A NOVEL ESTIMATION OF FEATURE-SPACE MLLR FOR FULL-COVARIANCE MODELS

Arnab Ghoshal*, Daniel Povey?,
Mohit Agarwal®, Pinar Akyazi*, Lukds Burget®, Kai Feng®, Ondiej Glembek®, Nagendra Goel’,
Martin Karafidt®, Ariya Rastrow®, Richard C. Rose®, Petr Schwarz’®, Samuel Thomas®

! Saarland University, Germany, arnab.ghoshal@lsv.uni-saarland.de;
2 Microsoft Research, USA, dpovey@microsoft .com;? IIIT Allahabad, India;
4 Bogazici University, Turkey; ® Brno University of Technology, Czech Republic; ® Hong Kong UST;
" Go-Vivace Inc., USA; ® Johns Hopkins University, USA; ® McGill University, Canada

ABSTRACT

In this paper we present a novel approach for estimating feature-
space maximum likelihood linear regression (fMLLR) transforms
for full-covariance Gaussian models by directly maximizing the like-
lihood function by repeated line search in the direction of the gradi-
ent. We do this in a pre-transformed parameter space such that an
approximation to the expected Hessian is proportional to the unit
matrix. The proposed algorithm is as efficient or more efficient than
standard approaches, and is more flexible because it can naturally be
combined with sets of basis transforms and with full covariance and
subspace precision and mean (SPAM) models.

Index Terms— Speech recognition, Speaker adaptation, Hidden
Markov models, Optimization methods, Linear algebra

1. INTRODUCTION

Feature-space MLLR (fMLLR), also known as Constrained MLLR,
is a popular adaptation technique used in automatic speech recog-
nition to reduce the mismatch between the models and the acoustic
data from a particular speaker [1]. The method uses an affine trans-
form of the feature vectors,

x®) = A x ¢ b(S)’ (1)

where the transform parameters A *) and b(*) are estimated to max-
imize the likelihood of the transformed speaker-specific data un-
der the acoustic model. In this paper we use the following com-
pact notation, x®) = WO xt where W) = [A<S>,b<s)}, and
xt = [xT,1]" denotes a vector x extended with a 1.

For each speaker transform W (®), we need to estimate d?+d pa-
rameters, where d is the dimensionality of the feature vectors. When
small amounts of per-speaker adaptation data are present, these esti-
mates may not be reliable. In such cases we can express W) as a
linear combination of a set of basis transforms W3, (1 < b < B),

W = Wi+ Y8 oWy,)

This work was conducted at the Johns Hopkins University Summer
Workshop which was (partially) supported by National Science Foundation
Grant Number IIS-0833652, with supplemental funding from Google Re-
search, DARPA’s GALE program and the Johns Hopkins University Human
Language Technology Center of Excellence. BUT researchers were partially
supported by Czech MPO project No. FR-TI1/034. Thanks to CLSP staff
and faculty, to Tomas Kasparek for system support, to Patrick Nguyen for
introducing the participants, to Mark Gales for advice and HTK help, and to
Jan Cernocky for proofreading and useful comments.

This is similar to the formulation presented in [2]. The bases W,
are estimated from the entire training set, and essentially define a
subspace for the fMLLR transforms. For each speaker we only need
to estimate the coefficients cv, where typically B < d(d + 1).

When the underlying probability model has a diagonal covari-
ance structure, the fMLLR transform can be estimated by iteratively
updating the matrix rows [1]; a similar row-by-row update has also
been proposed for the full covariance case [3]. Such updates are hard
to combine with the subspace formulation of Equation (2).

We propose to estimate the transformation matrices w) by
repeated line search in the gradient direction, in pre-transformed
parameter space where the Hessian is proportional to the unit ma-
trix. Our experiments are with a new kind of GMM-based system,
a “subspace Gaussian mixture model” (SGMM) system [4]. For the
purposes of fMLLR estimation, the only important fact is that this
system uses a relatively small number (less than 1000) of shared
full-covariance matrices. However, our approach is also applicable
to diagonal and other types of systems (e.g. diagonal-covariance,
full-covariance, SPAM [5]).

2. SUBSPACE GMM ACOUSTIC MODEL

The simplest form of SGMM can be expressed as follows:

p(xl) = i wiN(x; i, i) 3)
pji = Myv; 4)

T, .
wji _ exp(wi VJ) (5)

Sy exp(wirTv;)

where x € R” is the feature, j is the speech state, and v; € R is
the “state vector” with S =~ D being the subspace dimension. The
model in each state is a GMM with I Gaussians whose covariances
33; are shared between states. The means pj; and mixture weights
wj; are not parameters of the model. Instead, they are derived from
v, € R, via globally shared parameters M, and w;. Refer to [4, 6]
for details about the model, parameter estimation, etc.

3. ESTIMATION OF FMLLR TRANSFORM

The auxiliary function for estimating the fMLLR transform W
by maximum likelihood, obtained by the standard approach using
Jensen’s inequality, is as follows:

QW) = > 5(t)[log|det A| — ...

teT(s),4,i

SWxT (1) — pyo) ST (WX () — i) (6)
Q(W) = C+ flog|det A| + tr (WK") —
13 (WTEfWGi) @)

where C is the sum of the terms without W, 7 (s) is the set of frames
for speaker s, and 3, K, G; are the sufficient statistics that need to
be accumulated:

8= > v ®
teT (s),7,%

K = > 5% wx@)")
teT (s),7,1

T

G = > wmxToxt) (type 1) (10)

teT (s),j,1
T

Gy, = > vﬂ Opjaxt (O)x () (type2). (11)

teT (s),7,

The “type 1 formulation is efficient for SGMM where we have a rel-
atively small number of full covariance matrices. The “type 2" for-
mulation is a more general approach that covers SPAM systems [5]
(in which X;; are represented as a weighted combination of basis
inverse variances Ay for 1 < k < K, with 2;1 = Zk DjikAk), as
well as diagonal and general full covariance systems. This notation
is however not optimal for diagonal and full-covariance systems.

Defining P € R (@+Y a5 the derivative of Q(W) with respect
to W, we have:

_ QW) T, B
P = Wfﬂ[A ,o}+K G, (12
= D Z'WG: (type) (13)
G =) AWG, (type 2) (14)
k

This gradient is computed on each iteration of an iterative update
process.

4. HESSIAN COMPUTATION

In general we would expect the computation of the matrix of second
derivatives (the Hessian) of the likelihood function Q(W) to be dif-
ficult. However, with appropriate pre-scaling and assumptions this
d(d+ 1) by d(d+ 1) matrix has a simple structure. The general pro-
cess is that we pre-transform so that the means have diagonal vari-
ance and zero mean and the average variance is unity; we make the
simplifying assumption that all variances are unity, and then com-
pute the expected Hessian for statistics generated from the model
around W = [I; 0] (i.e. the default value). We then use its inverse
Cholesky factor as a pre-conditioning transform. We never have to
explicitly construct a d(d + 1) by d(d + 1) matrix.

4.1. Pre-transform

To compute the transform matrix Wpre = [Apre bpre] We start by
calculating the average within-class and between-class covariances,
and the average mean, as in the LDA computation:

Zmzi (15)

hS
I

Z i Z'Y]zﬂ/jz (16)
Jst

)

<Z e Z'YJZNJ%NJZ>_I"I~LT7 (17)
Gyi 130

7

S =

where v;; = >, v5i(t),
decomposition Ty = LLT
singular value decomposition

), and i = 37 ;i We first do the Cholesky
, compute B = L 'S5L"T, do the

B =UAVT, (18)

and compute Apre = UTL™!, byre = —Aprept, and

Ty — Ty —
Wore = [Apre ; bpre | = [U L' —U'L lu] . (19)
The bias term by, makes the data zero-mean on average, whereas
the transformation A . makes the average within-class covariance
unity, and the between-class covariance diagonal. To revert the trans-
formation by Wy we compute:

[Ane; 1]

If W is the transformation matrix in the original space, let W' be
the equivalent transform in the space where the model and features
are transformed by Wp. In effect, W' is equivalent to transform-
ing from the pre-transformed space to the original space with Wiy,
applying W, and then transforming back with W:

W=
W =

W WW Q1)

inv

+
Wi W WL, (22)

where the notation M denotes a matrix M with an extra row whose

last element is 1 and the rest are 0. If P = % is the gradient

with respect to the transform in the original space, we can compute

the transformed gradient [6] as:
_T T

P = APW/. . (23)

pre

4.2. Hessian transform

Assuming that the model and data have been pre-transformed as de-
scribed above, and approximating all variances with the average vari-
ance I, the expected per-frame model likelihood is:

O(W) = log|detA|—
3D v [(AX +b—pji) (Ax+b— I"ji)] , 24)
J,t

where the expectation &£;; is over typical features x generated from
Gaussian ¢ of state 5. Then we use the fact that the features x for
Gaussian ¢ of state j are distributed with unit variance and mean
Mji, and the fact that the means p¢;; have zero mean and variance A
(obtained while computing the pre-transforms from Equation (18)),
keeping only terms quadratic in A and/or b, to get:

QW) =
—1 [tr(A@T+ A)AT) +BTb], (25)

K +log|det A| + linear terms

At this point it is possible to work out [6] that around A = T and
b =0,

Qs d)b(er) — (14 A)66 &) 26)
aarcar’c’ b bl c b b

529

=0 27
8arcb'r/ ()
0?0
= 28
S = —ore), (%)
where §(+, -) is the Kronecker delta function. So the quadratic terms

in a quadratic expansion of the auxiliary function around that point
can be written as:

—3 D reter + ape(14Ae) — 3 Y bL. (29)

Note that the term a,.a., arises from the determinant and afc(l +
\c) arises from the expression tr (A(I + A)AT). This shows that
each element of A is only correlated with its transpose, so with an
appropriate reordering of the elements of W, the Hessian would
have a block-diagonal structure with blocks of size 2 and 1 (the size
1 blocks correspond to the diagonal of A and the elements of b).

Consider the general problem where we have a parameter f, and
an auxiliary function of the form Q(f) = f - g — 1f"Hf, where
—H is the Hessian w.r.t f. We need to compute a co- ordmate trans-
formation f — f such that the Hessian in the transformed space is
—1I. By expressing H in terms of its Cholesky factors H = LL7,
it is clear that the approprlate transformed parameter is f=1L"t,
since Q(f) = f - (L™ 'g) — fo This also makes clear that the
appropriate transformation on the gradient is L1

The details of this Cholesky factor computatlon can be found in
[6]. Multiplying P’ (cf. equation (23)) with L™ to obtain P, has
the following simple form. For 1 <r < dand1 <c <,

o

Pre = (1+A) 2p (30)
Per = 7(1+A,«7(1+AC)*) %(1+)\) Yol

+ 1+ 7(1+)\6)71)7%p/cr (31)

B = @+ A)T2p, (32)

Pri(d+1) = DPr(d+1)s (33)

where \; are the elements of the diagonal matrix A of (18).
In this transformed space, the proposed change A in W will be:
- 1.~
A=_-P. (34)
B
The factor 1/ is necessary because the expected Hessian is a per-

observation quantity. The co-ordinate transformation from Ato A
is as follows: for 1 <r < dandforl <c <,

Gre = (14A) 200
1 -
— (XX = L+ X)) 2 (L4 Ae) 0 (35)
1
Sr = (T+X =1 +X)7") 26 (36)
1.

5. = (24+MN)726 (37)
Orar1) = Or(dt1)- (38)
We can then transform A’ to A; referring to Equation (22),

A=A AW 39)

At this point a useful check is to make sure that in the three co-
ordinate systems, the computed auxiliary function change based on
a linear approximation is the same:

tr (APT) = tr (A'P'") = tr (APT). (40)

Algorithm 5.1 fMLLR estimation
1: Compute Wre, Winy and A
2: Tnitialize: W(* = [I; 0]

3: Accumulate statistics:
B« Et,j 75(t)

K~ Zz,j Vi (t)zj_l“ijr(t)T

Gj — X, wmoxt Ox ()"

N do

// Eq. (18) - (20)

// Eq. (8) - (10)

4: for n—1... // e.g. for N=5 iterations
55 Gy, z—lwffllcj

6: P«—B[L0+ K-G
7

8

9

T
P — AT PW, // Pre-transform: Eq. (23)

inv pre

P — P // Hessian transform: Eq. (30) - (33)

. A — %P // Step in transformed space: Eq. (34)
10: A — A’ // Reverse Hessian transform: Eq. (35)—(38)

11: A — AinVAIW:')—re // Reverse pre-transform: Eq. (39)
12: Compute step-size k // Appendix A

130 WY « WS L kA Update

14: end for

5. ADAPTATION RECIPE

In this section we summarize the steps for estimating the fMLLR
transform in the form of a recipe (Algorithm 5.1).

The first step is calculating the pre-transform W, the asso-
ciated inverse transform Wiy, and the diagonal matrix of singular
values A. These quantities depend only on the models, and need to
be computed only once before starting the iterative estimation of W.

The next step is to initialize WO Ifa previous estimate of
W) exists (for example, if we are running multiple passes over the
adaptation data), it is used as the initial estimate. Otherwise W =
[I; 0] is areasonable starting point.

For each pass over the adaptation data, we first accumulate the
sufficient statistics 3, K, and G;, which can be done in O(Td?)
time (type 1), or O(T'K d?) time (type 2).

To iteratively update~W<S>, we first compute the gradient P in
the original space, and P in the fully transformed space. We then
compute A, the change in W in this transformed space, from which
we obtain the change A in the original space by reversing the Hes-
sian transform and the pre-transform.

We next compute the optimal step-size k using an iterative pro-
cedure described in Appendix A, which is then used to update w):

W — W 4 kA, (41)

The time in update is dominated by Equation (13) (type 1) or
(14) (type 2) which take time O(Id®) for the type 1 update and
O(K d®) in the type 2 update for a general type of basis (e.g. SPAM)
but O(Kd?) for a “simple” basis as in standard diagonal or full-
covariance system; this reduces to O(d®) for diagonal (versus O(d*)
for the standard approach) and O(d*) for full-covariance (versus
O(d*) in [3]). The accumulation time (the part proportional to T') is
the same as standard approaches (type 2) or faster (type 1).

6. SUBSPACE VERSION OF FMLLR

We express Equation (2) in the fully transformed space:

B
W =W, + > W, (42)
b=1

Number of SGMM Substates
1800 2700 4k 6k 9k 12k 16k
| SGMM: 51.6 509 506 50.1 499 493 494 ‘
Per-speaker adaptation
fMLLR: 49.7 494 487 483 48.0 47.6 47.6
Per-utterance adaptation
fMLLR: 51.1 507 503 49.8 495 49.1 492
+subspaces: 502 499 495 489 48.6 480 479

Table 1. fMLLR adaptation results (in % WER).

where W, from an orthonormal basis, i.e., tr (W, WZ) = §(b, ¢).
With this subspace approach, Equation (34) is modified as:

B
- 1 - =
A =2 Witr (W, PT). (43)
p b=1
Note that in this method of calculation, the quantities a,(f) are im-

plicit and are never referred to in the calculation, but the updated W
will still be constrained by the subspace. This simplifies the cod-
ing procedure, but at the cost of slightly higher memory and storage
requirement.

6.1. Training the bases

The auxiliary function improvement in the transformed space can be

computed as 3 tr (AP™) (up to a linear approximation). This is the
1 1 p 1 pT 13 : s

same as 5tr (ﬁPﬁP). So,~the auxiliary function improvement

is the trace of the scatter of %@P projected onto the subspace.

The first step in training the basis is to compute the quantity
ﬁP(S) for each speaker. We then compute the scatter matrix:

T
1 =~ 1 =~
S= vec <—P(s)> vec <—P(s)> ,
2\ V3
where vec(M) represents concatenating the rows of a matrix M into
a vector. The column vectors uy, corresponding to the top B singular

values in the SVD of S, S = ULVT, gives bases Wy, i.e. up =
vec(Wy).

(44)

7. EXPERIMENTS

Our experiments are with an SGMM style of system on the CALL-
HOME English database; see [4] for system details. Results are
without speaker adaptive training.

In Table 1 we show adaptation results for different SGMM sys-
tems of varying model complexities [4]. We can see that the pro-
posed method for fMLLR provides substantial improvements over
an unadapted SGMM baseline when adapting using all the available
data for a particular speaker. The improvements are consistent with
those obtained by a standard implementation of fMLLR over a base-
line system that uses conventional GMMs.

When adapting per-utterance (i.e. with little adaptation data), we
see that normal fMLLR adaptation provides very modest gains (we
use a minimum of 100 speech frames for adaptation, which gives
good performance). However, using the subspace fMLLR with B =
100 basis transforms W}, (and the same minimum of 100 frames),
we are able to get performance that is comparable to per-speaker
adaptation.

8. CONCLUSIONS

In this paper we presented a novel estimation algorithm for fMLLR
transforms with full-covariance models, which iteratively finds the
gradient in a transformed space where the expected Hessian is pro-
portional to unity. The proposed algorithm provides large improve-
ments over a competitive unadapted SGMM baseline on an LVCSR
task. It is also used to estimate a subspace-constrained fMLLR,
which provides better results with limited adaptation data. The al-
gorithm itself is independent of the SGMM framework, and can be
applied to any HMM that uses GMM emission densities.

9. REFERENCES

[1] M.]. E Gales, “Maximum likelihood linear transformations for
HMM-based speech recognition,” Computer Speech and Lan-
guage, vol. 12, no. 2, pp. 75-98, April 1998.

[2] K. Visweswariah, V. Goel, and R. Gopinath, “Structuring linear
transforms for adaptation using training time information,” in
Proc. IEEE ICASSP, 2002, vol. 1, pp. 585-588.

[3] K. C. Sim and M. J. F. Gales, “Adaptation of precision matrix

models on large vocabulary continuous speech recognition,” in
Proc. IEEE ICASSP, 2005, vol. 1, pp. 97-100.

[4] D. Povey et al., “Subspace gaussian mixture models for speech
recognition,” Submitted to ICASSP, 2010.

[5] S. Axelrod et al., “Subspace constrained Gaussian mixture mod-
els for speech recognition,” IEEE Trans. Speech Audio Process.,
vol. 13, no. 6, pp. 1144-1160, 2005.

[6] D. Povey, “A Tutorial-style introduction to Subspace Gaussian
Mixture Models for Speech Recognition,” Tech. Rep. MSR-TR-
2009-111, Microsoft Research, 2009.

A. CALCULATING OPTIMAL STEP SIZE

The auxiliary function in the step size k is:

O(k) = Plogdet(A + kAi.q1.0)
+km — 1k®n, (45)
m = tr(AK") —tr(AG") (46)
no= St (ATS'AG) awpel @D
J
n = (type2) (48)

T
;tr (A AkAGk)

where Aj.4,1.q is the first d columns of A. We use a Newton’s
method optimization for k. After computing

B = (A + kAl:d,l:d)_lAl:d,lzd (49)
di = ptr(B)+m—kn (50)
d2 = —pB(trBB)—n (51)

where d; and ds are the first and second derivatives of (45) with
respect to k, we update k as:
dy

k=k—- ="

o (52)

At this point we check that Q(k) > Q(k). If Q(-) decreases,
we keep halving the step size k — (k + k)/2 until Q(k) > O(k).
The final £ should typically be close to 1.

