
1

Advances in Speech Transcription at IBM under the
DARPA EARS Program

Stanley Chen, Brian Kingsbury, Lidia Mangu,
Daniel Povey, George Saon, Hagen Soltau and Geoffrey Zweig

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

Abstract—This paper describes the technical and system build-
ing advances made in IBM’s speech recognition technology over
the course of the DARPA Effective Affordable Reusable Speech-
to-Text (EARS) program. At a technical level, these advances in-
clude the development of a new form of feature-based Minimum
Phone Error training (fMPE), the use of large-scale discrimina-
tively trained full-covariance gaussian models, the use of septa-
phone acoustic context in static decoding graphs, and improve-
ments in basic decoding algorithms. At a system building level, the
advances include a system architecture based on cross-adaptation
and the incorporation of 2100 hours of training data in every sys-
tem component. We present results on English conversational tele-
phony test data from the 2003 and 2004 NIST evaluations. The
combination of technical advances and an order of magnitude
more training data in 2004 reduced the error rate on the 2003 test
set by approximately 21% relative - from 20.4% to 16.1% - over
the most accurate system in the 2003 evaluation and produced the
most accurate results on the 2004 test sets in every speed category.

Index Terms—large-vocabulary conversational speech recogni-
tion, EARS, discriminative training, full covariance modeling, fi-
nite state transducer, Viterbi decoding

I. I NTRODUCTION

Under the auspices of the DARPA Effective Affordable
Reusable Speech-to-Text (EARS) program from 2002 to 2004,
a tremendous amount of work was done in the speech commu-
nity towards improving speech recognition and related disci-
plines. The work spanned multiple fields ranging from tradi-
tional speech recognition to speaker segmentation and sentence
boundary detection, and included separate foci on the transcrip-
tion of broadcast news and telephone conversations. Further,
speech data from three languages was used: English, Arabic
and Mandarin. Focusing specifically on speech recognition,
the work included algorithmic advances, new system architec-
tures, and the collection and processing of an order of magni-
tude more training data than was previously used.

This paper describes the algorithmic and system building ad-
vances made specifically at IBM. This work focused on the
recognition of English language telephone conversations, as
represented by the data collected and distributed by the Linguis-
tic Data Consortium (LDC) for the EARS and earlier HUB-5
programs (see Section III-A for a full description of the data
sources). Though several different collection protocols were
used, the bulk of the data was collected under the “Fisher” pro-
tocol by paying volunteers a modest amount to call a phone-
bank where they were connected with other volunteers and

Work funded by DARPA grant NBCH203001-2

asked to discuss one of several dozen topics. Examples of top-
ics are “health,” “relationships” and “terrorism.” The data col-
lection process was designed to get a representative sample of
American (U.S.) telephone-quality speech in terms of gender,
race, geographic location, and channel conditions [1]. Since
the data is conversational in nature, it is relatively challenging
due to the presence of numerous mistakes, repairs, repetitions
and other disfluencies.

While the techniques described in this paper were developed
in the context of transcribing English language telephone con-
versations, it is important to note that they are not specific to
the language or task. The techniques we describe are based on,
and extend, the general framework of Hidden Markov Models
(HMMs), and the use of Gaussian Mixture Models (GMMs)
as output distributions. These frameworks, and our extensions
of them, are broadly applicable, and out techniques have since
been readily applied to other tasks such as the transcription of
Arabic news broadcasts.

The main contributions of our work are:
• A novel feature space extension of Minimum Phone Er-

ror Training [2] termed fMPE. This is a transformation of
the feature-space that is trained to optimize the Minimum
Phone Error (MPE) objective function. The fMPE trans-
form operates by projecting from a very high-dimensional,
sparse feature space derived from gaussian posterior prob-
ability estimates to the normal recognition feature space
and adding the projected posteriors to the standard fea-
tures. A system that uses fMPE+MPE training is more ac-
curate than a system using MPE alone by approximately
1.4% absolute (6.7% relative), measured on the RT03 test
set.

• The use of a large, discriminatively trained full-covariance
system. We developed an efficient routine for likelihood
computation that enables the use of full-covariance gaus-
sians in time-constrained systems.

• Static decoding graphs that use septaphone (or, to use the
Greek version, heptaphone) context1 .

• System combination through cross-adaptation instead of
acoustic rescoring of lattices. A cascade of speaker-
adapted systems is used, with the output of one system
being used to estimate the speaker-adaptive transforms for

1We note that the use of the termheptaphonewould ensure the consistent use
of Greek terms for acoustic terminology and Latin terms for language model-
ing. However, for consistency with the prevailing practice of using the Latin
termquinphoneto denote 5-phone context, we use the Latin termseptaphone
to denote 7-phone context in this paper.

2

the next.
• Training of all system components using an order of mag-

nitude more data than previously available - specifically,
2100 hours of data.

To illustrate how these technology threads can be tied to-
gether into a complete speech recognizer, we further describe
two representative systems we developed for the 2004 EARS
evaluation sponsored by NIST. Both systems focused on the
transcription of conversational telephony speech (CTS). The
first system we describe is a real time (1xRT) system suitable
for the offline analysis of audio recordings in commercial ap-
plications, and the second is a 10-times slower than real time
(10xRT) system which indicates how low we can push the error
rate in the absence of a significant time constraint. Both sys-
tems had the distinction of having the lowest error rates in their
respective categories in this evaluation.

The remainder of this paper is divided into two main sec-
tions: Section II focuses on the technology improvements as
general techniques, and Section III describes the architecture
and particulars of the IBM systems that were used in the 2004
EARS evaluations.

II. T ECHNOLOGY ADVANCES

This section describes the technological advances made at
IBM. These fall into the categories of discriminative training,
full covariance gaussian modeling, large-context search space
representation with Finite State Acceptors (FSAs), and efficient
decoding techniques.

We are currently using three forms of discriminative train-
ing. Section II-A describes two traditional model-based forms
of discriminative training, and section II-B presents a novel
feature-based technique. Section II-C discusses full-covariance
modeling; section II-D covers improved methods for building
decoding graphs, and section II-E describes enhancements in
the decoding algorithms themselves.

A. Model-space discriminative training

The first form of discriminative training is a space-efficient
form of Maximum Mutual Information (MMI) training [3], [4],
[5], [6]. In contrast to standard Maximum Likelihood (ML)
training, MMI training attempts to maximize the mutual infor-
mation between the words in the training data and the acoustic
feature vectors. This mutual information is estimated as:

∑
D log Pλ(w,a)

Pλ(w)Pλ(a)

=
∑

D log Pλ(a|w)
Pλ(a)

=
∑

D log Pλ(a|w)P
x Pλ(x)Pλ(a|x)

whereD represents the set of training data;w the words of
a particular training utterance,a the acoustics of the utterance,
andλ the parameters of the acoustic and language models. This
leads to updates of the gaussian means and variances, using
statistics computed under two different assumptions. In the first
or “numerator” case, the data is aligned to the states of a Hid-
den Markov Model (HMM) that represents all word sequences
consistent with the known transcription (there may be multiple
sequences due to, for example, the placement of silence). This

represents the “contribution” of the numerator in the objective
function. The second set of statistics is computed by aligning
the data to an HMM that represents all possible word sequences
(analogous to decoding). This represents the contribution of
the denominator of the objective function. In both cases, it is
conceptually a soft alignment that results in a posterior proba-
bility for every HMM state at each time instance. After these
statistics are computed, the gaussian means and variances are
updated according to [6]:

µ̂i = θnum
i (x)−θden

i (x)+Diµi

γnum
i −γden

i +Di

σ̂2
i = θnum

i (x2)−θden
i (x2)+Di(σ

2
i +µ2

i)

γnum
i −γden

i +Di
− µ̂2

i

In these equations,µi is the mean of theith gaussian mixture,
σ2

i is its variance,θi(x) andθi(x2) are the first and second order
statistics of the data assigned to gaussiani, andγi is the count
of the number of observations assigned to it.Di is a number
computed on a per-gaussian basis so as to ensure positive vari-
ances. (This constraint leads to a quadratic equation, and the
larger value ofDi is used.)

In MMI training, the main computational burden is the com-
putation of the “denominator” statistics. The “numerator”
statistics are exactly those computed in standard ML training.
Theoretically, the denominator statistics require a soft align-
ment of each utterance to an HMM that represents all possible
word sequences. One way of doing this is to approximate the set
of all possible word sequences with the set represented by a lat-
tice created by decoding a training utterance. This is the “stan-
dard” method, and has the advantage that the lattice can be used
for many iterations. In the lattice-free or implicit-lattice MMI
procedure [7], we simply use efficient decoding technology to
do the full computation. The HMM representing all possible
word sequences is constructed using Finite State Transducer
(FST) technology (see Section II-D), and a forwards-backwards
pass over this graph results in the necessary state-level posteri-
ors.

While each iteration of lattice-free MMI takes longer than
a comparable pass of lattice-based MMI, the disk requirements
of the lattice-free technique are much smaller, which is advanta-
geous when working with a large training set [8]. For example,
with 2100 hours of data, lattices occupy approximately 30 GB
of disk space, and this along with network congestion is saved
with our technique. The runtime is well below real time, typi-
cally 0.5xRT.

The second form of traditional discriminative training is
MPE [2], [9]. This process uses a lattice-based framework; due
to the nature of the objective function, it is not straightforward
to eliminate them. In our implementation, lattices with fixed
state alignments were used. Novel features include:

• training with a pruned bigram language model having
about 150K bigrams instead of a unigram language model
(the language model was built with a vocabulary of 50,000
words);

• averaging of the statistics in the MPE training over four
sets of acoustic and language model weights, with the
acoustic weight being either 0.10 or 0.16 and the language
model weight being either 1.0 or 1.6 (the standard weights

3

we use are 0.1 and 1.0; the other two were chosen with-
out significant experimentation and gave about 2% relative
improvement);

• smoothing the sufficient statistics for MPE with statistics
derived from MMI-estimated means and variances rather
than the ML estimates normally used in I-smoothing [2];

• flooring of the variances in the update to the 20th per-
centile of the distribution of all variances in the appropriate
dimension.

We now turn to our main innovation in discriminative train-
ing, Feature-space Minimum Phone Error Training.

B. Feature-space discriminative training: fMPE

In addition to the traditional forms of discriminative train-
ing mentioned above, we have developed a novel form of dis-
criminative modeling, fMPE. This is a global discriminatively
trained feature projection which works by projecting very high
dimensional features based on gaussian posteriors down to the
normal feature space and adding them to the normal features.
The gaussian posteriors are defined without reference to the de-
coding graph or language model and assume a uniform prior. If
we denote the likelihood of theith gaussian asli, its posterior
pi is given by

pi =
li∑
k lk

The algorithm is described in more detail below.
1) Objective Function: The objective function of fMPE is

the same as that of MPE [2]. This is an average of the tran-
scription accuracies of all possible sentencess, weighted by the
probability ofs given the model:

FMPE(λ) =
∑R

r=1

∑
s Pλ(s|Or)A(s, sr) (1)

where Pλ(s|Or) is defined as the scaled posterior sentence
probability pλ(Or|s)κP (s)ν

P
u pλ(Or|u)κP (u)ν of the hypothesized sentences,

λ are the model parameters,κ andν are scaling factors andOr

the acoustics of ther’th utterance.
The functionA(s, sr) is a “raw phone accuracy” ofs given

the referencesr, which equals the number of phones in the
reference transcriptionsr for utterancer minus the number of
phone errors.

2) Feature projection in fMPE: In fMPE, the acoustic
vector xt in each time frame is converted into a very high-
dimensional feature vectorht by taking posteriors of gaussians.
ht is then projected down and added to the original features to
make a new featureyt:

yt = xt + Mht (2)

The matrixM is trained using the MPE objective function from
a zero start. It is necessary to add the original featuresxt in
order to provide a reasonable starting point for the training pro-
cedure.

3) Training the projection: In fMPE, the feature projection
(the matrixM) is trained using a gradient descent method. A
batch method is used, requiring 4–8 iterations. After each itera-
tion, the models are updated by one iteration of ML training on
the updated features. The learning rates are set for each matrix

ML MPE fMPE fMPE+MPE
22.1 20.6 20.2 19.2

TABLE I
WORD ERROR RATES ONRT03. 849K DIAGONAL COVARIANCE

GAUSSIANS WITH SEPTAPHONE CONTEXT(66.2M PARAMETERS)

elementMij using formulae that try to take into account the
amount of training data available for each matrix element and
the variance of the baseline output features for that dimension.
The training procedure is described in [10]. In addition, some
modifications are described in [11] which improve the robust-
ness of the training setup.

4) Obtaining the gradient:The gradient descent on the ma-
trix M requires differentiating the MPE objective function with
respect to the change in parameters. This is straightforward.
However, a so-called “indirect” term is added to this differen-
tial which reflects the fact that we intend to perform ML training
on the features. The HMM parameters will change with the fea-
tures; this is taken into account by differentiating the objective
function with respect to the HMM means and variances; and
using the dependence of the means and variances on the train-
ing features to obtain the indirect differential of the objective
function with respect to the features.

The necessity of the indirect differential can also be seen in
light of the model space interpretation of fMPE given in [12].
This approach notes that an offset of all the feature vectors is
identical, in the likelihood computations, to an equal but oppo-
site offset of every gaussian mean.

5) High dimensional features: As mentioned above, the
high dimensional featuresht are based on posteriors of gaus-
sians. In detail, the features used in the fMPE experiments were
obtained as follows. First, the gaussians in the baseline HMM
set were clustered using a maximum likelihood technique to
obtain 100,000 gaussians. Note that, as reported in [11], this
gives better results than simply training the gaussians as a gen-
eral HMM on speech data. Then, on each frame, the gaussian
likelihoods are evaluated and normalized to obtain posteriors
for each gaussian between zero and one. The resulting vector is
spliced together with vectors adjacent in time and with averages
of such vectors to form a vector of size 700,000 as described
in [10].

6) Combination with MPE: fMPE trains the model param-
eters using the maximum likelihood (ML) criterion. Because
it is desirable to combine fMPE with model space discrimina-
tive training, we train the fMPE features first, and then perform
MPE training with the fMPE features. In [12], experiments
were reported in which MPE training was done first, and then
fMPE training was performed without any model update (and
hence without the indirect differential). This appeared to make
no difference to the final result.

7) Improvements from fMPE:Table I shows results on a
speaker adapted system (SA-DC of Sec. III-D), and using the
output of system SI-DC to esimate the speaker adaptive trans-
forms (vocal tract length normalization and constrained model
adaptation). fMPE reduces the word error rate by approxi-
mately 1.4% (6.7% relative) over the use of traditional MPE

4

ML MMI
SAT 23.2 22.1

SAT-fMPE 21.4 20.0

TABLE II
WORD ERROR RATES ONRT03. 143K FULL -COVARIANCE GAUSSIANS

WITH QUINPHONE CONTEXT(106M PARAMETERS)

alone. In further experiments on multiple tasks, we have found
that fMPE alone reliably gives more improvement than MPE
alone. MPE applied on top of fMPE then always gives further
improvement, although this is typically less than half what it
would give prior to fMPE.

8) Comparison with other work; and further work:The
feature transformation used in fMPE is the same as that used
in SPLICE [13], which is a technique for noise robustness.
SPLICE was originally trained using ML and intended for noise
adaptation of models; recently an MMI version of SPLICE [14]
has been reported which works in the same situations as fMPE,
i.e., normal training rather than adaptation. It gave good im-
provements on matched test data but helped very little when
testing in noise conditions different from those used for train-
ing. Something similar was observed in [15] when applying
fMPE to a digit-recognition task: it gave good improvements
on matched noise conditions but very little on mismatched noise
conditions.

As mentioned above, a model-space formulation of fMPE
was presented in [12]. This formulation allows an extension:
fMPE corresponds to a shift in the means, but then a scale on
the model precisions was also trained, which was called pMPE.
However, it was not possible to get very much further improve-
ment from this innovation.

More generally, fMPE may be compared to the increasingly
successful neural-net-based methods (e.g. [16], [17]) which
may be viewed as non-linear transformations of the input space.
The two approaches represent quite different ways to train the
non-linear transform, as well as different functional forms for
the transformation, and it would be useful to try different com-
binations of these elements.

C. Full Covariance Modeling

One of the distinctive elements of IBM’s recently developed
technology is the use of a large-scale acoustic model based
on full-covariance gaussians [18]. Specifically, the availabil-
ity of 2100 hours of training data (Section III-B) made it pos-
sible to build an acoustic model with 143,000 39-dimensional
full-covariance mixture components. We have found that full-
covariance systems are slightly better than diagonal-covariance
systems with a similar number of parameters, and, in addition,
are beneficial for cross-adaptation. To construct and use these
models, a number of problems were solved:
• Speed of gaussian evaluation.The likelihood assigned to

a vectorx is given by:

| 2πΣ |−1/2 exp(−1
2
(x− µ)′Σ−1(x− µ))

The computation of the argument to the exponent is com-
putationally expensive —O(N2), whereN is the dimen-
sionality, and this expense has hindered the adoption of
this form of model. To improve the evaluation time, we
based the likelihood computation on a Cholesky decom-
position of the inverse covariance matrix,Σ−1 = UT U ,
whereU is an upper-triangular matrix. Denotingx−µ by
δ, and theith row ofU with Ui, the computation becomes

(x− µ)′Σ−1(x− µ) =
∑

i

(Ui · δ)× (Ui · δ)

This is the sum of positive (squared) quantities, and thus
allows pruning a mixture component as soon as the partial
sum across dimensions exceeds a threshold. Second, we
used hierarchical gaussian evaluation as described in Sec-
tion II-E.5. By combining these two approaches, the run
time for full decoding was brought from 10xRT to 3.3xRT
on a 3GHz Pentium 4 without loss in accuracy. Of this,
approximately 60% of the time is spent in likelihood com-
putations and 40% in search. The likelihood computation
itself is about twice as slow as with diagonal covariance
gaussians.

• Discriminative training. The use of the accelerated likeli-
hood evaluation, tight pruning beams and a small decoding
graph made lattice-free MMI [7] possible; in the context
of MMI training, we adjust the beams to achieve real time
decoding. One iteration on 2000 hours of data thus takes
slightly over 80 CPU days. The MMI update equations
are multivariate versions of those presented in Section II-
A; the means and the covariance matrices were updated as
follows:

µ̂i =
θnum

i (x)− θden
i (x) + Diµi

γnum
i − γden

i + Di
(3)

Σ̂i =
θnum

i (xx′)− θden
i (xx′) + Di(µiµ

′
i + Σi)

γnum
i − γden

i + Di
− µ̂iµ̂

′
i

(4)
where theθ’s represent the mean and variance statistics for
the numerator and the denominator.θ(x) is the sum of the
data vectors, weighted by the posterior probability of the
gaussian in a soft alignment of the data to the numerator or
denominator HMM (as done in standard expectation max-
imization (EM) training [19]. Similarly,θ(xx′) is the sum
of weighted outer products.γi is the occupancy count of
the gaussian. Bothθs andγs are of course summed over
all time frames.Di is chosen to ensure that̂Σi is posi-
tive definite and has a minimum eigenvalue greater than a
predefined threshold. This is done by starting with a mini-
mum value and doubling it until the conditions are met. In
addition, two forms of smoothing were used:

– I-smoothing [2]:

θnum
i (x) ←− θnum

i (x)(1 + τ/γnum
i)

θnum
i (xx′) ←− θnum

i (xx′)(1 + τ/γnum
i)

θnum
i ←− γnum

i + τ
(5)

5

– Off-diagonal variance smoothing:

σkl ←− σkl
γnum

(γnum + ν)
, ∀k 6= l (6)

In training,τ andν were both set to200 (on average, each
gaussian received about1000 counts). The effect of MMI
is illustrated in Table II for both standard Speaker Adaptive
Training (SAT) [7], [20] features and SAT-fMPE features.

• MLLR transform estimation. Only the on-diagonal el-
ements of the covariance matrix were used to estimate
MLLR transforms; this produced WER reductions of ap-
proximately 1% absolute (5% relative), in line with expec-
tations.

D. Building Large-Context Decoding Graphs

We frame the decoding task as a search on a finite-state ma-
chine (FSM) created by the offline composition of several finite-
state transducers (FSTs) [21], [22].2 Specifically, if we take
G to be an FSM encoding a grammar or language model,L
to be an FST encoding a pronunciation lexicon, andC to be
an FST encoding the expansion of context-independent phones
to context-dependent units, then the compositionG ◦ L ◦ C
yields an FST mapping word sequences to their corresponding
sequences of context-dependent units. The resulting FSM, af-
ter determinization and minimization, can be used directly in a
speech recognition decoder; such decoders have been shown to
yield excellent performance [23], [24]. We note that while it is
more common to perform the composition in the reverse direc-
tion (replacing each FST with its inverse), this computation is
essentially equivalent and we view the mapping from high-level
tokens to low-level tokens as more natural.

While this framework is relatively straightforward to imple-
ment when using phonetic decision trees with limited context
such as triphone decision trees, several computational issues
arise when using larger-context trees. For example, with a
phone set of size 45, the naive conversion of a septaphone de-
cision tree to an FST corresponding toC above would con-
tain 457 ≈ 3.7 × 1011 arcs. Consequently, we developed sev-
eral novel algorithms to make it practical to build large-context
decoding graphs on commodity hardware. Whereas previous
approaches to this problem focused on long-span left context
[25], [26], our new methods approach the problem differently,
and are able to handle both left and right context. With these
algorithms, we were able to build all of the decoding graphs
described in this paper on a machine with 6GB of memory. As
an example of the gains possible from using larger-context de-
cision trees, we achieved a gain of 1.6% absolute WER when
moving from a quinphone system to a septaphone system.

1) Compiling Phonetic Decision Trees into FSTs:While the
naive representation of a large-context phonetic decision tree
is prohibitively large, after minimization its size may be quite

2We use the term “finite state machine” to represent both finite state accep-
tors (FSAs) and finite state transducers (FSTs). Whereas acceptors represent
weighted sets of symbol sequences, transducers represent mappings from se-
quences of input symbols to sequences of output symbols. Many operations
can be made to work with either FSTs or FSAs, with no substantial difference.
We use the term FSM in this section wherever the algorithms can useeither
FSTs or FSAs.

manageable. The difficulty lies in computing the minimized
FST without ever needing to store the entirety of the original
FST. In [27], we describe an algorithm for constructing the min-
imized FST without ever having to store an FST much larger
than the final machine; this algorithm was first deployed for
ASR in IBM’s 2004 EARS system.

Briefly, we can express a finite-state machine representing
the phonetic decision-tree as aphone loopFSM (a one-state
FSM accepting any phone sequence) composed with a long se-
quence of fairly simple FSTs, each representing the application
of a single question in the decision tree. By minimizing the
current FSM after the composition of each FST, the size of the
current FSM never grows much larger than the size of the final
minimized machine. To prevent the expansion caused by the
nondeterminism of FSTs encoding questions asking about po-
sitions to the right of the current phone, we use two different
FSTs to encode a single question, one for positions to the left
and one for positions to the right. When applying an FST ask-
ing about positions to the right, we apply thereversedFST to
a reversed version of the current FSM, thereby avoiding nonde-
terministic behavior. For additional details, see [27].

In practice, we found that even with this process, we had dif-
ficulty compiling septaphone decision trees into FSTs for large
trees. However, note that the final FST need not be able to ac-
ceptanyphone sequence; it need only be able to accept phone
sequences that can be produced from the particular word vocab-
ulary and pronunciation dictionary we are using. Thus, instead
of starting with a phone loop accepting any phone sequence, we
can start with a phone-level FSM that can accept the equivalent
of anyword sequence given our particular word vocabulary.

For a septaphone decision tree containing 22K leaves, the
resulting leaf-level FSM representation of the tree contained
337K states and 853K arcs. After grouping all leaves associ-
ated with a single phone into a single arc label and determiniz-
ing, the final tree FST had 3.1M states and 5.2M arcs.

2) Optimizing the Creation of the Full Decoding Graph:
Even if theC graph can be efficiently computed, it is still chal-
lenging to compute a minimized version ofG ◦ L ◦ C using
a moderate amount of memory. To enable the construction of
as large graphs as possible given our hardware constraints, we
developed two additional techniques.

First, we developed a memory-efficient implementation of
the determinization operation, as detailed in [27]. This typically
reduces the amount of memory needed for determinization as
compared to a straightforward implementation by many times,
with little or no loss in efficiency. This algorithm is used re-
peatedly during the graph expansion process to reduce the size
of intermediate FSMs.

Secondly, instead of starting with a grammarG expressed as
an FST that is repeatedly expanded by composition, we begin
with a grammar expressed as anacceptor, so that our interme-
diate FSMs areacceptorsrather thantransducers. That is, we
encode the information that is normally divided between the in-
put and output labels of a transducer within just the input labels
of an acceptor, and we modify the transducers to be applied ap-
propriately. This has the advantage that the determinization of
intermediate FSMs can be done more efficiently.

6

K
AE

D

K

= emitting state

EY

<epsilon>

D G

AE T
T

AO G DOG

CAT

T

JH

JH D

AGED

ATE

T

D

= null state

EY

AO GAW

AW

Fig. 1. Example of an FSA decoding graph (with phone labels instead of leaf
labels).

E. Advanced Decoding Algorithms

In the previous section, we have described how we create a
fully flattened state-level representation of the search space in
the form of an FSM. This section describes the use of these
graphs in our Viterbi decoder, and the implementation “tricks”
we use in that decoder. This material is covered under five top-
ics: graph representation, the basic Viterbi search, lattice gen-
eration, search speed-ups, and the likelihood computation.

1) Graph Representation:The decoding graphs produced
by the algorithms of the preceding section have three distinc-
tive characteristics when compared to standard FSMs. The first
characteristic is that they areacceptorsinstead of transducers.
Specifically, the arcs in the graph can have three different types
of labels:
• leaf labels (context-dependent output distributions),
• word labels, and
• ε or empty labels (e.g., due to LM back-off states).
Second, word labels are always placed at the end of a word,

that is, directly following the corresponding sequence of leaves.
This ensures that the time information associated with each
decoded word can be recovered. In contrast, word labels in
generic FSTs can be shifted with respect to the underlying
leaf sequences, with the consequence that the output word se-
quences must be acoustically realigned to get correct word
times and scores.

The third characteristic has to do with the types of states
present in our graphs:
• emittingstates for which all incoming arcs are labeled by

thesameleaf and
• null states which have incoming arcs labeled by words or

ε.
This is equivalent to having the observations emitted on the
statesof the graph and not on the arcs. The advantage of this
is that the Viterbi scores of the states can be directly updated
with the observation likelihoods and the scores of the incom-
ing arcs. It can happen, however, that after determinization and
minimization, arcs with different leaf labels point to the same
emitting state. In this case, the state is split into several differ-
ent states, each having incoming arcs labeled by the same leaf.
Even when using large-span phonetic context, this phenomenon
is relatively rare and leads to only a small increase in graph size

N-best degree 2 5 10
Lattice link density 29.4 451.0 1709.7

TABLE III
LATTICE LINK DENSITY AS A FUNCTION OF N FOR THEDEV04 TEST SET.

RT03 DEV04 RT04
Speaker-adapted decoding17.4 14.5 16.4
LM rescoring + consensus 16.1 13.0 15.2

TABLE IV
WORD ERROR RATES FORLM RESCORING AND CONSENSUS PROCESSING

ON VARIOUS EARS TEST SETS.

(<10%). Finally, each emitting state has a self-loop labeled by
the leaf of the incoming arcs. Null states can have incoming
arcs with arbitrary word orε labels (but no leaf labels). An
illustration of our graph format is given in Figure 1.

It is important to note that while we represent the search
space with an acceptor rather than a transducer, there is no loss
in generality: it is a simple matter to turn a transducer with
context-dependent phone units on the input side and words on
the output side into an acceptor in which words and phones are
interleaved. The converse mapping from acceptor to transducer
is trivial as well.

The main constraint that our techniquedoeshave is that word
labels occur immediately after the last phone in a word. By
allowing the word labels to move relative to the phone labels
(as happens in some transducer operations), greater compaction
could potentially be achieved in the minimization step, with
the previously mentioned drawback that acoustic realignment
would be necessary to recover the correct word-time informa-
tion.

2) Viterbi search: At a high level, the Viterbi search is a
simple token passing algorithm with no context information at-
tached to the tokens. It can be written as an outer loop over time
frames and an inner loop over sets of active states. A complica-
tion arises in the processing of null states that do not account for
any observations: an arbitrary number of null states might need
to be traversed for each speech frame that is processed. Further-
more, because multiple null-state paths might lead to the same
state, the nulls must be processed in topological order.

In order to recover the Viterbiword sequence, it is not neces-
sary to store backpointers for all the active states. Instead one
can store only the backpointer to the previous word in the se-
quence. More precisely, every time we traverse an arc labeled
by a word, we create a newword tracestructure containing the
identity of the word, the end time for that word (the current
time) and a backpointer to the previous word trace. We then
pass a pointer to this trace as a token during the search. This
procedure is slightly modified for lattice generation as will be
explained later on. Storing only word traces rather than state
traces during the forward pass reduces dynamic memory re-
quirements dramatically (by several orders of magnitude for
some tasks). The drawback of this technique is that the Viterbi
state sequence cannot be recovered.

7

THE CAT ATE 9ATE

ATE1

2

3

TIME t-1 t t t+1

= Token

THE CAT 6

THE CAT 4

A CAT 4
A CAT 3

A DOG 1

ONE CAT 1 = Word trace

Fig. 2. N-best lattice generation (N=2). Here arcs carry word labels and scores
(higher scores are better). Word sequences are represented by hash codes.

Even though we store minimal information during the for-
ward pass, memory usage can be excessive for very long utter-
ances, wide decoding beams, or lattice generation. To address
this problem, we implemented garbage collection on the word
traces in the following way. We mark all the traces which are
active at the current time frame as alive. Any predecessor of a
live trace becomes alive itself. In a second pass, the array of
traces is overwritten with only the live traces (with appropriate
pointer changes). When done every 100 frames or so, the run-
time overhead of this garbage collection technique is negligible.

3) Lattice generation:The role of a lattice (or word graph)
is to efficiently encode the word sequences which have appre-
ciable likelihood given the acoustic evidence. Standard lattice
generation in (dynamic search graph) Viterbi decoding uses a
word-dependent N-best algorithm where multiple backpointers
to previous words are kept at word ends [28], [29]. When using
static graphs however, there is a complication due to the merges
of state sequences that can happen in the middles of words.

To deal with this, we adopt a strategy that is distinct from
the earlier method of [30] in that we keep track of the N-best
distinctword sequences arriving at every state. This is achieved
by hashing the word sequences from the beginning of the utter-
ance up to that state. More precisely, during the forward pass,
we propagate N tokens from a state to its successors. Tokeni
contains the forward score of theith-best path, the hash code of
the word sequence up to that point and a backpointer to the pre-
viousword trace. Once we traverse an arc labeled by a word,
we create a new word trace which contains the word identity,
the end time and the N tokens up to that point. We then prop-
agate only thetop-scoringpath (token). At merge points, we
perform a merge sort and unique operation to get from 2N to N
tokens (the tokens are kept sorted in descending score order).
This lattice generation procedure is illustrated in Figure 2.

In Table III, we report the link density (number of arcs in
the lattice divided by the number of words in the reference) as
a function of N for the same pruning parameter settings. We
normally use N=5 to achieve a good balance between lattice
size and lattice quality.

Table IV shows the word error rates for three different test
sets obtained after language model rescoring and consensus
processing of the lattices at the speaker-adapted level. The lan-
guage model used to generate the lattices has 4.1M n-grams
while the rescoring LM has 100M n-grams (Sec. III-B.2).

4) Search speed-ups:Here we present some search opti-
mization strategies which were found to be beneficial. They are
related with the way the search graph is stored and accessed and
with the way pruning is performed.

1x SI 1x SA 10x SI 10x SA
beam 10 12 14 14

N in likelihood 75 100 200 200
active states 5000 15000 15000 15000

TABLE V
BEAM SETTINGS USED FOR SPEAKER-INDEPENDENT (SI) AND

SPEAKER-ADAPTED (SA) DECODINGS UNDER DIFFERENT TIME

CONSTRAINTS. 1X AND 10X STAND FOR TIMES REAL-TIME .

 26.5

 27

 27.5

 28

 28.5

 29

 29.5

 30

 30.5

 31

 31.5

 32

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

W
E

R
 (

%
)

Real-time factor (cpu time/audio time)

on-demand
hierarchical decoupled

hierarchical on-demand

Fig. 3. Word-error rate versus real time factor for various likelihood schemes
(EARS RT’04 speaker independent decoding). Times are measured on Linux
Pentium IV 2.8GHz machines and are inclusive of the search.

• Graph memory layout. The decoding graph is stored as
a linear array of arcs sorted by origin state, each arc be-
ing represented by a destination state, a label and a cost
(12 bytes/arc). Each state has a pointer to the beginning of
the sequence of outgoing arcs for that state, the end being
marked by the pointer of the following state (4 bytes/state).
These data structures are similar to the ones described
in [31].

• Successor look-up table.The second optimization has to
do with the use of a look-up table which maps static state
indices (from the static graph) to dynamic state indices.
The role of this table is to indicate whether a successor
state has already been accessed and, if so, what entry it
has in the list of active states.

• Running beam pruning. For a given frame, only the hy-
potheses whose score are greater than thecurrent maxi-
mum for that frame minus the beam are expanded. Since
this is an overestimate of the number of hypotheses which
survived, the paths are pruned again based on the abso-
lute maximum score for that frame (minus the beam) and a
maximum number of active states (rank or histogram prun-
ing). This resulted in a 10–15% speed-up over standard
beam pruning.

5) Likelihood computation: In [24], we presented a likeli-
hood computation strategy based on hierarchical gaussian eval-
uation that is decoupled from the search, and all the system
results presented in this paper use that scheme. In this section,
however, we present some speed-ups that come from combin-
ing the hierarchical evaluation method with “on-demand” like-

8

Name LDC Catalog Number / Source
Fisher English Training Speech Part 1 LDC2004S13
Fisher English Training Speech Part 2 LDC2005S13
Fisher English Training Transcripts Part 1 LDC2004T19
Fisher English Training Transcripts Part 2 LDC2005T19
Switchboard I - Release 2 LDC97S62
ISIP Transcripts, 25 Oct. 2001 http://www.cavs.msstate.edu/hse/ies/projects/switchboard/index.html
Switchboard Cellular Part 1 Transcribed AudioLDC2001S15
Switchboard Cellular Part 1 Transcription LDC2001T14
CALLHOME American English Speech LDC97S42
CALLHOME American English Transcripts LDC97T14
Switchboard-2 Phase II Audio LDC99S79
Switchboard-2 Phase III Audio LDC2002S06
Switchboard Cellular Part 1 Audio LDC2001S13
BBN/CTRAN Transcripts Distributed by BBN to EARS participants

TABLE VI
ACOUSTIC TRAINING DATA SOURCES AND AVAILABILITY.

Source Name Availability
HUB-4 Broadcast News 1996 English Broadcast News TranscriptsLDC97T22

1996 CSR Hub-4 Language Model LDC98T31
1997 English Broadcast News TranscriptsLDC98T28

University of Washington Web Data UW 175M Word Distribution Distributed by UW to EARS participants
UW 191M Word Distribution Distributed by UW to EARS participants
UW 525M Word Distribution Distributed by UW to EARS participants

TABLE VII
LANGUAGE MODEL TRAINING DATA SOURCES AND AVAILABILITY .

lihood computation where we evaluate the gaussians only for
the states which are accessed during the search as suggested
in [32]. This works as follows: first, we perform a top-down
clustering of all the mixture components in the system using a
gaussian likelihood metric until we reach 2048 clusters (gaus-
sians). At run time, we evaluate the 2048 components for every
frame and, for a given state accessed during the search, we only
evaluate those gaussians which map to one of the topN (typ-
ically 100) clusters for that particular frame. Figure 3 shows
the word error rate versus run-time factor (including search)
for the three different likelihood schemes: “hierarchical de-
coupled” (pre-computation and storage of all the likelihoods),
“on-demand” and “hierarchical on-demand” (computing on-
demand only those gaussians which are in the most likely clus-
ters). For both on-demand techniques, we use a batch strategy
which computes and stores the likelihoods for eight consecutive
frames, as described in [32]. To generate these curves, the beam
settings were varied in equal increments from less restrictive
to more restrictive values — from 200 to 50 in increments of
12.5 (rounded down) for the number of gaussian clusters evalu-
ated; from 12 to 9 in increments of 0.25 for the beam, and from
10000 to 3000 in increments of 600 for the maximum number
of states. The graph indicates that we improve the run time
by approximately 20% at low error rates, when moving from
uncoupled hierarchical computation to hierarchical on-demand
computation. Table V shows the the beams used in our speaker-

independent and speaker-adapted systems; these were identified
by manual tuning experiments.

III. SYSTEMS

This section describes the application of the previous tech-
niques in specific systems. III-A describes the training data;
III-B describes the details of the acoustic and language mod-
els; and III-C and III-D describe our 1xRT and 10xRT systems
respectively.

A. Training Data

1) Acoustic Model Data: The acoustic training set used
audio and transcripts from five sources: Fisher parts 1–7,
Switchboard-1, Switchboard Cellular, Callhome English, and
BBN/CTRAN Switchboard-2. All the audio data are avail-
able from the LDC,http://www.ldc.upenn.edu , as are
most of the transcripts. Details on the availability of each
source are given in Table VI.

The Fisher transcripts were normalized using a collection of
840 rewrite rules. 41 conversation sides in the original collec-
tion were rejected because they had insufficient quantities of
data (less than 20 s. of audio), and an additional 47 hours of
data containing words occurring 4 times or less in the whole
corpus were rejected.

9

Corpus Size, M Words Count Cutoffs Number of n-grams Perplexity on RT03 Weight in LM1 Weight in LM2
SWB 3.6 0,0,0,0 4M 76.8 0.10 0.07
BBN 1.2 0,0,0,0 1.5M 78.9 0.15 0.05
BN 159 0,0,1,1 65M 97.8 0.05 0.04
FSH 23 0,0,0,0 18M 58.0 0.55 0.71
UW191 191 0,0,1,1 62M 108 0.15 -
UW175 175 0,0,1,1 66M 102 - 0.02
UW525 525 0,0,1,1 144M 90.2 - 0.11

TABLE VIII
LANGUAGE MODEL CHARACTERISTICS FOR THELM S BUILT FROM EACH DATA SOURCE, AND THEIR INTERPOLATION WEIGHTS IN THE COMPOSITELM S.

LM1 IS THE LM USED TO BUILD THE DECODING GRAPH, AND LM2 IS THE RESCORINGLM.

We used ISIP’s 25 October 2001 release of Switchboard tran-
scripts for the Switchboard-1 data, with a few manual correc-
tions of transcription errors.

The BBN/CTRAN Switchboard-2 transcripts and LDC tran-
scripts for Switchboard Cellular and Callhome English were
normalized to follow internal conventions (e.g., spelling out
acronyms and mapping all noise symbols to one for vocalized
noises and one for all others), and a few manual corrections
were made.

In addition, the full collection of audio data was resegmented
such that all training utterances had nominally 15 frames of si-
lence at the beginning and end, and all single-word utterances
were discarded [33]. This results in a small improvement in
error rate (0.6% at the speaker-independent level). Following
normalization, roughly 2100 hours of training data remained.

2) Language Model Data:The language model used all the
acoustic data transcripts listed in Table VI, as well as broad-
cast news transcripts from the LDC and web data provided by
the University of Washington [34]. These sources are listed in
Table VII.

B. System Basics

We use a recognition lexicon of 30.5K words which was gen-
erated by extending our RT03 lexicon to cover the 5000 most
frequent words in the Fisher data. The lexicon contains a total
of 33K pronunciation variants (1.08 variants per word). Pro-
nunciations are primarily derived from PRONLEX (LDC cat-
alog number LDC9720 available athttp://www.ldc.upenn.edu),
with the manual addition of a few variants to cover reduced
pronunciations that are common in conversational American
English. Pronunciation variants have weights based on their
unigram counts in a forced alignment of the acoustic training
data.

1) Acoustic Modeling: The raw acoustic features used for
segmentation and recognition are perceptual linear prediction
(PLP) features as described in [24]. No echo cancellation was
performed.

The features used by the speaker-independent system are
mean-normalized on a conversation side basis. The features
used by the speaker-adapted systems are mean- and variance-
normalized on a conversation side basis, but normalization
statistics are accumulated only for frames labeled as speech in
the speaker-independent pass.

Words are represented using an alphabet of 45 phones.
Phones are represented as three-state, left-to-right HMMs. With
the exception of silence and noise states, the HMM states are
context-dependent, and may be conditioned on either quin-
phone or septaphone context. In all cases, the phonetic con-
text covers both past and future words. The context-dependent
HMM states are clustered into equivalence classes using deci-
sion trees.

Context-dependent states are modeled using mixtures
of either diagonal-covariance or full-covariance gaussians.
For the diagonal-covariance systems, mixture compo-
nents are allocated according to a simple power law,
m = min(M, ceil(k ×N0.2)), where m is the number
of mixture components allocated to a state,M is the maximum
number of mixtures allocated to any state,N is the number of
frames of data that align to a state in the training set, andk is a
constant that is selected to set the overall number of mixtures
in the acoustic model. Initial maximum-likelihood training of
the diagonal-covariance systems is based on a fixed, forced
alignment of the training data at the state level [33], and uses an
iterative mixture-splitting method to grow the acoustic model
from a single component per state to the full size. Typically,
maximum-likelihood training concludes with one or two passes
of Viterbi training on word graphs. All training passes are
performed over the full 2100-hour acoustic training set.

In the context of speaker-adaptive training, we use two
forms of feature-space normalization: vocal tract length nor-
malization (VTLN) [35] and feature-space Maximum Likeli-
hood Linear Regression (fMLLR, also known as constrained
MLLR) [36]. This process produces canonical acoustic models
in which some of the non-linguistic sources of speech variabil-
ity have been reduced.

The VTLN warping is implemented by composing 21 piece-
wise linear warping functions with a Mel filterbank to gener-
ate 21 different filterbanks. In decoding, the warping func-
tion is chosen to maximize the likelihood of the frames that
align to speech under a model that uses a single, full-covariance
gaussian per context-dependent state to represent the class-
conditional distributions of the static features. Approximate Ja-
cobian compensation of the likelihoods is performed by adding
the log determinant of the sum of the outer product of the
warped cepstra to the average frame log-likelihood.

When decoding, we do a single pass of MLLR adaptation for

10

segmentation
Speech/non-speech

Total RTF

SA decoding

SI decoding

VTLN

FMLLR

MLLR

Speech

Words

0.01xRT

0.02xRT

0.02xRT

0.03xRT

0.55xRT

0.14xRT

Alignments

Front-end 0.10xRT

0.04xRT

0.92xRT

Fig. 4. 1xRT system diagram. Dashed lines indicate that the fMLLR and
MLLR steps rely on the 1-best output of the speaker independent decoding.
Run times are reported on a Linux Pentium 4 3.4GHz, 2.0GB machine.

each conversation side, using a regression tree to generate trans-
forms for different sets of mixture components. The regression
tree is an 8-level binary tree that is grown by pooling all of the
mixture component means at the root node, then successively
splitting the means at each node into two classes using a soft
form of the k-means algorithm. The MLLR statistics are col-
lected at the leaves of the tree and propagated up the tree until
a minimum occupancy of 3500 is obtained and a transform is
generated.

In addition to these speaker-adaptive transforms, we increase
the discriminating power of the features through the use of Lin-
ear Discriminant Analysis (LDA) followed by a diagonalizing
transform. The specific diagonalizing transform we use is re-
ferred to as both Semi-Tied Covariances (STC) [37] and Max-
imum Likelihood Linear Transforms (MLLT) [38], [39]. Both
attempt to minimize the loss in likelihood incurred by the use
of diagonal covariance gaussians as opposed to full covariance
gaussians.

2) Language Modeling: The IBM 2004 system uses two
language models: a 4.1M n-gram language model used for con-
structing static decoding graphs, and a 100M n-gram language
model that is used for lattice rescoring. Both language mod-
els are interpolated back-off 4-gram models smoothed using
modified Kneser-Ney smoothing. The interpolation weights are
chosen to optimize perplexity on a held-out set of 500K words
from the Fisher corpus. The characteristics of the constituent
language models, as well as their interpolation weight in the
decoding-graph and rescoring language models are given in Ta-
ble VIII. The unigram through 4-gram count thresholds are
given in the column entitled “Count Cutoffs.” A threshold of
0 means every n-gram was used, and a cutoff of 1 means only
n-grams occurring at least twice were used.

C. 1xRT System Architecture

The operation of our 1xRT system comprises the steps de-
picted in Figure 4: (1) segmentation of the audio into speech

SI SA
Phonetic context ±2 ±3
Number of leaves 7.9K 21.5K
Number of gaussians 150K 849K
Number of words 32.9K 32.9K
Number of n-grams 3.9M 4.2M
Number of states 18.5M 26.7M
Number of arcs 44.5M 68.7M

TABLE IX
GRAPH STATISTICS FOR THE SPEAKER-INDEPENDENT (SI) AND

SPEAKER-ADAPTED (SA) DECODING PASSES. THE NUMBER OF ARCS

INCLUDES SELF-LOOPS.

and non-speech segments, (2) speaker independent (SI) decod-
ing of the speech segments, (3) alignment-based vocal tract
length normalization of the acoustic features, (4) alignment-
based estimation of one maximum likelihood feature space
transformation per conversation side, (5) alignment-based es-
timation of one MLLR transformation per side and (6) speaker-
adapted (SA) decoding using MPE-SAT trained acoustic mod-
els transformed by MLLR.

The decoding graphs for the two decoding passes are built
using identical vocabularies, similarly sized 4-gram language
models, but very different context decision trees: the SI tree
has 7,900 leaves and quinphone context, while the SA tree has
21,500 leaves and septaphone context. Table IX shows various
decoding graph statistics. The maximum amount of memory
used during the determinization step was 4GB.

The severe run-time constraints for the 1xRT system forced
us to choose quite different operating points for the speaker-
independent and speaker-adapted decoding. Thus, the SI de-
coding was allotted a budget of only 0.14xRT, while the SA de-
coding received 0.55xRT. This had an influence on the number
of search errors (2.2% versus 0.3%). In Table X, we indicate
various decoding statistics for the two passes. In this table, the
first row, “Likelihood/search ratio” shows the percentage of the
total runtime dedicated to likelihood computation and Viterbi
recursions (search) respectively. The second row, “Avg. num-
ber of gaussians/frame,” shows the average number of gaussians
whose likelihoods were computed for each frame, using the hi-
erarchical likelihood computation (about 1/20th of the total for
both the SI and SA decodings). The last row, “Max. number of
active states/frame,” shows the cutoffs used in rank pruning.

The memory usage for the resource-intensive SA decoding
broke down into 1.2GB of static memory (divided into 932MB
for the decoding graph and 275MB for 850K 40-dimensional
diagonal covariance gaussians) and 133MB of dynamic mem-
ory (220MB with lattice generation).

D. A 10xRT Cross-adaptation Architecture

Our 10xRT system is organized around system combination
through cross-adaptation. Like many evaluation systems [40],
[41], [42], several different recognition systems are used in
combination to produce the final output. While this is typically
done by generating lattices with one system and rescoring them

11

SI SA
Word error rate 28.7 19.0
Likelihood/search ratio 60/40 55/45
Avg. number of gaussians/frame 7.5K 43.5K
Max. number of active states/frame 5K 15K

TABLE X
DECODING STATISTICS ONRT04 FOR THE1XRT SYSTEM.

with other systems, all communication in the 2004 IBM 10xRT
architecture is done through cross-adaptation.

Three different acoustic models were used in our 10xRT sys-
tem. In the enumeration below and in later passages, each sys-
tem is given a two-part name. The first part indicates whether it
is speaker-independent or speaker-adapted (SI or SA), and the
second part indicates whether it is a diagonal or full-covariance
system (DC or FC).

1) SI.DC: A speaker-independent model having 150K 40-
dimensional diagonal-covariance mixture components
and 7.9K quinphone context-dependent states, trained
with MPE. Recognition features are derived from an
LDA+MLLT projection from 9 frames of spliced,
speaker-independent PLP features with blind cepstral
mean normalization.

2) SA.FC: A speaker-adaptive model having 143K 39-
dimensional full-covariance mixture components and
7.5K quinphone context-dependent states, trained with
MMI and fMLLR-SAT. Recognition features are derived
from fMPE on an LDA+MLLT projection from 9 frames
of spliced, VTLN PLP features with speech-based cep-
stral mean and variance normalization.

3) SA.DC: A speaker-adaptive model having 849K 39-
dimensional diagonal-covariance mixture components
and 21.5K septaphone context-dependent states, trained
with both fMPE and MPE, and fMLLR-SAT. Recogni-
tion features are derived from fMPE on an LDA+MLLT
projection from 9 frames of spliced, VTLN PLP features
with speech-based cepstral mean and variance normaliza-
tion.

The recognition process comprises the following steps:

1) Segmentation of the audio into speech and non-speech.
2) Decoding the speech segments with the SI.DC model.
3) Speaker adaptation and decoding with the SA.FC

model:
a) Estimation of speech-based cepstral mean and vari-

ance normalization and VTLN warping factors us-
ing the hypotheses from (2).

b) Estimation of fMPE, fMLLR and MLLR transforms
for the SA.FC model using the hypotheses from (2).

c) Decoding with the SA.FC model.
4) Reestimation of MLLR transforms and decoding with the

SA.DC model:
a) Estimation of MLLR transforms using the features

from (3b) and the hypotheses from (3c).
b) Lattice generation with the SA.DC model.

5) Lattice rescoring with the 100M n-gram LM described in

models/transcripts SA.FC SA.DC
SA.FC 21.9 21.2
SA.DC 21.0 21.4

TABLE XI
WORD ERROR RATES ONRT03. COMPARISON BETWEEN SELF- AND

CROSS-ADAPTATION . A ROW/COLUMN ENTRY WAS GENERATED BY

ADAPTING THE ROW-SPECIFIED MODELS WITH TRANSCRIPTS FROM THE

COLUMN-SPECIFIED SYSTEM.

RT03 DEV04 RT04
SI.DC (Step 2 output) 28.0 23.5 26.7
SA.FC (Step 3c output) 19.7 16.6 18.8
SA.DC (Step 4b 1-best) 17.4 14.5 16.4
SA.DC Final (Step 6 output) 16.1 13.0 15.2

TABLE XII
WORD ERROR RATES AT DIFFERENT SYSTEM STAGES.

Section III-B.2.
6) Confusion network generation and the extraction of the

consensus path [43].
The effect of cross-adaptation was studied on a combination

of diagonal and full covariance models (Table XI). Adapting
the DC models on the errorful transcripts of the FC system led
to a gain of0.4% compared with self adaptation.

Word error rates at the different system stages are presented
in Table XII for the 2003 test set provided by NIST, the 2004
development set, and the RT04 test set.

IV. CONCLUSION

This paper has described the conversational telephony speech
recognition technology developed at IBM under the auspices of
the DARPA EARS program. This technology includes both ad-
vances in the core technology and improved system building.
The advances in the core technology are the development of
feature-space Minimum Phone Error Training (fMPE); the in-
tegration of a full-covariance gaussian acoustic model includ-
ing MMI training and the computational techniques necessary
to accelerate the likelihood computation to a usable level; the
development of an incremental technique for creating an FST
representation of a decision tree — thus enabling very long-
span acoustic context static decoding graphs; and highly effi-
cient memory layout, likelihood computation, and lattice gen-
eration for Viterbi search. The main system-building improve-
ments were the addition of just under 2,000 hours of new acous-
tic training data and the adoption of an architecture based on
cross-adaptation.

In addition to being useful for conversational telephony sys-
tems, our technical advances have since proven to be generally
applicable, and this experience allows us to make some judg-
ment as to their relative value in a larger context. Without a
doubt, fMPE is the single most important development. In ad-
dition to an absolute improvement of 1.4% (6.8% relative) in
word-error rate on the experiments reported here, it has con-
sistently proven to yield 5 to 10% relative improvement over

12

MPE alone on tasks as diverse as Mandarin broadcast news
recognition and the transcription of European parliamentary
speeches. The next most useful technique for us is the graph-
building method of Section II-D. This enables the construction
and use of long-span acoustic models in the context of FST-
based graph representation. Finally, the use of large amounts
of data had a significant effect, approximately equal to the al-
gorithmic improvements over the best techniques in 2003: in-
creasing the amount of conversational telephony training data
(in both the acoustic and language models) from 360 hours to
2100 hours reduced the error rate by about 14% relative, from
30.2% to 25.9% on the RT03 test set. Of this, roughly half is
attributable to a better language model and half to the acous-
tic model. Thus, our improvements are attributable to a broad
spectrum of changes, and we expect future improvements to
similarly come from both algorithms and data.

REFERENCES

[1] C. Cieri, D. Miller, and K. Walker, “From Switchboard to Fisher: Tele-
phone collection protocols, their uses and yields,” inEurospeech, 2003.

[2] D. Povey and P. Woodland, “Minimum phone error and I-smoothing for
improved discriminative training,” inICASSP, 2002.

[3] L.R. Bahl, P.F. Brown, P.V de Souza, and R.L. Mercer, “Maximum
mutual information estimation of Hidden Markov Model parameters for
speech recognition,” inICASSP, 1986.

[4] Y. Normandin, “An improved MMIE training algorithm for speaker inde-
pendent, small vocabulary, continuous speech recognition,” inICASSP,
1991.

[5] Y. Normandin, R. Lacouture, and R. Cardin, “MMIE training for large
vocabulary continuous speech recognition,” inICASLP, 1994.

[6] P. Woodland and D. Povey, “Large scale discriminative training for
speech recognition,” inICSA ITRW ASR2000, 2000, pp. 7 – 16.

[7] J. Huang, B. Kingsbury, L. Mangu, G. Saon, R. Sarikaya, and G. Zweig,
“Improvements to the IBM Hub5E system,” inNIST RT-02 Workshop.
2002, DARPA.

[8] B. Kingsbury, S. Chen, L. Mangu, D. Povey, G. Saon, H. Soltau, and
G. Zweig, “Training a 2300-hour Fisher system,” inEARS STT Workshop,
2004.

[9] D. Povey,Discriminative Training for Large Voculabulary Speech Recog-
nition, Ph.D. thesis, Cambridge University, 2004.

[10] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau, and G. Zweig,
“fMPE: Discriminatively trained features for speech recognition,” in
ICASSP, 2005.

[11] D. Povey, “Improvements to fMPE for discriminative training of fea-
tures,” inInterspeech, 2005.

[12] K. C. Sim and M. Gales, “Temporally varying model parameters for large
vocabulary speech recognition,” inInterspeech, 2005.

[13] J. Droppo, L. Deng, and A. Acero, “Evaluation of SPLICE on the Aurora
2 and 3 tasks,” inICSLP, 2002.

[14] J. Droppo and A. Acero, “Maximum mutual information SPLICE trans-
form for seen and unseen conditions,” inInterspeech, 2005.

[15] J. Huang and D. Povey, “Discriminatively trained features using fMPE
for multi-stream audio-visual speech recognition,” inInterspeech, 2005.

[16] H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem connectionist
feature extraction for conventional HMM systems,” inICASSP, 2000.

[17] Q. Zhu, A. Stolcke, B. Y. Chen, and N. Morgan, “Using MLP features in
SRI’s conversational speech recognition system,” inInterspeech, 2005.

[18] G. Saon, B. Kingsbury, L. Mangu, D. Povey, H. Soltau, and G. Zweig,
“Acoustic modeling with full-covariance Gaussians,” inEARS STT Work-
shop, 2004.

[19] L. Rabiner and B-H. Juang,Fundamentals of Speech Recognition, Pren-
tice Hall, 1993.

[20] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A com-
pact model for speaker-adaptive training,” inICASSP, 1996.

[21] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state transducers in
speech recognition,” inISCA ITRW ASR-2000, 2000.

[22] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers in
speech recognition,”Computer Speech and Language, vol. 16, pp. 69–88,
2002.

[23] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A comparison of two LVR
search optimizations techniques,” inICSLP, 2002.

[24] G. Saon, G. Zweig, B. Kingsbury, L. Mangu, and U. Chaudhari, “An ar-
chitecture for rapid decoding of large vocabulary conversational speech,”
in Eurospeech, 2003.

[25] G. Zweig, G. Saon, and F. Yvon, “Arc minimization in finite state decod-
ing graphs with cross-word decoding context,” inICSLP, 2002.

[26] F. Yvon, G. Zweig, and G. Saon, “Arc minimization in finite state decod-
ing graphs with cross-word decoding context,” inComputer Speech and
Language, 2004, vol. 18.

[27] S. F. Chen, “Compiling large-context phonetic decision trees into finite-
state transducers,” inEurospeech, 2003.

[28] J. Odell, The Use of Context in Large Vocabulary Speech Recognition,
Ph.D. thesis, Cambridge University, 1995.

[29] R. Schwartz and S. Austin, “Efficient, high-performance algorithms for
n-best search,” inDARPA Workshop on Speech and Natural Language,
1990.

[30] A. Ljolje, F. Pereira, and M. Riley, “Efficient general lattice generation
and rescoring,” inEurospeech, 1999.

[31] D. Caseiro and I. Trancoso, “Using dynamic WFST composition for rec-
ognizing broadcast news,” inICSLP, 2002.

[32] M. Saraclar, E. Boccieri, and W. Goffin, “Towards automatic closed cap-
tioning: Low latency real-time broadcast news transcription,” inICSLP,
2002.

[33] H. Soltau, H. Yu, F. Metze, C. F̈ugen, Q. Jin, and S.-C. Jou, “The 2003
ISL Rich Transcription system for conversational telephony speech,” in
ICASSP, 2004.

[34] S. Schwarm, I. Bulyko, and M. Ostendorf, “Adaptive language modeling
with varied sources to cover new vocabulary items,” inIEEE Transactions
on Speech and Audio Processing, 2004, vol. 12n3, pp. 334–342.

[35] S. Wegmann, D. McAllaster, J. Orloff, and B. Peskin, “Speaker normal-
ization on conversational telephone speech,” inICASSP, 1996.

[36] M. Gales, “Maximum likelihood linear transformation for HMM-based
speech recognition,” inTech. Report CUED/F-INFENG/TR291. 1997,
Cambridge University.

[37] Mark Gales, “Semi-tied covariance matrices for Hidden Markov Models,”
in IEEE Transactions on Speech and Audio Processing, 1999.

[38] R. Gopinath, “Maximum likelihood modeling with gaussian distributions
for classification,” inICASSP, 1998.

[39] G. Saon, M. Padmanabhan, R. Gopinath, and S. Chen, “Maximum likeli-
hood discriminant feature spaces,” inICASSP, 2000.

[40] A. Stolcke, R. Gadde, M. Graciarena, K. Precoda, A. Venkataraman,
D. Vergyri, W. Wang, and J. Zheng, “Speech to text research at SRI-
ICSI-UW,” in NIST RT-03 Workshop. 2003, DARPA.

[41] S. Matsoukas, R. Iyer., O. Kimball, J. Ma, T. Colhurst, R. Prasad, and
C. Kao, “BBN CTS English system,” inNIST RT-03 Workshop. 2003,
DARPA.

[42] P. Woodland, G. Evermann, M. Gales, T. Hain, R. Chan, B. Jia, D. Y. Kim,
A. Liu, D. Mrva, D. Povey, K. C. Sim, M. Tomalin, S. Tranter, L. Wang,
and K. Yu, “CU-HTK STT systems for RT03,” inNIST RT-03 Workshop.
2003, DARPA.

[43] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus among words:
Lattice-based word error minimization,” inEurospeech, 1999.

