Abstract

fMPE is a previously introduced form of discriminative training, in which offsets to the features are obtained by training a projection from a high-dimensional feature space based on posteriors of Gaussians. This paper presents recent improvements to fMPE, including improved high-dimensional features which are easier to compute, and improvements to the training procedure. Other issues investigated include cross-testing of fMPE transforms (i.e., using acoustic models other than those with which the fMPE was trained) and the best way to train the Gaussians used to obtain the vector of posteriors.

1. Introduction

fMPE, introduced recently [1] is a discriminative training technique that uses the Minimum Phone Error (MPE) discriminative criterion [3] to train a feature-level transformation. fMPE was one ingredient of the system with which IBM won the English conversational telephone speech (CTS) component of the recent EARS evaluation [2].

Section 2 briefly describes fMPE and the training procedures used. Section 3 describes some improvements to the high-dimensional features used for fMPE. Section 4 describes some improvements to the gradient descent method used to train the parameters. Section 5 describes a layer-based framework used to implement fMPE that makes the approach easy to extend. Section 6 investigates cross training and joint training of fMPE transforms between different acoustic models. Section 7 discusses the training of feature “variances” and the question of how to obtain the Gaussians used to get the posteriors used in fMPE; and Section 8 gives conclusions.

2. Introduction to fMPE

The original formulation of fMPE presented in [1] was based on the feature transformation:

\[y_t = x_t + M h_t, \]

(1)

where \(x_t \) is the old feature vector, and the new feature vector \(y_t \) equals the old feature vector plus a high dimensional time-specific vector \(h_t \) times a matrix \(M \). The vector \(h_t \) is a function of \(x_t \) and possibly adjacent frames as well, and is derived from \(x_t \) by forming a vector of posteriors of Gaussians. The large matrix \(M \) is trained using the MPE objective function from a zero start.

It has been previously described [1] how the MPE objective function is differentiated to obtain the gradient \(\partial F / \partial y_t \), i.e. the gradient w.r.t the feature vector on each time. As with normal MPE training, this process includes the generation of lattices by decoding the training data with a weak language model, and performing forward-backward like algorithms on the lattices. The gradient w.r.t. the features contains two terms; one reflects changes in likelihood for different transcriptions of the training data assuming the Gaussian parameters in the system stay fixed, and the other reflects the fact that the training data affects the Gaussian means and variances, which in turn affect the MPE objective function indirectly. This second (“indirect”) differential is necessary because the means and variances are to be trained with ML on the features, whereas the features are discriminatively trained. If fMPE is to be combined with discriminative training of the HMM parameters, MPE is performed after fMPE. This has been empirically found to be the best approach.

The matrix \(M \) is trained using a modified form of gradient descent. The two main differences with normal gradient descent are that, first, the positive and negative contributions to each parameter’s differentials are accumulated separately and the inverse of the sum of their absolute values is used as a factor in the learning rate (this means that the learning rate is proportional to the ratio between the positive and negative parts, not their absolute values). Also a factor is included in the learning rate which reflects the average standard deviation of the feature dimension we are adding to. A more minor point is that a form of backoff is used which causes differentials that have very low effective counts (i.e. non-robust differentials) to approach zero.

3. Improvements to features

3.1. Original features

The original fMPE features used were based on posteriors of Gaussians with frame splicing. A set of, say, 100,000 Gaussians was obtained by clustering the set of Gaussians in the HMM set to 100,000 clusters using a likelihood based clustering procedure and using the 100,000 cluster centers (which are themselves Gaussians). These 100,000 Gaussians are evaluated on each frame (this can be done efficiently by further clustering them to, say, 2000 clusters and only evaluating those corresponding to the most likely cluster centers). On each frame the vector of Gaussian posteriors given the feature vector \(x_t \) is taken as the basic feature vector \(h_t \). These are spliced together with adjacent frames and averages of adjacent frames: for instance the central frame, frame 1 (one to the right), frames 2 and 3; frames 4 and 5; frames 6,7 and 8; and the same to the left, 9 contexts in total so the spliced feature vector size would be 900,000 in this case.

3.2. Offset features

An improved feature vector is now being used, which gives better error rates and also saves time on Gaussian evaluation. The idea is to use far fewer Gaussians (e.g. 1000), and supplement the posterior of the \(n \)’th Gaussian (\(\gamma_n \)) with the offset of the
observed feature vector from the mean of the n'th Gaussian, scaled by the n'th posterior. In order to obtain features with a normalized scale, we also divide by the standard deviation. In addition the posterior itself is scaled up (to give it more weight against the larger number of offsets), so the final vector looks like:

$$[5.0\gamma_1, \gamma_1(x_1(1) - \mu_1(1))/\sigma_1(1), \gamma_1(x_1(2) - \mu_1(2))/\sigma_1(2), \ldots, 5.0\gamma_2, \gamma_2(x_1(1) - \mu_2(1))/\sigma_2(1), \gamma_2(x_1(2) - \mu_2(2))/\sigma_2(2), \ldots].$$

The dimension of the final feature vector would be $N(d + 1)$ if N is the number of Gaussians and d is the dimension of the input features.

Offset features were originally developed during experimentation with a call-center speaker independent setup, where they gave around 1% absolute improvement from a 30% baseline. Most subsequent experiments have used offset features. In order to verify that they generally give improvements (and not only in the original setup), an experiment was performed on a speaker adapted 250h Switchboard training setup. Results are given in Table 1. The offset features give about 0.4% absolute improvement from a 30% baseline setup, but other experiments have shown up to 1% improvement.

| Offset | 1000 | 25.0 | 23.2 | 22.6 | 22.3 | 22.1 |

Table 1: Baseline (posterior only) features vs. posteriors with feature offsets. CTS (Fisher+Switchboard etc), 250h training, VTLN+IMLLR, testing on RT’03

4.2. Smooth update

It was found on certain occasions that an instability developed in the parameters of certain rows of the matrix M_2 that trains the context expansion. A technique was developed to fix this, which also improves the general predictability and stability of the context expansion process. This “smooth update” technique is a post-processing stage to be used with existing update rules.

The calculation described above is exactly equivalent to the original context expansion but more efficient where h_t has many nonzero elements. It also allows us to train the context expansion M_2. Gradients are calculated by back propagation through the calculation. The matrix M_2 is trained in the same way as M_1, except that the learning rate rule lacks the term σ_t, which compensates for different dimension having different variance. Note that the context expansion must be trained with held out data (i.e. different data from that used to train the main matrix M_1). This is because if it is trained on the same data, the context expansion layer attempts to maximize data learning by simply scaling up the IMPE contribution to the features. For experiments reported here, one out of every ten files is held out to train the context expansion.

Table 2 shows the effect on WER of training the context vs. leaving it fixed, on call-center data. Both use mean-offset features with 1000 Gaussians. There seems to be a WER improvement of about 0.5% from training the context.

| Offset | 1000 | 44.8 | 40.5 | 39.2 | 38.1 | 37.9 | 37.5 |

Table 2: Context expansion left fixed vs. training the expansion. IBM call-center data.

4. Improvements to learning rules

4.1. Setting learning rates

The learning rate for matrix elements M_{ij} is controlled by a constant E which is the inverse of the learning rate. Originally this was set by hand based on a knowledge of the features used. Since this requires special knowledge, a different rule is now used. On the first iteration of updating a matrix, E is now set to the value that, based on the present gradient, would give a specified improvement in the IMPE criterion. The calculated E value is also used for subsequent iterations. For instance, for the main matrix M_1 a target improvement of 0.06 is typically used, or a smaller value (say 0.02) for tasks with very low error rates such as digits. For the context-training matrix M_2, around 1/10 the target improvement of the main matrix is used. Note that M_2 is only trained from the second iteration, since the differential would be zero on the first iteration.
blocks of 39 matrix rows; all matrix rows. Then, for each set, if more than 10% of the parameters on the \(n \times n \) th iteration are on the opposite side of the value on the \(n - 2 \) th iteration from the value on the \(n - 1 \) th iteration, move the updated parameters (iteration \(n \)) towards those on the \(n - 1 \) th iteration (i.e. decrease the learning rate) until this is no longer the case. If the \(i \) th parameter on the \(n \) th iteration is \(x_{n}(i) \), the condition would be:

\[
(x_{n}(i) - x_{n}(n-2)) \frac{(x_{n}(n-1) - x_{n}(n-2)) < 0 \text{ for no more than 10% of each set of parameters.}
\]

Note that it may be useful to plot graphs of the number of sign changes, and the predicted criterion improvement, for all these sets of parameters.

The main benefit of the “smooth update” method is to provide robustness against occasional divergence. Results are not presented in this paper to compare this method against a baseline, as it would be necessary to test on more than one setup and to work out the best learning rates for both techniques. All results presented here use the smooth update method.

5. Layer code

With the reorganized context calculation in place, it becomes more difficult to sustain an ad hoc approach to programming \(\text{fMPE} \). A more flexible framework was developed which allows various operations on speech data to be performed in a normalized way. It involves the concept of a “layer set”, which is a sequence of “layer” modules specified by a configuration file (a configuration file contains a set of name-value pairs). Figure 1 shows the typical \(\text{fMPE} \) setup used currently. This corresponds to a configuration file as follows:

```bash
layer4.type=project
layer4.output2=layer3
diff-added=/somedisk/somedir/accs.added.out
```

Each layer has a variable “type”, which instantiates the layer object with a particular class; most of the rest of the variable names are specific to the type of layer. Each layer reads from the previous layer by default. Note that the layers with high-dimensional sparse output (e.g. \(\times \) postlayer in the above example) use a sparse representation for their output. This code structure is useful not only for \(\text{fMPE} \), but for general feature processing as well.

6. Joint and cross training of \(\text{fMPE} \)

Since the \(\text{fMPE} \) transformation is trained jointly with the Gaussians in the system, an interesting question is: to what extent are the trained parameters tied to the particular HMM set used? Are they learning something specific, or something general?

Some experiments were performed in which a smaller HMM set was generated from an existing system. A system trained and tested on call-center data, with no speaker adaptation, was the baseline. Two systems were generated from it by reducing the number of mixture components in the Gaussians (no retraining was done after the mix-down procedure). A “small” system had 1/4 the number of Gaussians per state of the original system, and a “very small” system had 1 Gaussian per state, about 4% as many Gaussians as the original system.

The smaller systems were both used to generate lattices and \(\text{fMPE} \) training was performed on them. The baseline system was retrained on the \(\text{fMPE} \) features on each iteration of training the two other systems, and testing was performed using both the smaller and baseline systems. For the “small” system, model-space \(\text{MPE} \) training using the baseline system’s Gaussians was continued.

Figure 2(a) shows the result of testing using the baseline size of HMM trained and tested using \(\text{fMPE} \) trained with the “small” and “very small” systems. With the \(\text{fMPE} \) features from the “small” system the results are as good or better than self-trained \(\text{fMPE} \), but there is much less improvement from the “very small” system. Figure 2(b) shows normal \(\text{fMPE} \) training and testing using all three systems, to confirm that training is proceeding as it should. The conclusion from this experiment seem to be that the \(\text{fMPE} \) transform is not too closely tied to the Gaussians of the system, as shown by the fact that the \(\text{fMPE} \) transform trained with the “small” system gave good results when tested with the baseline system.
Other issues investigated

Training feature “variances”

Some improvement was obtained by, in addition to training the features, training “variances” on the features, i.e. a quantity which is added to all $(x - \mu)^2$ quantities in both training and testing. This involves a straightforward extension to the IMPE formulae (basically, differentiating with respect to these variances). This has been tested in two setups, one in which a system was trained on broadcast news and tested on the broadcast parliament speeches) after fMPE and MPE, on features that alone was from 20.1% to 19.3%. On the TC-Star task (European news eval97 test set (unadapted); the improvement after fMPE was 0.3% absolute at the 15% level. However this was not used in the final system as it would have involved changes in the decoding setup. The variances are all 0.2 times the average variance of each dimension’s features at the start of training, and are limited by the sigmoid to be between 0 and 2.0 times the average variance. It is not clear that the extra computation that this approach requires during Gaussian computation at test time is worth the benefits it gives. Note that a related technique has been tried \(^1\) which uses the MPE objective function to train a global scale on variances; this does not require as much test-time computation.

7.2. Obtaining Gaussians

All fMPE approaches tried to date require first obtaining an arbitrary set of Gaussians which are used to obtain Gaussian posteriors. These Gaussians have generally been obtained by a likelihood based clustering of Gaussians in a trained HMM set down to the number of Gaussians required. A question remained as to whether this was the best approach. In a related technique [4, 5], a set of Gaussians is trained as a general GMM on the speech data. Some experiments were performed on the same call-center setup for which experiments were reported in Figure 2. First, Gaussians were trained for several iterations on speech data starting from the initial clustered Gaussians, both with and without tied variances. Both approaches gave an approximately 0.3% (absolute) worse performance compared to the clustered baseline after three iterations of fMPE, around the 38% level. In another experiment, Gaussians were trained starting from randomly chosen training data points and trained using a common variance for several iterations, being given different variances on the last iteration. This produced around a 0.3-0.5% degradation compared to the baseline clustered Gaussians. Note that fMPE in this setup is giving around 7% absolute improvement so these differences are not too large; they may well be due to something as simple as different coverage of silence versus non-silence.

8. Conclusions

This paper has described recent improvements in the fMPE training setups and has presented results on some representative tasks. The main improvements include new features (which augment the posteriors with offsets from the means of the Gaussians), and a more efficient, trainable way of doing frame splicing of the high-dimensional features for acoustic context. Experiments have been performed with cross-training of fMPE, showing that the fMPE transform does not seem to be too closely tied to the HMM it was trained with and that it can be used with other HMMs. In addition other issues relevant to fMPE training were investigated, such as the manner in which the Gaussians are obtained (it seems not to matter too much).

9. References

\(^1\)Personal communication from K.C. Sim & M.J.F. Gales.