
XMLLR for Improved Speaker Adaptation in Speech Recognition

Daniel Povey, Hong-Kwang J. Kuo

IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
{dpovey,hkuo}@us.ibm.com

Abstract
In this paper we describe a novel technique for adaptation of
Gaussian means. The technique is related to Maximum Like-
lihood Linear Regression (MLLR), but we regress not on the
mean itself but on a vector associated with each mean. These
associated vectors are initialized by an ingenious technique
based on eigen decomposition. As the only form of adaptation
this technique outperforms MLLR, even with multiple regres-
sion classes and Speaker Adaptive Training (SAT). However,
when combined with Constrained MLLR (CMLLR) and Vocal
Tract Length Normalization (VTLN) the improvements disap-
pear. The combination of two forms of SAT (CMLLR-SAT and
MLLR-SAT) which we performed as a baseline is itself a useful
result; we describe it more fully in a companion paper. XMLLR
is an interesting approach which we hope may have utility in
other contexts, for example in speaker identification.
Index Terms: speech recognition, speaker adaptation, MLLR

1. Introduction
In the popular speaker adaptation technique called Maximum
Likelihood Linear Regression (MLLR) [1], the means are
adapted per speaker using an affine transform:

µ̂
(s)
j = A

(s)µj + b
(s). (1)

This is often combined with the use of regression classes [2], in
which the transform parametersA(s) andb

(s) depend on the
particular Gaussianj; sometimes there are just two regression
classes corresponding to silence and non-silence, sometimes a
variable number based on a tree of clustered phones.

The technique we are proposing here we are calling eX-
tended MLLR (XMLLR); it is a mean adaptation technique
where we do, per speaker:

µ̂
(s)
j = µ

(s)
j + A

(s)
nj , (2)

whereA(s) is a speaker-specific transformation andnj are vec-
tors which we associate with each Gaussianj. We compute
these associated vectorsnj using an ingenious eigenvalue based
method; this invites comparison with Eigenvoices [5] but our
technique has a much higher ratio of speaker-specific parame-
ters to global parameters. This technique is also similar tothe
Cluster Adaptive Training approach B-CAT [4], but the initial-
ization technique and other details differ.

Section 2 describes the method by which we initialize the
associated vectors; Section 3 describes how we further optimize
them; Sections 4 and 5 gives experimental conditions and re-
sults, and Section 6 concludes.

2. Eigen decomposition method of
initializing associated vectors

In this section we describe an eigenvalue based method of ini-
tializing the vectorsnj . The method assumes we have a system

already trained (i.e. the means and variances, but not the asso-
ciated vectors), and it must have a number of GaussiansJ less
than about 10,000 so it we can fit in memory a matrix of that
dimension. We can use this initialization to bootstrap a larger
system.

Suppose the associated vectorsnj are of sizeE (say,E =
80) and we have a total of, sayJ =5000 Gaussians1 ≤ j ≤ J
in our HMM set. LetN be a tall (J × E) matrix, thej’th row
of which isnj .

We can write the overall improvement in the auxiliary func-
tion that we obtain from our adaptation technique, as a function
of N, as follows. Firstly, let us compute the improvement in
likelihood from speakers and feature dimension1 ≤ d ≤ D
whereD is the total feature dimension e.g. 40. In the follow-
ing we use the fact thatNa

(s)
d is a column vector representing

the change in the mean of Gaussians1 throughJ for dimen-
sion d of speakers; a

(s)
d is thed’th row of speaker transform

A
(s). It is helpful to think of each pair(s, d) as like a sepa-

rate single-dimensional “sub-speaker.” Our auxiliary function
improvement for “sub-speaker” (s, d) is:

f(s, d) = v
(s)
d

T
Na

(s)
d − 0.5a

(s)
d

T
N

T diag(w
(s)
d )Na

(s)
d , (3)

wherediag(·) means making a matrix whose diagonal is the
given vector, and we define

v
(s)
d,j =

PT

t=1 γ
(s)
j (t)

x
(s)
d

(t)−µj,d

σ2
j,d

(4)

w
(s)
d,j =

PT

t=1 γ
(s)
j (t) 1

σ2
j,d

. (5)

v
(s)
d,j and w

(s)
d,j represent the linear and quadratic terms in the

objective function for the mean-offset of Gaussianj, speakers
and dimensiond. We writeγ

(s)
j (t) andx

(s)(t) for the Gaussian

posteriors and features. We can solve (3) fora
(s)
d :

a
(s)
d =

“

N
T diag(w

(s)
d )N

”−1

N
T
v

(s)
d , (6)

and substituting this into Equation 3 and simplifying we get:

f(s, d) = 0.5v
(s)
d

T
N

“

N
T diag(w

(s)
d )N

”−1

N
T
v

(s)
d . (7)

The overall objective function is a sum over allf(s, d). This is
starting to look like an eigenvalue problem but we first need to
get rid of the diagonal matrixdiag(w

(s)
d ) in the middle. We will

do this as best we can by using appropriate per-speaker, per-
Gaussian and per-dimension constants to make the remaining
elements as close to unity as possible, and then ignore them.

2.1. Approximating w
(s)
d

In approximatingw(s)
d we use the following things: we com-

pute the average per-dimension varianceσ̄2
d over all the Gaus-

sians in our model; we also use the number of framesTs for



each speaker, and the priorpj of Gaussianj (these sum to
one over all Gaussians); we also compute a constantcj =
1
D

PD

d=1

σ̄2
d

σ2
j,d

which is large if Gaussianj has smaller than av-

erage variances; we can then approximatew
(s)
d,j ≃ 1

σ̄2
d

Tspjcj .

We break downw(s)
d into a “sub-speaker”-specific constantk

(s)
d

multiplied by an “average” valuēw, where

w
(s)
d ≃ k

(s)
d w̄ (8)

k
(s)
d = Ts/σ̄2

d (9)

w̄j = pj
1
D

PD

d=1

σ̄2
d

σ2
j,d

(10)

We can then approximate the objective function as:

f ≃
P

s,d
0.5

k
(s)
d

v
(s)
d

T
N

`

N
T diag(w̄)N

´−1
N

T
v

(s)
d . (11)

2.2. Eigenvalue solution for N

We can then solve forN by using the substitution

O = diag(w̄)0.5
N (12)

The objective function then becomes:

f ≃
X

s,d

0.5

k
(s)
d

v
(s)
d

T
diag(w̄)−0.5

O

“

O
T
O

”

O
T diag(w̄)−0.5

v
(s)
d .

(13)
We can make the arbitrary stipulation thatO

T
O = I (we can

show that it does not matter what this is as long as it is non-
singular). Then we can see that the columns ofO are the prin-
cipal eigenvectors ofM, where

M =
S

X

s=1

D
X

d=1

0.5

k
(s)
d

diag(w̄)−0.5
v

(s)
d v

(s)
d

T
diag(w̄)−0.5.

(14)
We can then setN = diag(w̄)−0.5

O.

2.3. Computation for initialization of XMLLR

For a small system (we use 5000 Gaussians for the initializa-
tion) we can compute the matrixM quite efficiently. For each
speaker we accumulate statistics as for ML training (count and
mean; variance is not needed); from this we can getv

(s)
d for this

speaker and each dimension and accumulate its weighted outer

product; that is, accumulate the sum
P(s)

d 1/k
(s)
d v

(s)
d v

(s)
d

T
.

We take into account the sparseness ofv
(s)
d when accumulat-

ing the outer product and iterate over a list of nonzero indexes.
We do this in parallel for different blocks of data, sum up the
different parts and then scale bȳw−0.5 prior to finding the top
eigenvectors. Doing a singular value decomposition (SVD) on
M for dimension 5000 should take about 1 hour at 1GFLOP
assuming SVD takesO(30n3) operations; in fact we use a very
fast method which we will not describe here.

3. Iterative optimization in XMLLR
After initialization of the associated vectorsnj we start an iter-
ative process where we first compute the per-speaker matrices
A

(s), then recompute the per-Gaussian associated vectorsnj ,
and then re-estimate the Gaussian mixture weights and param-
etersµj andΣ2

j ; we do each of these three steps for 4 iterations
in experiments reported here. If we want to convert to a larger
size system, at that point we use the per-speaker matricesA

(s)

to compute the associated vectorsnj for the larger system and
start 4 iterations of the same process on the larger system. This
requires that the smaller and larger system share the same fea-
tures.

3.1. Computing per-speaker matrices A
(s)

The computation of per-speaker adaptation matricesA
(s) is

similar to the MLLR computation [1]. We first adapt the means
using any previous speaker adaptation matrix used and any cur-
rent associated vectors, and compute the Gaussian posteriors.
Then we compute per-speaker statistics as for ML training but
omitting the variance, i.e. we accumulate countsγ

(s)
j , and data

sumsx(s)
j From these statistics we accumulate for each feature

dimensiond a vectorv(s)
d and matrixM(s)

d that appear in our
objective function:

f(s, d) = C + a
(s)
d

T
v

(s)
d − 0.5a

(s)
d

T
M

(s)
d a

(s)
d (15)

v
(s)
d =

Ts
X

t=1

J
X

j=1

γ
(s)
j (t)

x
(s)
d (t) − µj,d

σ2
j,d

nj (16)

M
(s)
d =

Ts
X

t=1

J
X

j=1

γ
(s)
j (t)

σ2
j,d

njn
T
j (17)

We then solvea(s)
d = v

(s)
d M

(s)
d

−1
. We also enforce a per-

dimension ofcmin frames; by default we use 10 for this. Thus,
if necessary we truncate the dimension ofv

(s)
d and M

(s)
d to

T/cmin and use zero for any remaining dimensions ina
(s)
d .

This makes sense because the dimensions ofnj are sorted by
eigenvalue.

3.2. Re-computing associated vectors nj

3.2.1. Full computation

The most exact (but expensive) form of the computation of
the associated vectorsnj is similar in requirements to Speaker
Adaptive Training [6] but in the dimensionE which in our case
is 80. Like the computation above it requires computing vectors
vj and matricesMj which form an auxiliary functionf(j) as
follows:

f(j) = v
T
j nj − 0.5nT

j Mjnj (18)

vj =
X

s,d

Ts
X

t=1

γ
(s)
j (t)

x
(s)
d (t) − µj,d

σ2
j,d

a
(s)
d (19)

Mj =
X

s,d

Ts
X

t=1

γ
(s)
j (t)

σ2
j,d

a
(s)
d a

(s)
d

T
. (20)

The solution is thennj = vjM
−1
j . As for the per-speaker ma-

trices, the Gaussian posteriorsγ
(s)
j (t) must be obtained using

the current adapted form of the Gaussians.

3.2.2. Quick computation

We also used a quick form of the computation of the associated
vectorsnj , which we found to be as effective as the full form.
This relies on storing only the diagonal of the quadratic term
Mj for most Gaussiansj, but storing the fullMj for a subset
K of Gaussians (we use 1 inE of the total). We then do a
diagonal update ofnj , but using dimension specific learning
rate factorsl = le, 1 ≤ e ≤ E which are learned from the
subset for which we stored the full matrix. These should be
between zero and 1 (in fact we enforce0.1 ≤ le ≤ 1). We
formulate the computation as an update tonj . The computation
becomes (note the dependence now on the adapted meanµ̂

(s)
j ):



vj =
S

X

s=1

D
X

d=1

Ts
X

t=1

γ
(s)
j (t)

x
(s)
d (t) − µ̂

(s)
j (d)

σ2
j,d

a
(s)
d

Mj =
S

X

s=1

D
X

d=1

Ts
X

t=1

γ
(s)
j (t)

σ2
j,d

a
(s)
d a

(s)
d

T

we =
X

j∈K

vj,e
vj,e

Mje,e

Ne,f =
X

j∈K

Mje,f

vj,e

Mje,e

vj,f

Mjf,f

l = wN
−1

nj,e := nj,e + le
vj,e

Mje,e

3.2.3. Gaussian update

We also update the Gaussian parameters using a form of
Speaker Adaptive Training which is appropriate for our tech-
nique. Essentially the update consists of viewing the speaker
adaptive modification to our Gaussian mean, as a modifica-
tion of the opposite sign to our features. Writing the speaker-
specific counts and mean and variance statistics asγ

(s)
j , x

(s)
j

and S
(s)
j , and if the speaker adaptive update to the mean is

m
(s)
j = µ̂

(s)
j − µj = A

(s)
nj , then

γj =
PS

s=1 γ
(s)
j (21)

xj =
PS

s=1 x
(s)
j − γ

(s)
j m

(s)
j (22)

Sj =
PS

s=1 S
(s)
j − 2x

(s)
j m

(s)
j + m

(s)
j m

(s)
j

T
. (23)

Since we have diagonal Gaussians we only store the diagonal
of the variance statisticsSj . This approach requires storing two
sets of Gaussian statistics in memory, one used to make speaker
statistics and one used to store total statistics.

4. Experimental Setup
Our experiments use an English broadcast news transcription
system. The acoustic models are trained on 50 hours of audio
obtained by sampling entire shows from the 1996 and 1997 En-
glish Broadcast News Speech corpora. The recognition features
are 40-d vectors computed via an LDA+MLLT projection of 9
spliced frames of 13-d PLP features. Features for the speaker-
independent (SI) system are mean-normalized, while features
for the speaker-adapted (SA) system are mean- and variance-
normalized. In both cases, normalization statistics are accu-
mulated per speaker. The LDA+MLLT transform is computed
by interleaving semi-tied covariance estimation using a sin-
gle, global class and HMM parameter estimation during system
training to diagonalize the initial LDA projection. In the train-
ing of the speaker-adapted system we use both vocal tract length
normalization (VTLN) and Constrained MLLR (CMLLR). The
acoustic models are trained using maximum likelihood estima-
tion.

There are either two or four decoding passes, each using
adaptation based on the transcripts from the previous stage. In
the SI systems we have a speaker-independent (SI) pass (cep-
stral mean subtraction only), and then a pass including MLLR
or XMLLR. In the SA systems we have a SI pass, use this out-
put compute VTLN warp factors for the VTLN pass, then a
VTLN+CMLLR pass, then VTLN+CMLLR+(MLLR or XM-
LLR). In general all four passes use different HMMs (the ex-
ception is the last two, which are the same on iteration zero of

XMLLR or in MLLR decoding without SAT).
In both the SI and SA cases we show experiments on a small

model with 700 quinphone context-dependent states and 5k
Gaussian mixture components, and a larger system with 1000
states and 30k Gaussians (SI) or 3000 states and 50k Gaussians
(SA).

As a baseline for XMLLR because it includes SAT-like ele-
ments we compare against (MLLR-)SAT, which we implement
as ML-like SAT as described in a companion paper [7].

The language model is a small (3.3M n-grams) interpolated
back-off 4-gram model smoothed using modified Kneser-Ney
smoothing. It was trained on a collection of 335M words from
various public data sources, mostly released by LDC. The vo-
cabulary size is 84K words. The test set consists of the dev04
English Broadcast News development set, a total of 2.06 hours.

5. Experimental Results

Iteration WER
XMLLR MLLR MLLR+rtree

(None) 41.1% 41.1% 41.1%
0 37.9% 38.6% 38.4%
1 36.8% 37.1%
2 36.8% 37.0%
3 36.4% 37.1%
4 36.3% 37.2%

(all) 36.6%

Table 1: Speaker Independent, small (5k Gaussian)

Iteration WER
XMLLR MLLR MLLR+rtree

(None) 34.1% 34.1% 34.4%
0 n/a 31.7% 31.9%
1 30.5% 30.9%
2 30.1% 30.9%
3 29.8% 30.9%
4 29.7% 30.7%

(all) 30.2%

Table 2: Speaker Independent, normal (30k Gaussian)

Iteration WER
XMLLR MLLR+rtree

(None) 33.9% 33.9%
0 33.3% 33.2%
1 33.1% 33.1%
2 33.0% 33.0%
3 32.9% 32.8%
4 32.7% 32.8%

Table 3: Speaker Adapted, small (5k Gaussian)

In these experiments, we show results without MLLR or
XMLLR in rows marked “(None)”, and with XMLLR and
MLLR on various iterations of training. XMLLR iteration zero
is after initialization of the associated vectors; following itera-
tion numbers are iterations of updating everything (transforms,
associated vectors using the quick approach, Gaussian parame-
ters). MLLR iteration zero is a system without (MLLR-)SAT,
and following iterations are iterations of SAT; iteration “(all)”
means doing a system build from scratch with SAT; details on
SAT training are in [7].



Iteration WER
XMLLR MLLR+rtree

(None) 26.0% 26.0%
0 n/a 25.3%
1 25.0% 25.2%
2 25.0% 25.2%
3 25.0% 25.1%
4 25.0% 25.1%

(all) 24.9%

Table 4: Speaker Adapted, normal (50k Gaussian)

Iteration WER (XMLLR)
Full Quick ...and no SAT

(None) 41.1% 41.1% 41.1%
0 37.9% 37.9% 37.9%
1 36.7% 36.8% 37.7%
2 36.7% 36.8% 37.6%
3 36.5% 36.4% 37.7%
4 36.3% 36.3% 37.5%

Table 5: Building style: (SI, small: 5k Gaussian)

Tables 1 and 2 show our technique on small and larger
size speaker independent models. Comparing against MLLR
without SAT, the improvements are quite impressive: 1.9% and
2.2% absolute for the small and large system (iteration 4). How-
ever our gains are reduced if we compare against systems with
SAT: 0.3% and 0.5% respectively if we compare against sys-
tems trained from scratch with SAT. On the SA system (Ta-
bles 3 and 4), even more of our gains disappear: we get 0.5%
and 0.3% respectively versus MLLR with no SAT, and 0.1%
and -0.1% versus the best available SAT numbers.

Table 5 compares different methods of system building for
XMLLR. We see that the quick update for the associated vec-
tors gives about the same results as the full update, and thatif
we omit the SAT element (i.e. the fact that we train the Gaus-
sian parameters jointly with the adaptation parameters) welose
1.2% absolute. We tried modifying from 10 the per-dimension
minimum count used in test time; there were small improve-
ments (0.1% to 0.2%) from changing this to the 100 to 200
range, but these may not be significant. We tried combining,
in test-time, the learned associated vectors with other predic-
tors. In one experiment we simply appended the mean to the
learned associated vectors but this gave a 0.3% degradation.

The improvements from XMLLR are associated with an in-
crease in test-time likelihood. On the small SI system (Table 1)
on iteration zero (just initialized) we reduced the dimension E
from 80 to 40; this degraded WER from 37.9% to 38.3% which

0 10 20 30 40 50 60 70 80
0

1

2

x 10
−4

SPEAKER INDEPENDENT

 

 
Eigenvalues
Like improvement per dim

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6
x 10

−5

SPEAKER ADAPTED

 

 
Eigenvalues
Like improvement per dim

Figure 1: Eigenvalues ofM and likelihood improvement

it still better than non regression tree MLLR with about the
same number of per-speaker parameters (at 38.6%). The un-
adapted test likelihood was -54.78 per frame; non regression
tree MLLR adapted was -52.82, and XMLLR adapted (E=40)
was -52.59. For comparison the best XMLLR result in Table 1
had likelihood of -51.19 and the best regression-tree MLLR
SAT result had -51.28. All these likelihood results track WER.

Figure 1 shows the eigenvalues of the matrixM, and also
the objective function improvement we get from adaptation,us-
ing each dimension of the computed associated vectors sepa-
rately; the improvement is computed using the initially esti-
mated associated vectors, and scaled arbitrarily for display. Any
differences are due to approximations we made in the eigen-
value initialization. The correspondence seems quite close for
the SI system; however, it breaks down for the SA system. We
found a correspondence between lower-than-expected objec-
tive function improvement and uneven distribution of associated
vectors, meaning that for the problematic dimensions most of
the Gaussians had very small associated vector values in that di-
mension and just a few had large values. This appears to be due
to certain Gaussians having very unevenly distributed counts
among speakers, which breaks our assumptions. We were able
to correct this discrepancy by iteratively identifying Gaussians
with larger than average factor vectorsnj and decreasing their
weightw̄−0.5

j by a factor weakly dependent on the excess. This
improved the objective function and WER on the first few it-
erations, but they both appeared to converge to the same point
regardless of the initialization used (results not shown).

6. Conclusions
We have introduced a form of adaptation called eXtended
MLLR (XMLLR), which is a modified form of MLLR in which
we regress on vectors associated with each mean. XMLLR ap-
pears to be a more powerful form of adaptation than MLLR,
giving large improvements against an MLLR baseline; however,
when we implemented Speaker Adaptive Training (SAT) for use
with MLLR and combined these techniques with other forms of
adaptation the improvements versus MLLR disappeared. Nev-
ertheless we hope that XMLLR may prove to be useful, perhaps
in a different configuration or for use in speaker identification.

7. Acknowledgements
This work was funded by DARPA contract HR0011-06-2-0001.

8. References
[1] Leggetter, C. J. and Woodland, P. C., “Maximum Likelihood Lin-

ear Regression for Speaker Adaptation of Continuous Density
Hidden Markov Models,” Computer Speech and Language, v. 9,
pp. 171-185, 1995.

[2] Gales M.J.F., “The generation and use of regression class trees for
MLLR adaptation,” Technical Report CUED/F-INFENG/TR263,
Cambridge University, 1996.

[3] Gales, M. J. F., “Maximum Likelihood Linear Transformations
for HMM-based Speech Recognition,” Computer Speech and
Language, v. 12, 1998.

[4] Gales, M. J. F, “Multiple-cluster adaptive training schemes,” Proc.
ICASSP, 2001.

[5] Kuhn R., Junqua J.-C., Nguyen, P., Niedzielski, N., “Rapid
Speaker Adaptation in Eigenvoice Space,” IEEE Transactions on
Speech and Audio Processing, v. 8, no. 6, Nov. 2000.

[6] Anastasakos, T., McDonough, J., Schwartz R. and Makhoul, J.,
“A Compact Model for Speaker-Adaptive Training,” Proc. ICSLP,
1996.

[7] Povey, D., Kuo, H-K. J. and Soltau H., “Fast Speaker Adap-
tive Training for Speech Recognition,” submitted to: Interspeech,
2008.


