
Optimizations in speech recognition

Daniel Povey

June, 2009
Thanks to Thomas Schaaf for comments and suggestions

1

Goals and overview

• This lecture will introduce some of the more important optimization
techniques used in speech recognition, covering only Maximum Likelihood
techniques.

• Will show side by side the mathematical notation used in papers, with
partial, C++ code.

• Focus on the pure data modeling techniques, with no HMM involved
(e.g. a one-state HMM). Generalization not hard.

• Topics covered:

1. Discrete model

2. Gaussian distribution estimation; mixture-of-Gaussians estimation

3. Introduction to (bits of) vector/matrix calculus

4. Adaptation: Maximum Likelihood Linear Regression (MLLR)

5. Constrained MLLR; Semitied Covariance Transform

6. Speaker Adaptive Training for MLLR

7. Maximum A Posteriori (MAP) training.

2

Find the mistakes

• Each code segment has mistakes in it, some intentional, some not

• Prizes will be offered for pointing out the mistakes, not just in code but
also in the text.

• This is open to all people present at the lecture (not just undergraduates)

• For particularly significant errors that I was not aware of (especially out-
side the code), double the prize is offered. Audience will help decide
whether the errors merit double reward.

• Each prize has an expected value of $5. Prize is you have to guess a
suit from a card randomly drawn from a pack. If you guess right you get
$20.

• (Actually the expected value is a little more than $5 if we do not shuffle
the pack after each pick and you are strategic).

• If the prize is doubled, you get two tries to guess the same card. The
expected value of this is a little less than $10. (Is this right?)

3

Discrete model example: Data

• Data, in this context, means some collection of mathematical objects
that we have to assign a probability to.

• Simple e.g.: a sequence of discrete values x1 . . . xN , with xn ∈ S.

• The values xn are members of the discrete set S.

int N = 512; // Length N of sequence.
int S=1000 // Fix size of set S.
int *x = new int[N];
// zero-based numbering (C++)
// This data is random. Real data won’t be.
for(int i=0;i<N;i++) x[i] = rand() % S;

4

Discrete model example: Parametric models

• Parametric models allow us to compute the probability of a particular set
of data being generated.

• A very simple model for the discrete values s ∈ S is to have a probability
for each of them: cs, with

∑
s∈S cs = 1.

• We can model the sequence X = x1 . . . xN by multiplying the probability

of each of them: P (X) =
N∏

n=1

cxn
.

• Probability of sequence is simple product: independence assumption

• Parameters of the model are {cs, s ∈ S}.

• Parameters must be nonnegative, and must sum to one:
∑

s∈S cs = 1.

int S=1000;
float *c = new float[S];
// initialize to flat distribution.
for(int s=0;s<S) c[s] = 1.0 / S;

5

Discrete model example: Evaluating data probability given model

• Computing the probability P (X) =
∏N

n=1 cxn
.

• Compute this as a log value to avoid floating point underflow or overflow:

• logP (X) =
∑N

n=1 log cxn
.

• In a multi-class/classification context, might compare this value between
different data models

float loglike(int *x, int N, float *c, int S){
float ans=0.0, int n;
for(n=0;n<N;n++){

Assert(x[n]>=0&&x[n]<S);
ans += log(c[x[n]]);

}
return ans;

}

6

Discrete model example: statistics

• Training means computing model parameters: in this case cs, s ∈ S.

• We want to maximize the probability of training data data, which is:
P (X) =

∏N
n=1 cxn

.

• Equivalent to maximizing the log probability logP (X) =
∑N

n=1 log cxn
.

• This is equivalent to:
∑

s∈S ns log cs, where ns is the count of s in the
sequence X .

• The “count” values ns for s ∈ S (there would be 1000 of these) are the
“statistics”.

• We call them “sufficient statistics” because once we need them we have
all we need to estimate the model (real definition is a little technical)

int *count = new int[S];
for(int s=0;s<S;s++) count[S]=0;
for(int i=0;i<N;i++) count[x[i]]++;

7

Discrete model example: update

• Want to maximize logP (X) =
∑

s∈S ns log cs, with sum-to-one constraint.

• Normal derivation relies on Lagrange multipliers. Easier derivation:

• Imagine quantities ĉs that don’t necessarily sum to one (but don’t sum
to zero), so cs = ĉs∑

s′∈S
ĉs′

(renormalizing).

P (X) =
∑
s∈S

ns

(
log ĉs − log

∑
s′∈S

ĉs′

)
∂P (X)

∂ĉs
=

ns

ĉs
−
∑

s′∈S ns′∑
s′∈S ĉs′

(1)

• Setting gradient to zero, and defining T as the total
∑

s∈S ĉs, we can work
out ĉs = T ns∑

s∈S
ns

. Set T to 1 to make ĉs equivalent to cs.

int totcount=0;
for(int i=0;i<S;i++) totcount += count[i]; // actually totcount==N now.
for(int i=0;i<S;i++) c[i] = (float)(count[i]/totcount);

8

Discrete HMMs

• The model we described above was once the basis for state-of-the-art
speech recognition.

• It was used in “Discrete HMM” systems.

• The speech feature based on cepstral coefficients was vector quantized,
and each speech state had one of the models described above (i.e. each
speech state had a set of weights cs, s ∈ S).

• Estimation in the HMM case involves the forward-backward algorithm.

• On each iteration, instead of integer counts ns they would be continuous
counts, i.e. weighted by posterior probabilities of HMM states.

• E.g. we would have data-counts njs =
∑T

t=1 γj(t), where 0 ≤ γj(t) ≤ 1
are the posteriors of state j in the forward backward algorithm.

9

Probability density functions and likelihoods: scalar case

• A probability density function, or p.d.f., is a function of a continuous
variable which says how likely a variable is to fall in a particular region.

• For scalar x, a p.d.f. p(x) must satisfy p(x) ≥ 0 for x ∈ (−∞,+∞)

(nonnegative) and
∫+∞

x=−∞ p(x)dx = 1 (properly normalized).

• More proper as we are talking about the function p itself rather than its
value p(x) to say “a p.d.f. p : < → <”... but we are being informal.

• Meaning of p.d.f. is: P (x ∈ (a, b)) =
∫ b

x=a
p(x)dx.

• Notation: (a, b) is an “open range” a < x < b, whereas [a, b] is a “closed
range” a ≤ x ≤ b. Makes no difference here.

• A likelihood is a p.d.f. evaluated at a specific place, e.g. we might say
p(5) = 2 for some function p. May be > 1 !

• A cumulative distribution function, or c.d.f., is like the integral from −∞
of a p.d.f, i.e. c(x) =

∫ x

y=−∞ p(y). Meaning: P (x < k) = c(k).

• A distribution says how likely a variable is to take particular values, we
can talk about the p.d.f. of a distribution or the c.d.f. of a distribution.
Applies for discrete case too.

10

Likelihoods: vector case

• For vector-valued features e.g. x ∈ <n i.e. x is an n-dimensional vector..

• Notation: bold font for vector x; < the set of all real numbers; <n =
< × < . . . × < is the cartesian product of the set <, n times, i.e. the set
of all n-tuples (x1 ∈ <, x2 ∈ <, . . . xn ∈ <).

• Constraint:
∫

p(x)dnx = 1 (properly normalized distribution). Nonnega-
tive.

• Notation (this is Riemann integral notation, which is the “normal” kind of
integrals as far as non-mathematicians are concerned): dnx the volume
of a small region: the same as the product dx1dx2 . . .dxn of the side
lengths of a little hypercube.

• We would have just dx for a line integral if we wanted the (vector) length
of the little line segment.

• Note, integral above is the same as
∫∞

x1=−∞
∫∞

x2=−∞ . . .
∫∞

xn=−∞ p(x)dx1dx2 . . . dxn.

(Not separable like this for general volume integrals).

• Interpretion of likelihoods in vector case: P (x ∈ W) with W ⊂ <n is∫
W p(x)dnx.

11

Gaussian distribution

• Scalar: N (x;µ, σ2) = exp
(
−1

2

(
log 2π + logσ2 + (x−µ)2

σ2

))
(note, variance

is σ2).

• Vector x ∈ <D: N (x;µ,Σ) = exp
(
−1

2

(
D log 2π + logdetΣ + (x− µ)Σ−1(x− µ)

))
.

• Sometimes covariance Σ limited to be diagonal → independent scalar
Gaussians in each dimension.

float diag_loglike(float *x, float *mu, float *sigmasq, int D){
float ans=0.0;
for(int i=0;i<D;i++)

ans -= 0.5*(log(2*M_PI*sigmasq[i])+(mu[i]-x[i])*(mu[i]-x[i])/sigmasq[i]);
return ans;

}
float full_loglike(float *x,float *mu,float **inv_sigmasq,float logdet,int D){

float ans=-0.5*(D*log(2*M_PI) + logdet);
for(int i=0;i<D;i++)

for(int j=0;j<D;j++) ans += (mu[i]-x[i])*inv_sigmasq[i][j]*(mu[j]-x[j]);
return ans;

}

12

Training Gaussian distributions

• Training one Gaussian distribution on a collection of (vector-valued)
points x1 . . .xN .

• Sufficient statistics are: (0th, 1st and 2nd order): γ = N , m =
∑N

n=1 xn,

S =
∑N

n=1 xnxT
n (not very standard notation).

• Easy to show by differentiation that we get a maximum of the likelihood
when:

• µ = 1
γ
m

• Σ = 1
γ

(
S− 2mµ + γµµT

)
void reest(float gamma, float *m, float *S, float *mu, float **Sigma){

for(int i=0;i<N;i++) mu[i] = m[i]/gamma;
for(int i=0;i<N;i++) for(int j=0;j<N;j++)

Sigma[i][j]=(S[i][j]-m[i]*mu[j]-mu[i]*m[j]-gamma*mu[i]*mu[j])/gamma;
}
// would then need to invert Sigma and compute determinant before using
// model, need matrix software for this.

13

Vector/matrix calculus

• Math required for the previous slide needs vector/matrix calculus for
vector case.

• We generally only need to differentiate a scalar function with respect to
vector or matrix valued quantities.

• e.g. d
dx

(xTAx). Answer will always be the same dimension as the trans-
pose of the thing we are differentating with respect to (i.e. x in this
case).

• E.g. gradient w.r.t. a column vector is a row vector.

• Meaning is: if vT = dF
dx

, v1 = ∂F
∂x1

. (Note, using curly ∂ for partial derivative

since now more than one variables are involved).

• Answer generally corresponds somehow to scalar answer, e.g. d
dx

xTAx =

xT(A + AT), whereas d
dx

x2A = 2Ax.

14

Vector/matrix derivatives - why the transpose?

• There are actually competing conventions regarding whether df
dA

should
be transposed w.r.t. A.

• It will be generally be obvious from the equations which is the case.

• Rationale for convention used here is that (for vectors) df
dx

is like a “co-
vector” to x, i.e. product between the two would make sense.

• E.g. consider df
dx

∆, where ∆ is a change in x. This expression makes
sense (change in function value f); clearly ∆x is the same kind of quantity
as x (because you can get it from a difference between x and x′).

• Use of this convention means we don’t have to write
(

df
dx

)T
(∆x) (or use

an explicit dot product df
dx
· (∆x), which is the same thing).

• Either convention is OK as long as it is used consistently.

15

Vector conventions– columns vs rows.

• Most people when they write x, assume that x is a column vector. To
write a column vector they would write xT .

• Sometimes people define a named variable like x to be a row vector, but
it should be stated in the text. This is not very normal.

16

Traces

• The trace operator is very useful in matrix/vector calculus.

• The trace of a square matrix is the sum of its diagonal elements.

• For a scalar x, this corresponds to x itself: tr(x) = x, x ∈ <.

• tr(AB) =
∑

i,j aijbji.

• tr(ABT) =
∑

i,j aijbij. Like a matrix form of dot-product.

• tr(AB) = tr(BA). Can move things from beginning to end and vice
versa, so tr(ABCD) = tr(BCDA) (bracket BCD to see why).

• tr(A) = tr(AT). Can transpose contents of trace operator.

• tr(A+B) = tr(A)+tr(B) if A and B have same dimension (should hardly
need stating).

17

Vector/matrix calculus - reduced axiomatization (simplified, and only
allowing differentiation of scalar functions)

• Easy to show d
dA

tr(AB) = B (1)

• f(A + ∆) ' f(A) + tr(∆ ∂f
∂A

) (2)

• Informal version of our “special” product rule: each time A appars in in
an expression, differentiate with respect to that A and treat everything
else as a constant; add up the results of differentiating w.r.t. each A.

• Formally: if f(A) = g(A)h(A), where g and h can be scalar or vector or
matrix-valued functions, define Ā = A, and df

dA
= ∂

∂A
g(Ā)h(A)+g(A)h(Ā)

(i.e. gradient with Ā fixed; note use of partial derivative symbol ∂). (3)

18

Vector/matrix calculus - example

• Want d
dx

xTAx

• Add trace: d
dx

tr(xTAx)

• Our “special” product rule (using x̄ = x): d
dx

tr(xTAx̄) + d
dx

tr(x̄TAx).

• Apply tr(AB) = tr(BA) and tr(A) = tr(AT) to get x on the left:
d

dx

(
tr(xx̄TA) + tr(xx̄TAT)

)
.

• Apply (1) to get: x̄T(AT + A). Discard the bar at this point (because
x̄ = x) to get xT(AT +A) (the distinction between x and x̄ was only used
for partial differentiation, they are the same variable).

• We derived d
dx

xTAx = xT(AT + A).

19

Vector/matrix calculus example - determinant.

• Determinants: d
dA

detA = I where A ' I. Can prove this recursively using
determinant formula and some easy-to-prove facts about determinants.

• Because determinants are multiplicative e.g. det(AB) = detAdetB, can
use:

• d
dA

detA around A = Ā equals: d
dA

det(AĀ−1) det Ā,

= det(B) det Ā substituting B = AĀ−1, with B = I at the current point.

• We can then use d
dB

detB = I since B ' I

• Then use (2) to get detB ' 1 + tr((B− I)I) = tr(B)−D + 1.

• So detA ' (det Ā)(tr(AĀ−1)−D + 1).

• Using (1): d
dA

detA = (detA)A−1.

20

Deriving Gaussian update

• log p(X) = K − 0.5
(
γ detΣ + tr

(
Σ−1(S + µmT + mµT + γµµT)

))
.

where γ,m,S are zeroth,first, and second order statistics.

• Differentiate w.r.t µ and set to zero:

• d
dµ

tr(Σ−1(S + µmT + mµT + γµµT)) = 0

• (mT + γµT)(Σ−1 + Σ−T) = 0

• µ = 1
γ
m.

• Differentiate w.r.t. T = Σ−1 and set to zero (use logdetΣ = − log detT)

• −0.5
(
(S + µmT + mµT + γµµT)− γT−1

)
= 0

• T−1 = Σ = 1
γ
(S + µmT + mµT + γµµT) = 1

γ
S− µµT .

21

Mixture of Gaussians distribution

• Model data with: p(x) =
∑M

m=1 cmN (x;µm,Σm).

• Will first state approach used to optimize the likelihood, then derive it.

• Training now does not “jump to answer”, is iterative.

• For each data point xn compute proportion of the likelihood γm(n) ac-
counted for by Gaussian m, store weighted statistics:

• γm =
∑N

n=1 γm(n), mm =
∑N

n=1 γm(n)xn, Sm =
∑N

n=1 γm(n)xnxT
n .

• Update equations are as before but indexed by Gaussian mixture index
m.

• Derivation and update for weights is same as discrete case: cm =
γm∑
m′ γm′

.

22

Mixture of Gaussians distribution: Jensen’s inequality (1 of 2)

• Jensen’s inequality says for a real concave function φ (such as log func-

tion): φ

(∑
aixi∑
ai

)
≥
∑

aiφ(xi)∑
ai

, for real xi and real, nonnegative ai.

• Or equivalently if
∑

ai = 1: φ(
∑

aixi) ≥
∑

aiφ(xi).

• In text: when taking a weighted average and applying a concave function,
the answer is always more (or the same) if we apply the concave function
after taking the weighted average.

• Remember: judge concavity or convexity of functions from below.

• This is only an equality when the xi are all the same (for general concave
functions that don’t have straight lines in them).

• For the application of Jensen’s inequality in optimization algorithms, re-
member the xi always start out the same for all i.

23

Mixture of Gaussians distribution: Jensen’s inequality (picture)

24

Mixture of Gaussians distribution: auxiliary function

• Derivation of mixture of Gaussians update is a maximization of:
P(θ) =

∑T
t=1 log

∑M
m=1 fm(θ, t), with θ as model parameters.

• fm(θ, t) is shorthand for cmN (xt;µm,Σm).

• We will use Jensen’s inequality to push the log inside the second summa-
tion which makes it the same problem as estimating the Gaussians one
by one.

• Need fm(θ, t) = am(θ̄, t)xm(θ, θ̄, t), need xm(θ, θ̄, t) to be all the same at
current value θ = θ̄, i.e. xm(θ̄, θ̄, t) = xm′(θ̄, θ̄, t); can arbitrarily stipulate
that all the am(θ̄, t) sum to one (since they will get renormalized anyway).

• Define am(θ̄, t) = fm(θ̄,t)∑
m

fm(θ̄,t)
, xm(θ, θ̄, t) = fm(θ,t)

am(θ̄,t)
, satisfies both conditions.

• We can then work out an “auxiliary function” Q(θ; θ̄) such that Q(θ; θ̄) ≤
P(θ) and Q(θ̄; θ̄) = P(θ̄).

• Thus, if the current parameters are θ̄ we can show that increasing the
value of Q(θ; θ̄) will increase P(θ̄) by at least as much.

• Q(θ; θ̄) = K +
∑T

t=1

∑M
m=1 γm(t, θ̄) log fm(θ), with γm(t, θ̄) = fm(θ̄)∑

m
fm(θ̄)

.

25

Mixture of Gaussians distribution: auxiliary function (picture)

26

Mixture of Gaussians estimation: code (will only work if mean and variances
sensibly initialized)

void reest_mixture(int D, int M, int T, int iters, const float **data,
float **mu, float **var, float *weights){

float *count_stats = new float[M], *loglikes = new float[M];
float **mu_stats = alloc_matrix(M,D), **var_stats = alloc_matrix(M,D);
for(int iter=0;iter<iters;iter++){

// set count_stats, mu_stats and var_stats to zero here!
for(int t=0;t<T;t++){

float log_sum=-1.0e+10; // very negative->log(zero)
for(int m=0;m<M;m++){

loglikes[m] = diag_loglike(data[t],mu[m],var[m],D)+log(weights[m]);
log_sum=log_add(log_sum,loglikes[m]); }// log(exp(a)+exp(b));

for(int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum); // posterior of mix.
count_stats[m] += gamma_m_t;
for(int d=0;d<D;d++){

mu_stats[m][d] += data[t][d]*gamma_m_t;
var_stats[m][d] += data[t][d]*data[t][d]*gamma_m_t; }}}

for(int m=0;m<M;m++){
weights[m] = count_stats[m] / T;
for(int d=0;d<D;d++){

mu[m][d] = mu_stats[m][d]/count_stats[m];
var[m][d] = var_stats[m][d]/count_stats[m] - mu[m][d]*mu[m][d]; }}}}

27

Maximum Likelihood Linear Regression (MLLR)

• Consider the mean transformation µ → Aµ + b.

• Equivalent to µ → Wµ+, with W = [A;b] and µ+ =
[
µT 1

]T
.

• Useful as a way of transforming models to new speakers or conditions
using relatively few parameters.

• Likelihood function is: P(W) =
∑T

t=1 log
∑M

m=1 cmN (xt;Wµ+
m,Σm).

• Auxiliary function is: Q(W;W̄) =
∑T

t=1

∑M
m=1 γm(t) log

(
cmN (xt;Wµ+

m,Σm)
)
,

where γm(t) = cmN (xt;W̄µ+
m,Σm)∑

m′
cm′N (xt;W̄µ+

m′,Σm′)
.

void mllr_transform_models(int D, int M, float **means, float **W){
float *tmp = new float[D];
for(int m=0;m<M;m++){

for(int d=0;d<D;d++) tmp[d]=means[m][d];
for(int d=0;d<D;d++){

float sum = W[d][D];
for(int e=0;e<D;e++) sum += tmp[e]*W[d][e];
means[m][d] = sum; }}}

28

Maximum Likelihood Linear Regression (MLLR): statistics

• Assuming variances Σm are diagonal, auxiliary function can be separated
per row wd of the transform:
Q(W) = K +

∑D
d=1 wd · kd − 0.5wT

d Gdwd.

• Statistics are: kd =
∑

t,m γm(t) xtd

σ2
md

µ+
m, Gd =

∑
t,m γm(t) 1

σ2
md

µ+
mµ+

m
T
.

// If we are not on the first iteration, mu is pre-transformed.
void accu_mllr(int M, int D, int T, float **data, float **mu,

float **var, float *weights, float ***G, float **k){
float *loglikes = new float[M];
for(int t=0;t<T;t++){

float log_sum=-1.0e+10; float *x=data[t];
for(int m=0;m<M;m++){

loglikes[m] = diag_loglike(x,mu[m],var[m],D)+log(weights[m]);
log_sum=log_add(log_sum,loglikes[m]); }

for(int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum);
for(int d=0;d<D;d++)

for(int e=0;e<D+1;e++){
k[d][e] += gamma_m_t*x[d]/var[m][d] * (e==D?1:mu[m][e]);
for(int f=0;f<D+1;f++)

G[d][e][f]+=gamma_m_t/var[m][d]*(e==D?1:mu[m][e])*(f==D?1:mu[m][f]);
}}}}

29

Maximum Likelihood Linear Regression (MLLR): update

• Update is very simple: wd = G−1
d kd.

• If any Gd are not invertible we cannot update (can happen if ≤ D means
had nonzero counts).

// If we are not on the first iteration, mu is pre-transformed.
void update_mllr(int D, float **W_in, float ***G, float **k, int T){

float tot_objf_impr=0.0;
float **W = alloc_matrix(D,D+1), **Ginv = alloc_matrix(D+1,D+1);
for(int d=0;d<D;d++){

invert_matrix(Ginv,G[d],D+1,D+1); // Ginv:=inverse(G[d]);
m_v_prod(W[d], Ginv, k[d]); // W[d] := Ginv * k_d.
float objf_impr=dot_prod(W[d],k[d],D+1) -0.5*vmv_prod(W[d],G[d],W[d],D+1,D+1)

-(k[d][d] -0.5 G[d][d][d]); // Subtract same with ‘‘default’’ matrix row.
Assert(objf_impr>=0);
tot_objf_impr += objf_impr;

}
printf("Objective improvement is %f\n", tot_objf_impr/T);
float **W_in_plus = alloc_matrix(D+1,D+1); W_in_plus[D][D] = 1.0;
for(int d=0;d<D;d++) for(int e=0;e<D+1;e++) W_in_plus[d][e]=W_in[d][e];
m_m_prod(W_in, W, W_in_plus, D,D+1,D+1); // W_in := W*(W_in with extra row..)

}

30

Constrained Maximum Likelihood Linear Regression (MLLR)

• Consider the feature transformation: x → Ax + b.

• Equivalent to x → Wx+, with W = [A;b] and x+ =
[
xT 1

]T
.

• We have obtained a Gaussian Mixture Model somehow, and want to train
W to maximize data likelihood on a data sequence X = x1 . . .xT .

• Likelihood function is: P(W) =
∑T

t=1 log |detA|+log
∑M

m=1 cmN (Wx+
t ;µm,Σm).

• Need for the extra term log |detA| can be derived from viewing A as a
model transformation (or considering effect on term dnx in expression to
derive probabilities from likelihoods).

• Auxiliary function is: Q(W;W̄) =
∑T

t=1

∑M
m=1 γm(t) log

(
cmN (Wx+

t ;µm,Σm)
)
,

where γm(t) = cmN (W̄x+
t ;µm,Σm)∑

m′
cm′N (W̄x+

t ;µm′,Σm′)
.

float do_fmllr_transform(int D, float *Wx, const float **W, const float **x){
for(int d=0;d<D;d++){

float sum=W[d][D];
for(int e=0;e<D;e++) sum += W[d][e] * x[e];
Wx[d] = sum; }}

31

Constrained MLLR: accumulation

• If Σm are diagonal, Q(W;W̄) this can be separated out per row of the
transform wd (note, wd is column vector) to get:

• Q(W;W̄) = K + β|detA|+
∑D

d=1 wT
d kd − 0.5wT

d Gdwd.

• Sufficient statistics are: β = T,Gd =
∑

t,m γm(t) 1
σ2

m,d

x+
t x+

t

T
, kd =

∑
t,m γm(t)µm,d

σ2
m,d

x+
t .

void accu_fmllr(int M, int D, int T, float **W, float **data, float **mu,
float **var, float *weights, float ***G, float **k){

float *Wx = new float[D], *loglikes = new float[M];
for(int t=0;t<T;t++){

float log_sum=-1.0e+10; float *x=data[t];
do_fmllr_transform(Wx, W, x); // Wx = W*x^+
for(int m=0;m<M;m++){

loglikes[m] = diag_loglike(Wx,mu[m],var[m],D)+log(weights[m]);
log_sum=log_add(log_sum,loglikes[m]); }

for(int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum);
for(int d=0;d<D;d++) for(int e=0;e<D+1;e++){

k[d][e] += gamma_m_t*mu[m][d]/var[m][d] * (e==D?1:x[e]);
for(int f=0;f<D+1;f++)

G[d][e][f]+=gamma_m_t/var[m][d]*(e==D?1:x[e])*(f==D?1:x[f]); }}}}

32

Constrained MLLR: update (1 of 2)

• Estimation given statistics β, Gd and kd is iterative, row by row.

• Each time we work out the optimal value for a row given the other rows.

• Log-determinant term: use the fact that log |detA| = log |det Ā| +
log |detB|, where B = AĀ−1.

• If only d’th row of A differs from Ā, only d′th row of B is non-unit and
detB = Bdd = ad · cd where ad is d’th row of A and cd is d’th column of
Ā−1. Can work this out from recursive determinant formula.

• Ignoring constant terms, auxiliary function in d’th row of W, i.e. wd, is:
Q(wd) = β log |wd · c+0

d |+ wd · kd − 0.5wT
d Gdwd.

• Differentiating w.r.t. wd, transposing and setting to zero:
β

wd·c+0
d

c+0
d + kd −Gdwd = 0.

• Defining f = β
wd·c+0

d

, can work out wd = G−1
d (kd + fc+0

d).

• Substituting into definition of f , f = β

c+0
d

T(G−1
d (kd+fc+0

d))
. . . .

33

Constrained MLLR: update (2 of 2)

• Rearranging: fc+0
d

T
G−1

d kd + f2c+0
d

T
G−1

d c+0
d − β = 0. Quadratic in f .

• Defining a = c+0
d

T
G−1

d c+0
d , b = c+0

d

T
G−1

d kd, c = −β, we have f = −b±
√

b2−4ac
2a

.
Safe to take plus sign only.

• Then put f into the formula for wd to work out the updated row.

34

Constrained MLLR: update code

void update_fmllr(int D, float **W, float **k, float ***G, float beta){
float tot_objf_change=0;
float **Ainv = alloc_matrix(D,D); float **Ginv = alloc_matrix(D+1,D+1);
float *c0=new float[D+1],*tmp=new float[D+1],*wnew=new float[D+1]; c0[D]=0.0;
for(int iter=0;iter<10;iter++){

for(int d=0;d<D;d++){ // iterate over rows.
invert_matrix(Ainv,W,D,D); // Ainv := inverse(W[0:D-1,0:D-1])
invert_matrix(Ginv,G[d],D+1,D+1); // Ginv:=inverse(G[d])
for(int e=0;e<D;e++) c0[d] = Ainv[e][d]; // c0 := d’th column of Ainv.
float a=vmv_prod(c0,Ginv,c0,D+1,D+1), b=vmv_prod(c0,Ginv,k[d],D+1,D+1),

c=-beta, f = (-b + sqrt(b*b - 4*a*c))/(2*a);
Assert(f>0);
for(int e=0;e<D+1;e++) tmp[e]=f*c0[e] + k[d][e]; // tmp := k[d] + f*c0.
m_v_prod(wnew,Ginv,tmp,D+1,D+1); // wnew:=Ginv*tmp.
float objf_change += beta*log(beta/f) // log-det term

+ dot_prod(wnew,k[d],D+1) - dot_prod(W[d],k[d],D+1)
-0.5*(vmv_prod(wnew,G[d],wnew)-vmv_prod(W[d],G[d],W[d]));

Assert(objf_change >= -1.0e-05); tot_objf_change += objf_change;
for(int e=0;e<D+1;e++) W[d][e] = wnew[e];

}
printf("On iter %d, cumulative objf change is %f\n", iter, tot_objf_change);

}
}

35

Semi-tied covariance transform (STC)

• Related to other techniques: HLDA (Heteroscedastic Linear Discriminant
Analysis), which is a dimension-reduction form of STC; MLLT (which is
an alternative basically equivalent formulation of a globally shared STC).

• Transformation: normally applied as x → Ax, µ → Aµ. Transform the
features and means with the same transformation. Used for training
(not adaptation).

• Equivalently, Σ → ATΣA. Only useful if Σ is diagonal.

• Likelihood function is: P(A) =
∑T

t=1 log |detA|+log
∑M

m=1 cmN (Axt;Aµm,Σm).

• Auxiliary function is: Q(A; Ā) =
∑T

t=1

∑M
m=1 γm(t) log (cmN (Axt;Aµm,Σm)),

where γm(t) = cmN (Āxt;Āµm,Σm)∑
m′

cm′N (Āxt;Āµm′,Σm′)
.

• Sufficient statistics are the D ×D matrices Gd, 1 ≤ d ≤ D: β = T,Gd =∑T
t=1 γm(t)(xt − µm)(xt − µm)Tσ2

md. Like simplified constrained MLLR.

• Auxiliary function Q(A; Ā) = β log |detA| −0.5
∑D

d=1 aT
d Gdad, if ad are the

rows of G.

36

Semi-tied covariance transform (STC): accumulation code

• Assumes any existing STC transform has already been applied to the
means.

void stc_accu(int M, int D, int T, float **data, float **A, float **mu,
float **var, float *weights, float ***G){

float *Ax = new float[D], *loglikes = new float[M];
for(int t=0;t<T;t++){

float log_sum=-1.0e+10; float *x=data[t];
do_stc_transform(Ax, A, x); // Ax = A*x^+
m_v_prod(Ax, A, x, D,D); // Ax := A * x;
for(int m=0;m<M;m++){

loglikes[m] = diag_loglike(Ax,mu[m],var[m],D)+log(weights[m]);
log_sum=log_add(log_sum,loglikes[m]); }

for(int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum);
for(int d=0;d<D;d++)

for(int e=0;e<D;e++)
for(int f=0;f<D;f++) // in reality would do f<=e: symmetric.

G[d][e][f]+=gamma_m_t*(Ax[e]-mu[m][e])*(Ax[f]-mu[m][f])
/var[m][d];

}
}

}

37

Semi-tied covariance transform (STC): update

• Derivation and update is the same as fMLLR except no terms kd.

• Since the statistics above were estimated with the transformed data and
means, we are estimating a new transform Ã that is applied after any
existing transform.

• We estimate Ã starting from the unit matrix, and will multiply A := ÃA.

• A left-multplies features so Ã going after A means Ã needs to be on the
left. (Imagine an x on the right: ÃAx).

• We need to transform the means but they will already be transformed by
the existing part of the transform A so we need to multiply only by the
new part Ã.

• This is only one way of implementing STC and it does not converge very
fast.

• Alternative methods (e.g. used in HLDA estimation) are based on ac-
cumulating full-covariance statistics γm,mm,Sm for each Gaussian and
within memory, alternating the accumulation and update phase we de-
scribe (accumulating from the statistics), with updating the model’s di-
agonal variances. But this is memory intensive for large models.

38

Semi-tied covariance transform (STC): update code

void stc_upd(int D, float **A_in, float ***G, float beta, float **means, int M){
float **A = alloc_matrix(D,D), **Ainv = alloc_matrix(D,D),

**GInv = alloc_matrix(D,D);
float *cd=new float[D],*tmp=new float[D],*anew=new float[D];
for(int d=0;d<D;d++) A[d][d]=1.0; // Set A to unit matrix.
float tot_objf_change=0;
for(int iter=0;iter<10;iter++){

for(int d=0;d<D;d++){
invert_matrix(Ainv,W,D,D); // Ainv := inverse(A);
invert_matrix(Ginv,G[d],D,D); // Ginv:=inverse(G[d]);
for(int e=0;e<D;e++) cd[e] = Ainv[e][d]; // c := d’th column of Ainv.
float a=vmv_prod(cd,Ginv,cd,D,D), c=-beta, f=(-0 + sqrt(0*0 -4*a*c))/(2*a);
for(int e=0;e<D;e++) tmp[e]=f*cd[e]; // tmp := c*f.
m_v_prod(anew,Ginv,tmp,D,D); // anew:=Ginv*tmp.
float objf_change = beta*log(beta/f) // log-det term

-0.5*(vmv_prod(anew,G[d],anew)-vmv_prod(A[d],G[d],A[d]));
Assert(objf_change >= 0); tot_objf_change += objf_change;
for(int e=0;e<D;e++) A[d][e] = anew[e];

}} // should print objf value on each iter.
for(int m=0;m<M;m++) // Transform means by new part of transform.

m_v_prod(means[m],A,means[m],D,D); //assume function works w/ repeat args.
// Assume A_in is unit if first iteration.
m_m_prod(A_in, A, A_in, D,D,D); // A_in:=A*A_in. Assume works w/ repeat args.

}

39

Speaker adaptive training for MLLR

• For most speaker adaptation techniques, Speaker Adaptive Training (SAT)
simply means training the HMM on appropriately adapted features (e.g.
Constrained MLLR).

• This ensures models that are “compatible” with the form of adaptation.

• For (unconstrained) MLLR, it is different.

• Consider training a single GMM on speakers s = 1 . . . S, with mean trans-
forms W(s).

• Each speaker has training samples X (s) = x(s)
1 . . .x(s)

N (s).

• Likelihood function in means M = {µ1 . . . µM} is:

P(M) =
∑

s,t log
∑M

m=1 cmN (x(s)
t ;W(s)µ+

m,Σm).

• Auxiliary function is Q(M) = K +
∑

s,t,m γ(s)
m (t)N (x(s)

t ;W(s)µ+
m,Σm).

• Q(M) = K ′ − 0.5
∑

s,t,m γ(s)
m (t)(x(s) −W(s)µ+

m)TΣ−1
m (x(s) −W(s)µ+

m).

• Statistics: for each mixture m, store linear term vm =
∑

s,t,m γ(s)
m (t)A(s)T

Σ−1
m (x(s)−

b(s)) and quadratic term Gm =
∑

s,t,m γ(s)
m A(s)T

Σ−1
m A(s).

40

Speaker adaptive training for MLLR- mean-stats accumulation code

// call this for each speaker.
void accu_mllr_sat_mean(int T, int M, int D, float **data, float **W,

float **mu, float **var, float **v, float ***G){
// mu provided to this function is pre-transformed mean (W mu^+).
float *loglikes=new float[M], *offset=new float[D], vtmp=new float[D];
for(int t=0;t<T;t++){

float log_sum=-1.0e+10; // very negative->log(zero)
for(int m=0;m<M;m++){

loglikes[m] = diag_loglike(data[t],mu[m],var[m],D)+log(weights[m]);
log_sum=log_add(log_sum,loglikes[m]); }// log(exp(a)+exp(b));

for(int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum); // posterior of mix.
for(int d=0;d<D;d++) // offset=Sigma^{-1} * (x-b)

offset[d]=(data[t][d]-w[d][D])/var[m][d];
m_v_prod(vtmp,W,offset,D,D); // vtmp:=A*offset.

for(int d=0;d<D;d++) v[m] += gamma_m_t*vtmp;
for(int d=0;d<D;d++)

for(int e=0;e<D;e++) //
for(int f=0;f<D;f++) // G += gamma_m_t * A^T Sigma^{-1} A

G[m][e][f] += (gamma_m_t/var[m][d])*W[d][e]*W[d][f];
}

}
}

41

Speaker adaptive training for MLLR continued

• Mean update: µm = G−1
m vm.

invert_matrix(G[m], Ginv, D,D);
m_v_prod(mu[m], Ginv, v[m], D,D);

• Variance: accumulation and update must be done separately from mean
(theoretically)

• Variance statistics: γm =
∑

s,t,m γ(s)
m (t), Sm =

∑
s,t,m(x(s) −W(s)µ+

m)(x(s) −
W(s)µ+

m)T

// full-variance case:
S[m][d][e] += gamma_m_t*(data[t][d]-mu[m][d])*(data[t][e]-mu[m][e]);
//or, diagonal case:
S[m][d] += gamma_m_t*(data[t][d]-mu[m][d])*(data[t][d]-mu[m][d]);

• Variance update: Σm = 1
γm

Sm.

var[m][d][e] = S[m][d][e]/count[m]; // full case.
var[m][d] = S[m][d]/count[m]; // Diagonal case.

42

Maximum A Posteriori (MAP) training.

• Maximum A Posteriori (MAP) has a generic meaning, from Bayesian
statistics:

– Refers to estimating something with a point estimate given evidence,
i.e. after seeing some kind of observation (combining it with prior).

– E.g. choosing x to maximizie P (x|y) = P (x)P (y|x) if y is some kind
of observation.

• MAP has a specific meaning in speech (if used wihtout further expla-
nation): refers to adapting the mean and variance to a new speaker or
condition, but “backing off” to the original parameters if there is not
enough data.

• Original paper is by Gauvain and Lee and described a rather complicated
technique.

• When people refer to MAP in speech they often mean a simplified
“Cambridge-style” MAP that uses a parameter called τ to control backoff
for means (an option in HTK code).

43

Maximum A Posteriori (MAP) training: HTK-style/Cambridge-style MAP.

• HTK code contains the following update for means:

µ̂ =
τµ + x

τ + γ

where γ,x,S are zeroth,first and second order statistics.

• Controlled by parameter τ (equivalent to a number of frames/observations),
if τ = 10, it takes 10 observations before we go halfway to the “data”
estimate.

• Variance update (not in HTK code, but in a similar style), would be:

σ̂2
d =

τ(σ2
d + (µd − µ̂d)2) + (sdd − xdµd + γµ̂2

d)

τ + γ
.

• Think of it as adding “fake statistics” with count τ and same mean and
variance as the Gaussian we are backing off to: Ŝ = S + τ(Σ + µµT),
x̂ = x + τµ, γ̂ = γ + τ . (Only true if using same τ for means and
variances).

• Can easily imagine a similar update for mixture weights. In a mixture

with M components, a sensible update might be: ĉm =
γm + Mτcm

Mτ +
∑

m γm
.

44

Maximum A Posteriori (MAP) training: code

// Note: only the mean part of this is ‘‘standard’’ but the rest is reasonable.
void map_update(int M, int D, float **mu, float **var, float *weight,

float **mu_stats, float **var_stats, float **count_stats,
float tau_means=10, float tau_vars=20, tau_weights=10){

float tot_count=0;
for(int m=0;m<M;m++) tot_count+=count_stats[m];
for(int m=0;m<M;m++){

weight[m] = (count_stats[m] + tau_weights*M*weight[m])
/ (tot_count + tau_weights*M);

for(int d=0;d<D;d++){
float mu_hat = (mu_stats[m][d] + tau*mu[m][d]) / (count_stats[m]+tau);
float backoff_term = tau*(var[m][d]+(mu_hat-mu[m][d])*(mu_hat-mu[m][d]));

float data_term = (var_stats[m][d] - 2*mu_hat*mu_stats[m][d]
+ gamma*mu_hat*mu_hat);

var[m][d] = (backoff_term + data_term)/(tau*gamma);
mu[m][d] = mu_hat;

}
}

}

45

