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Abstract

fMPE is a previously introduced form of discriminative train-
ing, in which offsets to the features are obtained by training a
projection from a high-dimensional feature space based on pos-
teriors of Gaussians. This paper presents recent improvements
to fMPE, including improved high-dimensional features which
are easier to compute, and improvements to the training proce-
dure. Other issues investigated include cross-testing of fMPE
transforms (i.e. using acoustic models other than those with
which the fMPE was trained) and the best way to train the Gaus-
sians used to obtain the vector of posteriors.

1. Introduction
fMPE, introduced recently [1] is a discriminative training tech-
nique that uses the Minimum Phone Error (MPE) discriminative
criterion [3] to train a feature-level transformation. fMPE was
one ingredient of the system with which IBM won the English
conversational telephone speech (CTS) component of the recent
EARS evaluation [2].

Section 2 briefly describes fMPE and the training proce-
dures used. Section 3 describes some improvements to the high-
dimensional features used for fMPE. Section 4 describes some
improvements to the gradient descent method used to train the
parameters. Section 5 describes a layer-based framework used
to implement fMPE that makes the approach easy to extend.
Section 6 investigates cross training and joint training of fMPE
transforms between different acoustic models. Section 7 dis-
cusses the training of feature “variances” and the question of
how to obtain the Gaussians used to get the posteriors used in
fMPE; and Section 8 gives conclusions.

2. Introduction to fMPE
The original formulation of fMPE presented in [1] was based
on the feature transformation:

yt = xt + Mht, (1)

where xt is the old feature vector, and the new feature vector
yt equals the old feature vector plus a high dimensional time-
specific vector ht times a matrix M. The vector ht is a function
of xt and possibly adjacent frames as well, and is derived from
xt by forming a vector of posteriors of Gaussians. The large
matrix M is trained using the MPE objective function from a
zero start.

It has been previously described [1] how the MPE objective
function is differentiated to obtain the gradient ∂F/∂yt, i.e. the
gradient w.r.t the feature vector on each time. As with normal
MPE training, this process includes the generation of lattices
by decoding the training data with a weak language model, and

performing forward-backward like algorithms on the lattices.
The gradient w.r.t. the features contains two terms; one reflects
changes in likelihood for different transcriptions of the train-
ing data assuming the Gaussian parameters in the system stay
fixed, and the other reflects the fact that the training data af-
fects the Gaussian means and variances, which in turn affect the
MPE objective function indirectly. This second (“indirect”) dif-
ferential is necessary because the means and variances are to be
trained with ML on the features, whereas the features are dis-
criminatively trained. If fMPE is to be combined with discrimi-
native training of the HMM parameters, MPE is performed after
fMPE. This has been empirically found to be the best approach.

The matrix M is trained using a modified form of gradient
descent. The two main differences with normal gradient de-
scent are that, first, the positive and negative contributions to
each parameter’s differentials are accumulated separately and
the inverse of the sum of their absolute values is used as a factor
in the learning rate (this means that the learning rate is propor-
tional to the ratio between the positive and negative parts, not
their absolute values). Also a factor is included in the learning
rate which reflects the average standard deviation of the feature
dimension we are adding to. A more minor point is that a form
of backoff is used which causes differentials that have very low
effective counts (i.e. non-robust differentials) to approach zero.

3. Improvements to features
3.1. Original features

The original fMPE features used were based on posteriors of
Gaussians with frame splicing. A set of, say, 100,000 Gaus-
sians was obtained by clustering the set of Gaussians in the
HMM set to 100,000 clusters using a likelihood based cluster-
ing procedure and using the 100,000 cluster centers (which are
themselves Gaussians). These 100,000 Gaussians are evaluated
on each frame (this can be done efficiently by further cluster-
ing them to, say, 2000 clusters and only evaluating those cor-
responding to the most likely cluster centers). On each frame
the vector of Gaussian posteriors given the feature vector xt is
taken as the basic feature vector ht. These are spliced together
with adjacent frames and averages of adjacent frames: for in-
stance the central frame, frame 1 (one to the right), frames 2
and 3; frames 4 and 5; frames 6,7 and 8; and the same to the
left, 9 contexts in total so the spliced feature vector size would
be 900,000 in this case.

3.2. Offset features

An improved feature vector is now being used, which gives bet-
ter error rates and also saves time on Gaussian evaluation. The
idea is to use far fewer Gaussians (e.g. 1000), and supplement
the posterior of the n’th Gaussian (γn) with the offset of the



Iteration
#Gauss MLE 1 2 3 4

Baseline 64000 25.0 23.4 22.9 22.7 22.5
Offset 1000 25.0 23.2 22.6 22.3 22.1

Table 1: Baseline (posterior only) features vs. posteriors with
feature offsets. CTS (Fisher+Switchboard etc), 250h training,
VTLN+fMLLR, testing on RT’03

observed feature vector from the mean of the n’th Gaussian,
scaled by the n’th posterior. In order to obtain features with a
normalized scale, we also divide by the standard deviation. In
addition the posterior itself is scaled up (to give it more weight
against the larger number of offsets), so the final vector looks
like:

[5.0γ1, γ1(xt(1) − µ1(1))/σ1(1), γ1(xt(2) − µ1(2))/σ1(2), . . . ,

5.0γ2, γ2(xt(1) − µ2(1))/σ2(1), γ2(xt(2) − µ2(2))/σ2(2), . . .].

The dimension of the final feature vector would be N(d + 1)
if N is the number of Gaussians and d is the dimension of the
input features.

Offset features were originally developed during experi-
mentation with a call-center speaker independent setup, where
they gave around 1% absolute improvement from a 30% base-
line. Most subsequent experiments have used offset features.
In order to verify that they generally give improvements (and
not only in the original setup), an experiment was performed
on a speaker adapted 250h Switchboard training setup. Results
are given in Table 1. The offset features give about 0.4% abso-
lute improvement in WER. Both systems include training of the
context expansion, as described below.

3.3. Reorganized context calculation

With the offset features in place, more of the elements of ht

are nonzero, and when combined with context expansion this
can cause efficiency problems because the number of nonzero
elements in ht can number in the hundreds. To solve this the
fMPE calculation has been reorganized.

The raw, un-spliced form of the vector ht is projected to, a
dimension of, say, 9d (where d is the dimension of the features)
by a matrix M1 with 9d rows, giving us vt = M1ht. The vec-
tors vt are then projected down to dimension d by a transfor-
mation that performs averaging and summing across time of the
contexts of each dimension, with only 9 of the elements of vt

affecting each dimension in the output. This can be expressed
in matrix notation as follows.

Combine the vectors vt across a window of time to make a
matrix:

Vt = [vt−fvt−f+1 . . .vt+f ] ,

and obtain from it a 9d dimensional vector wt = M2 ∗ Vt,
where ∗ is defined as a matrix operator that “multiplies” two
matrices of identical dimension by taking the dot product of cor-
responding rows and gives the result as a column vector. M2

is a 9d × (2f + 1) matrix (where f is the number of frames
of context on each side), which is initialized to have the same
effect as the context expansion use for the baseline features (de-
scribed in Section 3.1). That means the first d rows would have
a single 1.0 in the center of the row, the next d rows would have
a 1.0 in the element to the right of the center, etc. Finally, wt

is collapsed to dimension d by breaking its elements up into 9
blocks and adding the blocks together. The result is added to
the original feature vector xt to form the final vector yt.

Iteration
Context MLE 1 2 3 4 5
Fixed 44.8 40.5 39.8 38.8 38.3 38.0
Trained 44.8 40.5 39.2 38.1 37.9 37.5

Table 2: Context expansion left fixed vs. training the expansion.
IBM call-center data.

The calculation described above is exactly equivalent to
the original context expansion but more efficient where ht has
many nonzero elements. It also allows us to train the context
expansion M2. Gradients are calculated by back propagation
through the calculation. The matrix M2 is trained in the same
way as M1, except that the learning rate rule lacks the term
σi which compensates for different dimension having different
variance. Note that the context expansion must be trained with
held out data (i.e. different data from that used to train the main
matrix M1). This is because if it is trained on the same data,
the context expansion layer attempts to maximize data learning
by simply scaling up the fMPE contribution to the features. For
experiments reported here, one out of every ten files is held out
to train the context expansion.

Table 2 shows the effect on WER of training the context
vs. leaving it fixed, on call-center data. Both use mean-offset
features with 1000 Gaussians. There seems to be a WER im-
provement of about 0.5% from training the context.

4. Improvements to learning rules
4.1. Setting learning rates

The learning rate for matrix elements Mij is controlled by a
constant E which is the inverse of the learning rate. Originally
this was set by hand based on a knowledge of the features used.
Since this requires special knowledge, a different rule is now
used. On the first iteration of updating a matrix, E is now set to
the value that, based on the present gradient, would give a spec-
ified improvement in the MPE criterion. The calculated E value
is also used for subsequent iterations. For instance, for the main
matrix M1 a target improvement of 0.06 is typically used, or a
smaller value (say 0.02) for tasks with very low error rates such
as digits. For the context-training matrix M2, around 1/10 the
target improvement of the main matrix is used. Note that M2

is only trained from the second iteration, since the differential
would be zero on the first iteration.

4.2. Smooth update

It was found on certian occasions that an instability developed
in the parameters of certain rows of the matrix M2 that trains
the context expansion. A technique was developed to fix this,
which also improves the general predictability and stability of
the fMPE training process. This “smooth update” technique
is a post-processing stage to be used with existing update rule
(a form of gradient descent in this case). The intuition of the
smooth update rule is that if too many parameters are changing
sign and making a larger step size than the last iteration, the
learning rate is probably too fast. This is only applicable from
the second iteration.

The “smooth update” procedure is as follows, described for
iteration n. First, define a meaningful set of sets of parameters
(based on knowledge of the task), and list them in decreasing
order of size. This set of sets might be, for instance: all param-
eters; all matrix columns; all sets of matrix rows modulo 39; all
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Figure 1: Outline of layer-based fMPE setup with offset fea-
tures & context training

blocks of 39 matrix rows; all matrix rows. Then, for each set,
if more than 10% of the parameters on the n’th iteration are on
the opposite side of the value on the n − 2’th iteration from the
value on the n−1’th iteration, move the updated parameters (it-
eration n) towards those on the n − 1’th iteration (i.e. decrease
the learning rate) until this is no longer the case. If the i’th pa-
rameter on the n’th iteration is xi(n), the condition would be:
(xi(n)− xi(n− 2))(xi(n− 1)− xi(n− 2)) < 0 for no more
than 10% of each set of parameters.

Note that it may be useful to plot graphs of the number of
sign changes, and the predicted criterion improvement, for all
these sets of parameters.

The main benefit of the “smooth update” method is to pro-
vide robustness against occasional divergence. Results are not
presented in this paper to compare this method against a base-
line, as it would be necessary to test on more than one setup
and to work out the best learning rates for both techniques. All
results presented here use the smooth update method.

5. Layer code
With the reorganized context calculation in place, it becomes
more difficult to sustain an ad hoc approach to programming
fMPE. A more flexible framework was developed which allows
various operations on speech data to be performed in a normal-
ized way. It involves the concept of a “layer set”, which is a
sequence of “layer” modules specified by a configuration file (a
configuration file contains a set of name-value pairs). Figure 1
shows the typical fMPE setup used currently. This corresponds
to a configuration file as follows:

layers=layer0+layer1+layer2+layer3+layer4

layer0.type=read
layer0.feature-base=/somedisk/somedir@40_dim_lda_feats # Location of feature files.

# Posterior calculation.
layer1.type=xpost
layer1.post-scale=5.0 # Scale on posterior
layer1.prots=/somedisk/somedir/gaussians.1024_dim
layer1.max-leaves-write=2 # Pruning
layer1.write-thresh=1.0 # Pruning
layer1.has-diff=false # Do not accumulate differentials

# w.r.t parameters in this layer.

# Project to a dimension of 40 x 9, for 9 contexts.
layer2.type=project
layer2.input1=layer1
layer2.dim-out=360
# sqdiff relates to how we calculate counts per
# parameter for smoothing low-count diffs:
layer2.use-sqdiff=true # Re calculating counts for smoothing
layer2.prev-matrix=/somedisk/somedir/transform.iter1.layer2
layer2.matrix-name=/somedisk/somedir/transform.iter2.layer2
layer2.output-matrix-fn=/somedisk/somedir/transform.iter3.layer2

# for per-dim variance:
layer2.ref-prots=/somedisk/somedir/some_gaussians
layer2.var-type=prots-var
layer2.suggested-impr=0.06 # MPE crit impr on first iteration
layer2.max-sign-changes=0.1 # 10% sign changes max
layer2.smoothupdate-sets=cols:rowblk,41:rowmod,41:rows:count
layer2.tau=100 # Smoothing of low-count differentials.
layer2.has-diff=true
layer2.accept-modulo=10:1,2,3,4,5,6,7,8,9 # Accept 9/10 files

# (relates to holding out data).

#Context expansion, done as collapsing of larger features
layer3.type=collapsefeat
layer3.accept-modulo=10:0 # Accept 1/10 files (held out)
layer3.prev-matrix=/somedisk/somedir/transform.iter1.layer3
layer3.matrix-name=/somedisk/somedir/transform.iter2.layer3
layer3.output-matrix-fn=/somedisk/somedir/transform.iter3.layer3
# Specification of initial matrix:
layer3.matrix-string=0,1.0:-1,1.0:1,1.0:-2,0.5;-3,0.5:
2,0.5;3,0.5:-4,0.5;-5,0.5:4,0.5;5,0.5:
-6,0.333;-7,0.333;-8,0.333:6,0.333;7,0.333;8,0.333
layer3.has-diff=true
layer3.start-frame=-40 # Extent of context (f=40)
layer3.end-frame=40
layer3.suggested-impr=0.007
layer3.max-sign-changes=0.1
layer3.tau=100 # Smoothing of low-count differentials.

layer4.type=add
layer4.has-diff=true
layer4.input1=layer0
layer4.input2=layer3

#where to put differentials for each layer.
diff-base=/somedisk/somedir/accs.%d.out
diff-added=/somedisk/somedir/accs.added.out

Each layer has a variable “type”, which instantiates the
layer object with a particular class; most of the rest of the vari-
able names are specific to the type of layer. Each layer reads
from the previous layer by default. Note that the layers with
high-dimensional sparse output (e.g. xpostlayer in the above
example) use a sparse representation for their output. This code
structure is useful not only for fMPE, but for general feature
processing as well.

6. Joint and cross training of fMPE
Since the fMPE transformation is trained jointly with the Gaus-
sians in the system, an interesting question is: to what extent
are the trained parameters tied to the particular HMM set used?
Are they learning something specific, or something general?

Some experiments were performed in which a smaller
HMM set was generated from an existing system. A system
trained and tested on call-center data, with no speaker adap-
tation, was the baseline. Two systems were generated from it
by reducing the number of mixture components in the Gaus-
sians (no retraining was done after the mix-down procedure). A
“small” system had 1/4 the number of Gaussians per state of the
original system, and a “very small” system had 1 Gaussian per
state, about 4% as many Gaussians as the original system.

The smaller systems were both used to generate lattices and
fMPE training was performed on them. The baseline system
was retrained on the fMPE features on each iteration of training
the two other systems, and testing was performed using both the
smaller and baseline systems. For the “small” system, model-
space MPE training using the baseline system’s Gaussians was
continued.

Figure 2(a) shows the result of testing using the baseline
size of HMM trained and tested using fMPE trained with the
“small” and “very small” systems. With the fMPE features
from the “small” system the results are as good or better than
self-trained fMPE, but there is much less improvement from the
“very small” system. Figure 2(b) shows normal fMPE training
and testing using all three systems, to confirm that training is
proceeding as it should. The conclusion from this experiment
seem to be that the fMPE transform is not too closely tied to
the Gaussians of the system, as shown by the fact that the fMPE
transform tranined with the “small” system gave good results
when tested with the baseline system.
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Figure 2: Self and cross-testing of fMPE transforms

Another experiment (not shown) was performed in which
fMPE training was done jointly using the Gaussians of the base-
line and “small” system, i.e. sharing the fMPE parameters. This
gave the best result of all, about 0.5% absolute better than the
baseline after both fMPE and MPE training.

7. Other issues investigated
7.1. Training feature “variances”

Some improvement was obtained by, in addition to training the
features, training “variances” on the features, i.e. a quantity
which is added to all (x − µ)2 quantities in both training and
testing. This involves a straightforward extension to the fMPE
formulae (basically, differentiating with respect to these vari-
ances). This has been tested in two setups, one in which a sys-
tem was trained on broadcast news and tested on the broadcast
news eval97 test set (unadapted); the improvement after fMPE
alone was from 20.1% to 19.3%. On the TC-Star task (European
parliamentary speeches) after fMPE and MPE, on features that
included VTLN and fMLLR the WER improvement on evalua-
tion data was around 0.3% absolute at the 15% level. However
this was not used in the final system as it would have involved
changes in the decoding setup. The variances are trained in a
similar way to the feature offsets except that variance “offsets”
are added to a zero “baseline” variance, and to ensure positive
variances, the variance offsets are all added to a constant value
and put through a sigmoid function in such a way that the vari-
ances are all 0.2 times the average variance of each dimension’s
features at the start of training, and are limited by the sigmoid

to be between 0 and 2.0 times the average variance. It is not
clear that the extra computation that this approach requires dur-
ing Gaussian computation at test time is worth the benefits it
gives. Note that a related technique has been tried 1 which uses
the MPE objective function to train a global scale on variances;
this does not require as much test-time computation.

7.2. Obtaining Gaussians
All fMPE approaches tried to date require first obtaining an
arbitrary set of Gaussians which are used to obtain Gaussian
posteriors. These Gaussians have generally been obtained by
a likelihood based clustering of Gaussians in a trained HMM
set down to the number of Gaussians required. A question re-
mained as to whether this was the best approach. In a related
technique [4, 5], a set of Gaussians is trained as a general GMM
on the speech data. Some experiments were performed on the
same call-center setup for which experiments were reported in
Figure 2. First, Gaussians were trained for several iterations on
speech data starting from the initial clustered Gaussians, both
with and without tied variances. Both approaches gave an ap-
proximately 0.3% (absolute) worse performance compared to
the clustered baseline after three iterations of fMPE, around the
38% level. In another experiment, Gaussians were trained start-
ing from randomly chosen training data points and trained using
a common variance for several iterations, being given different
variances on the last iteration. This produced around a 0.3-0.5%
degradation compared to the baseline clustered Gaussians. Note
that fMPE in this setup is giving around 7% absolute improve-
ment so these differences are not too large; they may well be due
to something as simple as different coverage of silence versus
non-silence.

8. Conclusions
This paper has described recent improvements in the fMPE
training setups and has presented results on some representa-
tive tasks. The main improvements include new features (which
augment the posteriors with offsets from the means of the Gaus-
sians), and a more efficient, trainable way of doing frame splic-
ing of the high-dimensional features for acoustic context. Ex-
periments have been performed with cross-training of fMPE,
showing that the fMPE transform does not seem to be too
closely tied to the HMM it was trained with and that it can
be used with other HMMs. In addition other issues relevant to
fMPE training were investigated, such as the manner in which
the Gaussians are obtained (it seems not to matter too much).
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