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ABSTRACT where the vectorsi; € RT (T is the speaker subspace dimension)

Last year we introduced the Subspace Gaussian Mixture Modélow capture the effect of the speaker vectors on the weigFite.
(SGMM), and we demonstrated Word Error Rate improvementdlifference is that how the mixture weights in the shared GMcs
on a fairly small-scale task. Here we describe an extensicghg  ture can vary with the speaker as well as with the speech-seatrt
SGMM, which we call the symmetric SGMM. It makes the model of the motivation for this is that as shown by experimentsortgu
fully symmetric between the “speech-state vectors” ance&gpr  in [1, 2], the fact that the weights vary with the speeches{abn-
vectors” by making the mixture weights depend on the speager trolled byw:;) is one of the most important features of the SGMM.
well as the speech state. We had previously avoided thisimsat ~ However, symmetrizing the model like this brings up a fewcfical
duces difficulties for efficient likelihood evaluation andrpmeter ~ problems.
estimation, but we have found a way to overcome those diffasul The first problem is how to efficiently evaluate likelihoodihw
We find that the symmetric SGMM can give a very worthwhile this model. We address this issue in Section 2. Next we need to
improvement over the previously described model. We witoal update the model parameters; in Section 3 we present the oew a
describe some larger-scale experiments with the SGMM, epdrt ~ cumulation and update equations, and the changes to thingxis
on progress toward releasing open-source software thatosisp ~Update equations. Space does not permit us to include tierisa
SGMMs. here; we have published some brief derivations in a septeelai-

cal report [3]. We present experimental results in Secti@md in
' Section 5 we conclude and mention our progress toward ietgas

open-source software that implements these methods. Xhbee

tween here and Section 5 will mainly be of interest to thoseaaly
1. INTRODUCTION familar with the estimation methods used in SGMMs.

Index Terms— Speech Recognition, Hidden Markov Models
Subspace Gaussian Mixture Models

The Subspace Gaussian Mixture Model [1, 2] is a modeling ap-
proach based on the Gaussian Mixture Model, where the péezesne 2. LIKELIHOOD EVALUATION
of the SGMM are not the GMM parameters, but a more compact set

of parameters that interact to generate the GMM paramethe. The new form of the weights introduces some difficulties fkell-
model may be described by the following equations: hood evaluation, since the denominator of Equation (4) hlif§ieult

dependency on®). Previously the log weightg w;,; were in-

M; ! cluded in normalizing factors stored for each Gaussianérsiistem
p(xlgs) = D cimd wimiN(x; o), 30) (1) (i.e. for eachj, m, ). Recomputing all the weights from scratch ev-
m=1 i=1 ery time we adapt to a new speaker would take an unacceptaigy |
ug;,)“ = Mivjm + Nyv® (2) time. For example, with00k substates/ = 500, S = 7' = 40
T (S andT are the speech-state and speaker subspace dimensions) this
Wimi = CXP Wy Vjm (3)  computation would take 4 seconds at one GFlop. We make stefa
Zf,zl expwW Vim by a factor ofT’, by storing in memory the unadapted weights,.;

as in Equation (3), and computing the denominator of (4) asta d

See the references for further explanation. The Gaussiaturai . AR
product between these weights and some speaker-specifititigsa

weights within the sub-states are controlled by the “wejglojec- . ) h o
g y it Storing the weightsv;,,,; does introduce a significant memory over-

tion vectors”w; which determine how the weights vary asafunctionh d it v double the si f th del | ah
of the speech-state vectovs,,. The model is asymmetric because . ead, It can nearly double the siz€ of the model In memory.ré he

these weights only depend on the speech-state and not thieespe is, however, no significant additional time overhe_ad, anghiy case
In [2], we describe in detail how we efficiently evaluate likeods for large vocabulary systems the memory requirements tertet

with such a model and estimate its parameters. dominated by the language model or recognition network.

In this paper we describe a symmetric form of the SGMM. We In the rest of this section we write down the equations we ase t
modify Equation (3) to the following: " “evaluate likelihoods. For each speaker (and i < I), we compute

(s) _ exp(W] Vim 4+ ul v() bgs) = expul v, (5)

Y exp(WIVy + ulv()

4)

jmai

Then, for eacly, m we compute the following normalizing factor:
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RG]
We then have thav'®). = M We storelog d'*) in memory.
jmai dsﬂ)] Jm
For each frame indek and each pre-selected Gaussian intlexe
compute:
ni(t) = log|det A®| - 1x;(t)"S7 " x:(t) + logb'*), (7)
where only the last terrtog b§5> is new (other quantities are as de-
fined in [2]; c.f. EQ.(36)). The contribution to the likelibd from
statej, mixturem and Gaussian indekis as follows (c.f. EQ. (37)
of [2]; the last term is new):

log p(x(t),m,i|7) = ni(t) + njmi +2i(t) - Vjm — log dSen. (8)

3. MODEL ESTIMATION

We are able to obtain auxiliary functions with the same fiometl

function:

I
g? = 3 £ 37 (1) Az D )y, — v HS (12)
i=1

T

I
PO = HO 43 40 (13)
1=1

The quantityﬁ;f’p) is an appropriately averaged weight quantity
computed giverv® as the speaker vector:

(s) T, (s,p)
o = S P "if - (14)
;0.7 expul'v;®P

The update equation on théh iteration is, ignoring the possibil-

. ) . . s -1
form as those we used to obtain the update equations préyiousity of non-invertibility, v(*?) = v(sr=1 4 F®) =" g® byt for

reported in [2] (see [4] for the original derivations). Therm

greater robustness we do as follows, wherestiiee_vec function is

—logd:) in Equation (8) is the problematic new term. We used®S defined in [2]:

Jensen’s inequality in a reverse sense to the way it is ntrmséd,
to move thdog function out of a summation; see [3] for details.
3.1. Speaker vector estimation

The auxiliary function we use to optimia€*®’ is as follows:

T S S
yO TV 4 3O uT v

Q(V(S))
5 v N N

—*log 3 a7} (©)

Here the statisticags) are a new quantity which we introduce here
(the other terms are as previously described):

= 3

teT (s) j,m

Yymi () Wims
d(S) :

jm

(10)

Note thatdg.f,)z depends on the speaker vectdt; this is an iterative

EM process where we start from®) = 0, so on the first iteration
dg‘;{ would equal unity. Typically we just use one or two EM itera-
tions.

The update forn(*) is similar to the update fov ;,,, previously
described, except that we use multiple iterations in theateopghase
(we do not bother with this while updating;,,,, because it is part of
a larger E-M process in which we do a large number of iterajion
The iterations of speaker vector update are indexaudith 1 < p <
P (e.g.,P = 3). We write thep'th iteration of the speaker vector as

v(®P): if we are on the first iteration of the E-M process we would

be starting fromv(*® = 0 (or otherwise the previously estimated
value). We first computdl‘®, which is the quadratic term in our
“old” update:
I
H® =3 7ONTs "N, (11)
=1

On thep'th iteration we compute the following quantities as the lin
ear and quadratic terms in a local approximation to the guyil

voP) = 527D L golve vece(F® g® 0, K™). (15)
Note that there is the theoretical possibility of divergemhere, but
we do not check for it as we have not seen it happen in practice.

3.2. Speech-state vector and speech-state weight projectiesti-
mation

We now require an additional type of statistic in order to atpd
the speech-state vectors,, and the speech-state weight projections
w;. This will allow us to handle the term in the auxiliary furasti
that comes from the denominator of (4). The statistics are:

Yjmi(t)
(s[t])
d]-m

b(_S[t])

(16)

Ajmi

t,g,m,i

Here, s[t] represents the speaker active on frameNote that the
b‘;[” quantities and the alignmentg;(¢) will not have the same

values as the corresponding quantities used to coméi?tdn Equa-
tion (10), because we will compute (16) on a different passuth
the speaker’s data, aftef*) has been estimated.

In the update equations described in [2] foy,, and w;, the
quantity w;; appears. This needs to be replaced by a quantity
which we write asiw;,;, which is an appropriately averaged form
of the speaker-specific weights. The statisti¢s; are used to com-
pute this. We define

WimiQjmi

2o WimiGjma

7

Wimi

Whenever this quantity appears in the update equationsiticfal-
ways be computed given the most “updated” values availade f
vjm andw;. This means thai;,,; must be recomputed inside the
loop overp used in [2] in the update of;.

The modifications to the updates in [2] simply consist of aepl
iNg w;m: With @;.,; throughout. Fow ., this involves changing
Eqgations (58) and (59); fow; it involves changing the auxiliary
function of (68), and the update equations (71) and (72).



3.3. Speaker-space weight projection estimation: overwe 3.5. Speaker-space weight projection: less exact estimeaii

We now describe how we estimate the speaker-space weightpro For the less exact version of the computation of the speakéghty
tion vectorsu;. We experimented with two versions of the weight projections, we avoid storing any lists of speaker-spegffiantities
projection algorithm, which we call the “more exact” ands$eex-  and instead accumulate statistics sufficient to form a lqualbratic
act” algorithms. Ideally we would like the estimation af to be  approximation of the auxiliary function, which we directhaximize
perfectly symmetric with the estimation ef;. The problem is that (without convergence checks) in the update phase. In tisis we
this requires us to have some per-speaker statistics bBlailathe  store the following statistics:

update phase. Although the amount of statistics we reqairedch

speaker is fairly compact (just the vectars’ and some count-like t; = Z (ng) — a(s)b(S)) v® (24)
quantities of dimensiod ~ 500), we are concerned that for ex- - Y

tremely large corpora these could become difficult to fit immey (5)1(s). (s) ()T

during the update phase. For this reason we also experitheritie Ui = Z a; b vV : (25)

a less exact version of the update farthat avoids storing any per-

speaker quantities. The (weak-sense) auxiliary function we maximize is as fofip
whereA; is the change im;:
3.4. Speaker-space weight projection: more exact estimaii

1
For the “more exact” estimation method, we need to storetkireds Q(A:) =t] A — §AzTUiAia (26)
of quantities:ags), v(®) ands;. The first two are speaker-specific
guantities which would have to be stored in the form of a bste  and our update equation is « u; + A; with A; = U; 't;, or
for each speaker. The count-like quantitié¥ are as given by Equa- more generally, to handle the singular cases,
tion (10), although we would compute them given the fullydaed )
value of the speaker vectet®) . The linear terns; is: Q; — u; + solve_vec(Uj, t;, 0, K™™), (27)

8; = Z %(s)v(s). (18) with the functionsolve_vec as defined in [2].

() 4. EXPERIMENTAL RESULTS
The countsy;™ = >, ;.. Vimi(t) are already computed for

some of the other update types descibed in [2]. In the updeeg)  \We report experiments on CallHome English and Switchboard.

we maximize the following auxiliary function: Our Callhome English setup is as described in [1, 2]. We used
. 5) T (s) PLP features with ceptral mean and variance normalizatid/e
Q(w) =ufsi — Y a;” expuf vl (19)  tested with the trigram LM built as described in [2].
The optimization process is an iterative one where on eagh-it GMM: 52.5
tion1 < p < P we compute linear and quadratic ter@%’) and 2700 4k #gfbstageks 12k 16Kk
Fr‘]i an_?_ malz(lml;e thg correﬁp_ondl_ng quad:]atlck arf)prtc;]);irlr_\atlon to SGMM. 488 482 480 477 474 475
]E eatlym I;:jy u?gtlon. n each iteration we check that &ary +spk-vecs: 47.6 47.0 464 464 46.145.9
unction did not decrease. _ g +symmetric,exact:  46.3 45.6 452 448 44.54.4
The op(tclJr)mzatlon.procedure for a particular valuei @ as fol- +symmetric,inexact 46.5 45.6 450 44.644.4
lows: Setu;’ < u; (i.e. the value before update). Foe=1... P
(e.g.P = 3), compute: Table 1. CallHome English: WERs without CMLLR adaptation
®  _ () -1 T (), (s . , .
g = si— Zai exp(u;” Vvt (20) Table 1 shows experiments without CMLLR adaptation; the
s only normalization is cepstral mean and variance normiiiza
FP = Z“ES) exp(ul?™ TV(S))V<S> v T (21)  Using the symmetric model reduced WER from 45.9% to 44.4%,
B a 1.5% absolute improvement. The inexact update gave the sam
improvement as the exact update.
Then the candidate new value dﬁp) is u™r = uEpfl) +
F - g'?), or more safely GMM: 49.7
+SAT: 46.0
u'™ = ul? " 4 solve_vec(F¥, g™ 0, K™>) (22 #Substates

2700 4k 6k 9k 12k 16k
with solve_vec as defined in [2], and then we do as follows: while| SGMM+spk-vecs: | 46.5 455 452 454 448 447

Q(utmp) < Q(ugp_l))’ with Q defined as in Equa’[ion (19), set +Symmetric,exact 44.9 44.4 44.1 43.2 42.8 429
+symmetric,inexactf 45.2 44.1 435 43.4 43.3

uP e Lty uP=b), (23) _ _ )
Table 2. CallHome English: WERs with CMLLR adaptation
Then, once the auxiliary function is no longer worse thamtesfwe

set sen(®) «— u'™P. After the iteration ovep is completed, we set Table 2 shows experiments with CMLLR adaptation. The ex-
a; «— uEP). act update gives 1.9% absolute improvement and the inepaéttel



gives 1.4% absolute improvement. Note that these are the sed-
els as the previous table, tested with CMLLR, and we atteitthe
difference between the exact and inexact models on thip setta-
tistical noise; further experiments will have to tell us whes, in
general, there is a difference between the exact and inepdetes.

#Gauss per state
GMM 20 26 32 34 36 38 40
- 36.8 366 364 364 364 364
CMLLR 348 345 344 343 345 343
STC 35.4 353 35.2
+CMLLR 33.1 329 32.9
#Substates
SGMM 30k 40k 50k 75k 100k 150k 200
unadapted| 35.7 35.7 35.1 347 343 339 33J7
CMLLR 32.2
+spk-vecs| 32.0 31.7 314 312 308
+symmetricf 31.9 31.7 31.3 31.0 30.6
Table 3. Switchboard: WERs, with VTLN
GMM #Gauss per state
36
- 39.2
CMLLR 37.0
STC 38.0
+CMLLR 35.2
#Substates
SGMM 30k 40k 50k 75k 100K
unadapted 379 375 371 36.6 363
CMLLR+spk-vecs| 33.9 335 334
+symmetric 33.8 33.0 332

Table 4. Switchboard: WERS, no VTLN

was about 0.1 (in natural-logarithm units). This makes itha in-
terpret the differences in results between the CallHomeSamitch-
board setups, because the effect on the likelihoods is stasiie
intend to do further experiments on other data-sets to finidtwie-
sults are more typical.

Decoding pass
1 2 3
(no-adapt)  +spk-vecs +CMLLR
Call SGMM+spk-vecs| -65.44 -63.62 -62.56
Home +symmetric | -65.57 -63.50 -62.45
Switch- SGMM+spk-vecs| -60.07 -57.78 -58.86
board +symmetric| -60.17 -57.68 -56.76

Table 5. Acoustic likelihoods on the three test-time decoding pass

5. CONCLUSIONS

We have described a modification to the Subspace Gaussidnorglix
Model which we call the Symmetric SGMM. This is a very natu-
ral extension which removes an asymmetry in the way the Gauss
mixture weights were previously computed. The extra cowmmport

is minimal but the memory used for the acoustic model is yearl
doubled. Our experimental results were inconsistent: @s@tup
we got a large improvement of 1.5% absolute, and on anotliep se
it was much smaller.

We would also like to report our progress on releasing open-
source software that supports the SGMM modeling approantofA
ficial announcement, with additional co-authors, will éoll within
the next year. We are developing an open-source (Apacbeskx)
C++ speech recognition toolkit that uses the OpenFst lbfa}.
Most aspects of the toolkit are not related directly to SGMbls
SGMMs will be one of the acoustic models the toolkit nativelyp-
ports. Most likely the toolkit will already have been releddy the
time this is published.

Next we discuss Switchboard experiments. Our Switchboard

system was trained on 278 hours of data from Switchboard | and

11, and Call[Home English. Models were tested on the Hub5 Elal
test set (just over 6 hours long). We used PLP features wiibtrzd
mean and variance normalization, and Vocal Tract Lengthidbr
ization (VTLN). The bigram language model used during déugpd

was taken from the AMI RT'07 system described in [5]; we used a

recognition lexicon of 50K words. Our baseline GMM modelgeve
built with HTK [6]. Tables 3 and 4 show results with VTLN, and
without VTLN, respectively. We did the baseline experingewith
Constrained MLLR (CMLLR; a.k.a. fMLLR), and Semi-tied Co-
variance (STC; a.k.a. MLLT). With the SGMMs, we used the &xac

update for thax; quantities in the symmetric case. In both cases the

symmetric extension to the model gives a much smaller imgsrov
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