-
proaches. We trained a system with MPE [11], and two systems with

Boosted MMI [12]; the BMMI01 system was trained in the normal
way for 4 iterations and for the BMMI02 system was trained using
MPE for one iteration, lattices were regenerated and then wetrained
for 4 iterations with Boosted MMI. We also trained a larger MLsys-
tem, on both HUB4-97 and HUB4-98, with6.3k clustered states and
with 16 Gaussians per state, which we refer to as MLE16. Language
models are trigram and trained with the HTK tools on the text data
provided for the HUB4 task. We used a 60k word dictionary.

Lattices for rescoring were generated withHDecode (note that
this is the HTKV3.4 version ofHDecode which has improved lat-
tice generation). We tested with language model scale 12.0 and log
insertion probability -10.0 (i.e. insertion penalty 10). We did exper-
iments with two scalesκ: 0.065 which had been optimized for MPE
training, and 0.0833 which was the inverse of the language model
scale. Confusion network experiments worked better with 0.0833
and our approach with 0.065 so we chose those settings. Aftertuning
the pruning beam in the confusion network computation we chose
25 (applied beforeκ). We worked with two Consensus/CNC imple-
mentations: our own, and the SRILM toolkit [13], creating the CNs
with lattice-tool -write-mesh and combinng them with
nbest-lattice -use-mesh -lattice-files We
had the best results with our own implementation for single system
decoding, and SRILM for CNC; we report these results. For results
with our method reported here, we iterated our algorithm forthree
iterations; typically if allowed to run till completion thealgorithm
takes two to four iterations.

7. RESULTS

System Decoding BN99EN-1 BN99EN-2 Overall

MLE12
MAP baseline 31.51 29.61 29.39

Consensus 30.24 28.34 29.11
Proposed method 29.99 28.18 28.92

MLE16
MAP baseline 28.42 26.96 27.56

Consensus 28.15 26.62 27.25
Proposed method 28.07 26.58 27.19

MPE
MAP baseline 27.92 25.74 26.64

Consensus 27.46 25.42 26.26
Proposed method 27.35 25.25 26.11

BMMI01
MAP baseline 28.60 26.17 27.17

Consensus 28.34 25.93 26.92
Proposed method 28.14 25.69 26.70

BMMI02
MAP baseline 27.66 25.70 26.50

Consensus 27.31 25.24 26.09
Proposed method 27.18 25.14 25.98

Table 1. Single-system lattice rescoring: %WER

Table 1 shows traditional (MAP) decoding versus Consensus
and our proposed method, for the four models and two different
test sets. In each case Consensus gives an improvement over the
baseline, and our method gives a further improvement. The average
relative WER reduction is 1.2% from Consensus and 1.7% from our
proposed method.

For system combination experiments we experimented with two
different scenarios: three-system combination and four-system com-
bination, as seen in Tables 2 and 3. We applied ROVER to the var-
ious individual results of Table 1 and also used CNC and our ap-
proach of Section 5. In all cases our system combination method is
slightly better than Consensus/CNC.

Combination Method BN99EN-1 BN99EN-2 Overall
Pick best system 27.66 25.70 26.50
MAP+ROVER 27.63 25.30 26.26
CN+ROVER 27.36 25.11 26.03

Proposed+ROVER 27.04 24.94 25.80
CNC 27.09 25.03 25.88

Proposed 26.91 24.84 25.69

Table 2. 3-system combination:MPE, BMMI01, BMMI02: %WER

Combination Method BN99EN-1 BN99EN-2 Overall
Pick best system 27.66 25.70 26.50
MAP+ROVER 27.36 25.40 26.20
CN+ROVER 27.31 25.23 26.09

Proposed+ROVER 27.13 25.00 25.88
CNC 26.49 24.54 25.34

Proposed 26.25 24.46 25.20

Table 3. 4-system combination:MPE, BMMI01, BMMI02, MLE16

8. CONCLUSIONS

We have introduced a Minimum Bayes Risk decoding technique for
lattice rescoring and system combination. It has similar function-
ality to Consensus, but is simpler to implement. Based on theex-
periments reported here, it seems to give slightly better results than
Consensus/CNC in both lattice rescoring and system combination
scenarios. We believe it is a good replacement for Consensus/CNC
because it is simpler and (as we will describe in future) has aclearer
theoretical basis.

9. REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,”Soviet Physics Doklady, vol. 10, 1966.

[2] L. Mangu, E. Brill and A. Stolcke, “Finding consensus in speech recog-
nition: word error minimization and other applications of confusion
networks,”Computer Speech and Language, vol. 14, no. 4, 2000.

[3] Y. König A. Stolcke and M. Weintraub, “Explicit word error minimiza-
tion in N-best list rescoring,” in5th European Conf. on Speech Comm.
and Technology, 1997, pp. 163–166.

[4] V. Goel and W. Byrne, “Minimum Bayes-risk automatic speech recog-
nition,” Computer Speech and Language, vol. 14, no. 2, 2000.

[5] G. Evermann and P.C. Woodland, “Posterior probability decoding, con-
fidence estimation and system combination,” inSpeech Transcription
Workshop, 2000.

[6] J. G. Fiscus, “A post-processing system to yield reducedword error
rates: Recognizer Output Voting Error Reduction (ROVER),”in ASRU,
1997.

[7] F. Wessel, R. Schlüter, H. Ney, “Explicit word error minimization using
word hypothesis posterior probabilities,” inICASSP, 2001.

[8] Xu H., Povey D., Zhu J. and Wu G., “Minimum Hypothesis Phone
Error as a Decoding Method for Speech Recognition,” inInterspeech,
2009.

[9] Björn Hoffmeister, Ralf Schlüter, and Hermann Ney, “Bayes Risk Ap-
proximations Using Time Overlap with an Application to System Com-
bination,” in Interspeech, 2009.

[10] Heigold G., Macherey W., Schlüter R., Ney H., “MinimumExact Word
Error Training,” inASRU, 2005.

[11] Povey D. and Woodland P.C., “Minimum Phone Error and I-smoothing
for Improved Discriminative Training,” inICASSP, 2002.

[12] Povey D., Kanevsky D., Kingsbury B., Ramabhadran B., Saon G. and
Visweswariah K., “Boosted MMI for Feature and Model Space Dis-
criminative Training,” inICASSP, 2008.

[13] A. Stolcke, “SRILM - An Extensible Language Modeling Toolkit,” in
ICSLP, 2002.

