Optimizations in speech recognition

Daniel Povey
June, 2009

Thanks to Thomas Schaaf for comments and suggestions

Goals and overview

This lecture will introduce some of the more important optimization
techniques used in speech recognition, covering only Maximum Likelihood
techniques.

Will show side by side the mathematical notation used in papers, with
partial, C++ code.

Focus on the pure data modeling techniques, with no HMM involved
(e.g. a one-state HMM). Generalization not hard.

Topics covered:

Discrete model

Gaussian distribution estimation; mixture-of-Gaussians estimation
Introduction to (bits of) vector/matrix calculus

Adaptation: Maximum Likelihood Linear Regression (MLLR)
Constrained MLLR; Semitied Covariance Transform

Speaker Adaptive Training for MLLR

NOo ok W b=

Maximum A Posteriori (MAP) training.

Find the mistakes
Each code segment has mistakes in it, some intentional, some not

Prizes will be offered for pointing out the mistakes, not just in code but
also in the text.

This is open to all people present at the lecture (not just undergraduates)

For particularly significant errors that I was not aware of (especially out-
side the code), double the prize is offered. Audience will help decide
whether the errors merit double reward.

Each prize has an expected value of $5. Prize is you have to guess a
suit from a card randomly drawn from a pack. If you guess right you get
$20.

(Actually the expected value is a little more than $5 if we do not shuffle
the pack after each pick and you are strategic).

If the prize is doubled, you get two tries to guess the same card. The
expected value of this is a little less than $10. (Is this right?)

Discrete model example: Data

e Data, in this context, means some collection of mathematical objects
that we have to assign a probability to.

e Simple e.g.: a sequence of discrete values z1...xzn, With z, € S.

e [he values x,, are members of the discrete set S.

int N = 512; // Length N of sequence.

int S=1000 // Fix size of set S.

int *x = new int[N];

// zero-based numbering (C++)

// This data is random. Real data won’t be.
for(int i=0;i<N;i++) x[i] = rand() % S;

Discrete model example: Parametric models

Parametric models allow us to compute the probability of a particular set
of data being generated.

A very simple model for the discrete values s € S is to have a probability
for each of them: ¢, with) _ccs = 1.

We can model the sequence X = x1...xxny by multiplying the probability
N

of each of them: P(X) = || ca..

n=1
Probability of sequence is simple product: independence assumption
Parameters of the model are {c;, s € S}.

Parameters must be nonnegative, and must sum to one: ZSGS cs = 1.

int S=1000;

float *c = new float[S];

// initialize to flat distribution.
for(int s=0;s<S) c[s] = 1.0 / S;

Discrete model example: Evaluating data probability given model

Computing the probability P(X) = [, cs,.

Compute this as a log value to avoid floating point underflow or overflow:

log P(X) =0 logc,,.

e In a multi-class/classification context, might compare this value between
different data models

float loglike(int *x, int N, float *c, int S){
float ans=0.0, int n;
for (n=0;n<N;n++){
Assert (x[n]>=0&&x[n]<S);
ans += log(c[x[nl]);
+

return ans;

}

Discrete model example: statistics
Training means computing model parameters: in this case ¢;, s € S.

We want to maximize the probability of training data data, which is:
_ N
P(X) =]1,=1 cz.-

Equivalent to maximizing the log probability log P(X) = ZnNzl log ¢, .

This is equivalent to: Zsesnslog cs, where ng is the count of s in the
sequence X.

The “count” values n, for s € S (there would be 1000 of these) are the
“statistics” .

We call them ‘“sufficient statistics” because once we need them we have
all we need to estimate the model (real definition is a little technical)

int *count = new int[S];
for(int s=0;s<S;s++) count[S]=0;
for(int i=0;i<N;i++) count[x[i]]++;

Discrete model example: update
e Want to maximize log P(X) =) _sns10gcs, with sum-to-one constraint.
e Normal derivation relies on Lagrange multipliers. Easier derivation:

e Imagine quantities ¢; that don't necessarily sum to one (but don’'t sum
to zero), so ¢; = ZCS = (renormalizing).

P(x) = Zn (Iog @—IogZ@)

SES s'eS
8P(X) _ & B ZS’ES ng (1>
858 ES ZS/ES ES/
e Setting gradient to zero, and defining T' as the total ZSQS Cs, We can work
out ¢ = TZ”S —. Set T to 1 to make ¢s equivalent to c;.
sSES s

int totcount=0;
for(int i=0;i<S;i++) totcount += count[i]; // actually totcount==N now.

for(int i=0;i<S;i++) c[i] = (float) (count[i]/totcount) ;

Discrete HMMs

The model we described above was once the basis for state-of-the-art
speech recognition.

It was used in “Discrete HMM" systems.

The speech feature based on cepstral coefficients was vector quantized,
and each speech state had one of the models described above (i.e. each
speech state had a set of weights ¢, s € S).

Estimation in the HMM case involves the forward-backward algorithm.

On each iteration, instead of integer counts ns they would be continuous
counts, i.e. weighted by posterior probabilities of HMM states.

E.g. we would have data-counts njs = >./_, ~v;(t), where 0 < ~;(t) < 1
are the posteriors of state 5 in the forward backward algorithm.

Probability density functions and likelihoods: scalar case

A probability density function, or p.d.f., is a function of a continuous
variable which says how likely a variable is to fall in a particular region.

For scalar =, a p.d.f. p(x) must satisfy p(z) > 0 for z € (—o0,+00)
(nonnegative) and f;ofoop(;c)dw = 1 (properly normalized).

More proper as we are talking about the function p itself rather than its
value p(x) to say “a p.d.f. p: R — R"... but we are being informal.

Meaning of p.d.f. is: P(z € (a,b)) = ffzap(:c)da:.

Notation: (a,b) is an “open range” a < x < b, whereas [a,b] is a “closed
range” a <z < b. Makes no difference here.

A likelihood is a p.d.f. evaluated at a specific place, e.g. we might say
p(5) = 2 for some function p. May be > 1!

A cumulative distribution function, or c.d.f., is like the integral from —oo
of a p.d.f, i.e. ¢(x) = fyx:_oop(y). Meaning: P(x < k) = c(k).

A distribution says how likely a variable is to take particular values, we
can talk about the p.d.f. of a distribution or the c.d.f. of a distribution.
Applies for discrete case too.

10

Likelihoods: vector case
For vector-valued features e.g. x € R" i.e. x is an n-dimensional vector..

Notation: bold font for vector x; R the set of all real numbers; R* =
X R...x R is the cartesian product of the set R, n times, i.e. the set
of all n-tuples (1 € R,z € N,...x, € N).

Constraint: [p(x)d"x = 1 (properly normalized distribution). Nonnega-
tive.

Notation (this is Riemann integral notation, which is the “normal” kind of
integrals as far as non-mathematicians are concerned): d"x the volume
of a small region: the same as the product dzidzs...dx, of the side
lengths of a little hypercube.

We would have just dx for a line integral if we wanted the (vector) length
of the little line segment.

Note, integral above is thesameas [~ [* o p(@)dzidas .. dx,.

T1——O0 JILr——0O) LTn=——

(Not separable like this for general volume integrals).

Interpretion of likelihoods in vector case: P(x € W) with W C R" is
pr(x)dnx.

11

Gaussian distribution

e Scalar: N(z;p,o2) = exp (—% (Iog 21 + log o2 + @)) (note, variance
is 02).

e Vectorx € RP: N(x;p,) = exp (-1 (Dlog2r 4+ logdet ¥ + (x — w)E71(x — p))).

e Sometimes covariance X limited to be diagonal — independent scalar
Gaussians in each dimension.

float diag_loglike(float *x, float *mu, float *sigmasq, int D){
float ans=0.0;
for(int i=0;i<D;i++)
ans -= 0.5%(log(2*M_PIx*sigmasql[i])+(muli]l-x[i])*(muli]l-x[i])/sigmasql[i]);
return ans;
+
float full_loglike(float *x,float *mu,float **inv_sigmasq,float logdet,int D){
float ans=-0.5*%(D*log(2*M_PI) + logdet);
for(int i=0;i<D;i++)
for(int j=0;j<D;j++) ans += (muli]-x[i])*inv_sigmasq[i] [j1*(muljl-x[j]);
return ans;

12

Training Gaussian distributions

e Training one Gaussian distribution on a collection of (vector-valued)
points x;1...xy.

e Sufficient statistics are: (Oth, 1st and 2nd order): v =N, m = Y x,,

S = 22[:1 x,x. (not very standard notation).
e Easy to show by differentiation that we get a maximum of the likelihood
when:

m

e n=1

° Z]::%(S——Qnuiﬁ—vuuT)

void reest(float gamma, float *m, float *S, float *mu, float **Sigma){
for(int i=0;i<N;i++) mul[i] = m[i]/gamma;
for(int i=0;i<N;i++) for(int j=0;j<N;j++)
Sigmal[il [j1=(S[il [j1-m[il*mu[j]l-mulil*m[j]-gamma*mu[i]*mul[j])/gamma;
+
// would then need to invert Sigma and compute determinant before using
// model, need matrix software for this.

13

Vector/matrix calculus

Math required for the previous slide needs vector/matrix calculus for
vector case.

We generally only need to differentiate a scalar function with respect to
vector or matrix valued quantities.

e.d. Cgix(xTAx). Answer will always be the same dimension as the trans-
pose of the thing we are differentating with respect to (i.e. x in this
case).

E.g. gradient w.r.t. a column vector is a row vector.

Meaning is: if vl = L g—i. (Note, using curly 0 for partial derivative

dx

since now more than one variables are involved).

Answer generally corresponds somehow to scalar answer, e.d. d%xTAx =
xT(A 4+ AT), whereas L22A = 2Az.

14

Vector/matrix derivatives - why the transpose?

There are actually competing conventions regarding whether j—j; should
be transposed w.r.t. A.

It will be generally be obvious from the equations which is the case.

Rationale for convention used here is that (for vectors) j—{(is like a “co-
vector” to x, i.e. product between the two would make sense.

E.g. consider %A, where A is a change in x. This expression makes

sense (change in function value f); clearly Ax is the same kind of quantity
as x (because you can get it from a difference between x and x’).

dx
an explicit dot product £ . (Ax), which is the same thing).

T
Use of this convention means we don’t have to write (ﬁ) (Ax) (or use

Either convention is OK as long as it is used consistently.

15

Vector conventions— columns vS rows.

e Most people when they write x, assume that x is a column vector. To
write a column vector they would write x7.

e Sometimes people define a named variable like x to be a row vector, but
it should be stated in the text. This is not very normal.

16

Traces
The trace operator is very useful in matrix/vector calculus.
The trace of a square matrix is the sum of its diagonal elements.
For a scalar x, this corresponds to x itself: tr(z) = =,z € R.
tr(AB) = Zi’j ai;jbji.
tr(ABT) = Zm. ai;bij. Like a matrix form of dot-product.

tr(AB) = tr(BA). Can move things from beginning to end and vice
versa, so tr(ABCD) = tr(BCDA) (bracket BCD to see why).

tr(A) = tr(AT). Can transpose contents of trace operator.

tr(A+B) = tr(A)+tr(B) if A and B have same dimension (should hardly
need stating).

17

Vector/matrix calculus - reduced axiomatization (simplified, and only
allowing differentiation of scalar functions)

Easy to show -Ltr(AB) =B (1)

FA+A) ~ f(A) +tr(AZ) (2)

Informal version of our “special” product rule: each time A appars in in
an expression, differentiate with respect to that A and treat everything
else as a constant; add up the results of differentiating w.r.t. each A.

Formally: if f(A) = g(A)h(A), where g and h can be scalar or vector or

matrix-valued functions, define A = A, and % = 2-g(A)h(A)+g(A)h(A)
(i.e. gradient with A fixed; note use of partial derivative symbol 9). (3)

18

Vector/matrix calculus - example
Want C%(XTAX
. d T
Add trace: —-tr(x" Ax)
Our “special” product rule (using X = x): -Ltr(xTAX) + Ltr(xTAx).

Apply tr(AB) = tr(BA) and tr(A) = tr(AT) to get x on the left:
di (tr(xx"A) 4+ tr(xx"A")).
X

Apply (1) to get: XT(AT + A). Discard the bar at this point (because
X =x) to get x'(AT 4+ A) (the distinction between x and X was only used
for partial differentiation, they are the same variable).

We derived d%XTAX =xT(AT + A).

19

Vector/matrix calculus example - determinant.

Determinants: diA det A =1 where A ~ 1. Can prove this recursively using
determinant formula and some easy-to-prove facts about determinants.

Because determinants are multiplicative e.g. det(AB) = det A det B, can
use:

4-det A around A = A equals: -4 det(AA 1) detA,
= det(B) det A substituting B = AA~!, with B =1 at the current point.

We can then use £ detB =1 since B~ 1
Then use (2) togetdetB~1+4+tr(B-DI) =tr(B) — D + 1.
So det A ~ (det A)(tr(AA-1) — D +1).

Using (1): -4 det A = (detA)A~1.

20

Deriving Gaussian update

logp(X) = K — 0.5 (ydet X + tr (X1(S + pm7” + mu” + vupu™))) .
where v, m, S are zeroth,first, and second order statistics.

Differentiate w.r.t © and set to zero:

Ltr (7S + pm” + mp” + yup™)) =0

(m" + ")(E P+ ET) =0

1
= —I1.
H Y

Differentiate w.r.t. T = 3~1 and set to zero (use logdet¥ = —logdet T)
—0.5 ((S + pm” +mp” + yupu”) —4T71) =0
T =3%=2(S+pm" +mu" +yup’) =28 — .

21

Mixture of Gaussians distribution
Model data with: p(x) = "M N (X; tn, Zn).
Will first state approach used to optimize the likelihood, then derive it.
Training now does not “jump to answer’, is iterative.

For each data point x, compute proportion of the likelihood ~,,(n) ac-
counted for by Gaussian m, store weighted statistics:

N N N
Ym = ey Ym (), My = 37 Ym(n)Xn, S = 32, Ym()Xnxy, .

Update equations are as before but indexed by Gaussian mixture index
m.

Ym

Zm’ TYm/ .

Derivation and update for weights is same as discrete case: ¢, =

22

Mixture of Gaussians distribution: Jensen’s inequality (1 of 2)
Jensen’s inequality says for a real concave function ¢ (such as log func-
tion): ¢ (ZM’”) > M for real xz; and real, nonnegative aq;.

Se) =TS

Or equivalently if Y a; = 1: ¢ aixi) > D aip(x;).

In text: when taking a weighted average and applying a concave function,
the answer is always more (or the same) if we apply the concave function
after taking the weighted average.

Remember: judge concavity or convexity of functions from below.

This is only an equality when the z; are all the same (for general concave
functions that don’'t have straight lines in them).

For the application of Jensen’s inequality in optimization algorithms, re-
member the x; always start out the same for all z.

23

Mixture of Gaussians distribution: Jensen’'s inequality (picture)

24

Mixture of Gaussians distribution: auxiliary function

Der|vat|on of m|xture of Gaussians update is a maximization of:
PO) = Zt L log Zm_l fm(0,t), with 8 as model parameters.

fm(0,t) is shorthand for c, N (X¢; pm, 2m) -

We will use Jensen’s inequality to push the log inside the second summa-
tion which makes it the same problem as estimating the Gaussians one
by one.

Need fm(0,t) = am(0,t)zm(6,0,t), need z,(6,0,t) to be all the same at
current value 8 = 0, i.e. z,(0,0,t) = x,,(0,0 t) can arbitrarily stipulate
that all the a,,(0,t) sum to one (smce they WI|| get renormalized anyway).

Define am(0,t) = L@ 5 (9.8,t) = (%1 satisfies both conditions.

RS

We can then work out an “auxiliary function” Q(6;6) such that Q(0;60) <
P(0) and Q(0;60) = P(0).

Thus, if the current parameters are 0 we can show that increasing the
value of Q(60;60) will increase P(#) by at least as much.

Q(0; é) = K+ Zzzl Zi\,{:l Y (t, g) log fm(0), with (%, é) — %

25

Mixture of Gaussians distribution: auxiliary function (picture)

i‘ -

T T ———

I R I

h 4

B e m e wew e e o e

Sl

26

Mixture of Gaussians estimation: code (will only work if mean and variances
sensibly initialized)

void reest_mixture(int D, int M, int T, int iters, const float x**data,
float **mu, float **var, float *weights){
float *count_stats = new float[M], *loglikes = new float[M];
float **mu_stats = alloc_matrix(M,D), **var_stats = alloc_matrix(M,D);
for(int iter=0;iter<iters;iter++){
// set count_stats, mu_stats and var_stats to zero here!
for(int t=0;t<T;t++){
float log_sum=-1.0e+10; // very negative->log(zero)
for(int m=0;m<M;m++){
loglikes[m] = diag_loglike(datalt],mulm],var[m],D)+log(weights[m]) ;
log_sum=log_add(log_sum,loglikes[m]); 1}// log(exp(a)+exp(b));
for(int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum); // posterior of mix.
count_stats[m] += gamma_m_t;
for(int d=0;d<D;d++){
mu_stats[m] [d] += datalt] [d]*gamma_m_t;
var_stats[m] [d] += datalt] [d]*datalt] [d]*gamma_m_t; }}}
for (int m=0;m<M;m++){
weights[m] = count_stats[m] / T;
for(int d=0;d<D;d++){
mul[m] [d] = mu_stats[m] [d]/count_stats[m];
var [m] [d] = var_stats[m] [d]/count_stats[m] - mul[m] [d]*mulm] [d]; }}}}

27

Maximum Likelihood Linear Regression (MLLR)
e Consider the mean transformation u — Au + b.
e Equivalent to p — Wy, with W = [A;b] and pt = [p” 1]T.

e Useful as a way of transforming models to new speakers or conditions
using relatively few parameters.

e Likelihood function is: P(W) = Ethl log Z%:l N (xt, Wpt 3.).

e Auxiliary functionis: Q(W; W) = Y"1_ SV v, (1) 109 (enN (xi; Wik, 1)),

—_— CTHN(Xt;W:u’:uEm)
where ~,(t) = S NG Wi T

m!

void mllr_transform_models(int D, int M, float **means, float **W){
float *tmp = new float[D];
for(int m=0;m<M;m++){
for(int d=0;d<D;d++) tmpl[d]=means[m] [d];
for(int d=0;d<D;d++){
float sum = W[d][D];
for(int e=0;e<D;e++) sum += tmple]*W[d] [e];
means [m] [d] = sum; }}}

28

Maximum Likelihood Linear Regression (MLLR): statistics

e Assuming variances X, are diagonal, auxiliary function can be separated
per row wy of the transform:

Q(W) =K —|— chljzl W, - kd — O.5W§ded.

. 4. T
e Statistics are: kg =13, Wm(t):_,i“;’t“ Gi=Y.n Wm(t)g%muu .

// 1f we are not on the first iteration, mu is pre-transformed.
void accu_mllr(int M, int D, int T, float **data, float **mu,
float **var, float *weights, float ***G, float *x*k){
float *loglikes = new float[M];
for(int t=0;t<T;t++){
float log_sum=-1.0e+10; float *x=datalt];
for(int m=0;m<M;m++){
loglikes[m] = diag_loglike(x,mulm],var[m],D)+log(weights[m]);
log_sum=log_add(log_sum,loglikes[m]); }
for (int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum);
for(int d=0;d<D;d++)
for(int e=0;e<D+1;e++){
k[d] [e] += gamma_m_t*x[d]/var[m] [d] * (e==D71:mul[m][e]);
for(int f=0;f<D+1;f++)

G[d] [e] [f]+=gamma_m_t/var[m] [d]*(e==D71:mulm] [e])*(f==D71:mul[m] [£f]);
31}

29

Maximum Likelihood Linear Regression (MLLR): update
e Update is very simple: w, = G 'k,.

e If any G, are not invertible we cannot update (can happen if < D means
had nonzero counts).

// If we are not on the first iteration, mu is pre-transformed.
void update_mllr(int D, float **W_in, float ***G, float *xk, int T){

float tot_objf_impr=0.0;
float **W = alloc_matrix(D,D+1), **Ginv = alloc_matrix(D+1,D+1);
for(int d=0;d<D;d++){
invert_matrix(Ginv,G[d],D+1,D+1); // Ginv:=inverse(G[d]);
m_v_prod(W[d], Ginv, k[d]); // W[d] := Ginv * k_d.
float objf_impr=dot_prod(W[d],k[d],D+1) -0.5*vmv_prod(W[d],G[d],w[d],D+1,D+1)
-(k[d][d] -0.5 G[d]l[d]l[d]l); // Subtract same with ¢‘default’’ matrix row.
Assert (objf_impr>=0) ;
tot_objf_impr += objf_impr;
+
printf ("Objective improvement is %f\n", tot_objf_impr/T);
float **W_in_plus = alloc_matrix(D+1,D+1); W_in_plus[D][D] = 1.0;
for(int d=0;d<D;d++) for(int e=0;e<D+1;e++) W_in_plus[d] [e]l=W_in[d] [e];
m_m_prod(W_in, W, W_in_plus, D,D+1,D+1); // W_in := Wx(W_in with extra row..)

30

Constrained Maximum Likelihood Linear Regression (MLLR)

e Consider the feature transformation: x — Ax + b.

e Equivalent to x — Wx*, with W = [A; b] and xT = [x” 1}T.

e \We have obtained a Gaussian Mixture Model somehow, and want to train
W to maximize data likelihood on a data sequence X = x1...Xr.

e Likelihood functionis: P(W) = Y. log |det A|+log S"Y_. ¢, N(Wx; i, Zin).

e Need for the extra term log|det A| can be derived from viewing A as a
model transformation (or considering effect on term d"x in expression to
derive probabilities from likelihoods).

e Auxiliary function is: Q(W; W) = Zle Zﬂ]‘f:l vm(t) 109 (cmN(ij; L, Em)>,

—_— C’VI'LN(WX;"_;/'L’VVL)E’UL)
where vy, (t) = S e N Wt 5

float do_fmllr_transform(int D, float *Wx, const float **W, const float x**x){
for(int d=0;d<D;d++){
float sum=W[d] [D];
for(int e=0;e<D;e++) sum += W[d] [e] * x[e];
Wx[d] = sum; }}

31

Constrained MLLR: accumulation

e If 3,, are diagonal, Q(W; W) this can be separated out per row of the
transform wy (note, wy is column vector) to get:

e O(W; W) =K + g|det A| + 32, wlk, — 05wl G ywy.

o Sufficient statisticsare: 3 =T,Gq=}_,, Xt Ztm'ym(t)”md
void accu_fmllr(int M, int D, int T, float **W, float **data, float **mu,
float **var, float *weights, float ***G, float *x*k){
float *Wx = new float[D], *loglikes = new float[M];
for(int t=0;t<T;t++){
float log_sum=-1.0e+10; float *x=datalt];
do_fmllr_transform(Wx, W, x); // Wx = Wxx"+
for(int m=0;m<M;m++){
loglikes[m] = diag_loglike(Wx,mul[m],var[m],D)+log(weights[m]);
log_sum=log_add(log_sum,loglikes[m]); }
for (int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum) ;
for(int d=0;d<D;d++) for(int e=0;e<D+1;e++){
k[d] [e] += gamma_m_t*mu[m] [d] /var[m] [d] * (e==D71l:x[e]);
for(int f=0;f<D+1;f++)
G[d] [e] [f]+=gamma_m_t/var[m] [d]*(e==D71:x[e])*(£f==D71:x[£f]1); }}}}

32

Constrained MLLR: update (1 of 2)
Estimation given statistics 8, G4 and k, is iterative, row by row.
Each time we work out the optimal value for a row given the other rows.

Log-determinant term: use the fact that log|detA| = log|detA| +
log | det B|, where B = AA~!.

If only d'th row of A differs from A, only d’'th row of B is non-unit and
detB = Byg = a4 - ¢4 where a4 is d'th row of A and c4 is d'th column of
A~ Can work this out from recursive determinant formula.

Ignoring constant terms, auxiliary function in d'th row of W, i.e. wy, is:
Q(wq) = Blog |wa - ¢ +wq - kg — 0.5wW] Ggwy.

Differentiating w.r.t. wgy, transposing and setting to zero:
LMCC—}_O —I— kd — Gde = 0.

Wd'Cd

Defining f = ﬁ can work out wg = G (ks + fci©).

Substituting into definition of f, f = c+°T(G‘1(i ey

33

Constrained MLLR: update (2 of 2)

e Rearranging: fcj G, 'k, + f3c] o' G G;'cI® — g =0. Quadratic in f.

.. T T __ _ 2
o Defining a = c;% Gy c;% b= cf° G, 'ksc = —08, we have f = =b=jr=tac.

Safe to take plus sign only.

e Then put f into the formula for w; to work out the updated row.

34

Constrained MLLR: update code

void update_fmllr(int D, float **W, float *xk, float ***G, float beta){

float tot_objf_change=0;

float **Ainv = alloc_matrix(D,D); float **Ginv = alloc_matrix(D+1,D+1);

float *cO=new float[D+1],*tmp=new float[D+1],*wnew=new float[D+1]; cO[D]=0.0;

for(int iter=0;iter<10;iter++){

for(int d=0;d<D;d++){ // iterate over rows.
invert_matrix(Ainv,W,D,D); // Ainv := inverse(W[0:D-1,0:D-1])
invert_matrix(Ginv,G[d],D+1,D+1); // Ginv:=inverse(G[d])
for(int e=0;e<D;e++) cO0[d] = Ainv[e]l[d]l; // cO := d’th column of Ainv.
float a=vmv_prod(c0,Ginv,c0,D+1,D+1), b=vmv_prod(c0,Ginv,k[d],D+1,D+1),
c=-beta, f = (-b + sqrt(b*b - 4x*axc))/(2xa);

Assert (£>0) ;
for(int e=0;e<D+1;e++) tmplel=f*cO[e] + k[d][el; // tmp := k[d] + £x*cO.
m_v_prod(wnew,Ginv,tmp,D+1,D+1); // wnew:=Ginv*tmp.
float objf_change += betaxlog(beta/f) // log-det term

+ dot_prod(wnew,k[d],D+1) - dot_prod(W([d],k[d],D+1)

-0.5%(vmv_prod (wnew,G[d] ,wnew) -vmv_prod (W[d] ,G[d] ,Ww[d]));
Assert(objf_change >= -1.0e-05); tot_objf_change += objf_change;
for(int e=0;e<D+1;e++) W[d] [e] = wnewle];

+
printf("On iter %d, cumulative objf change is %f\n", iter, tot_objf_change);
+
+

35

Semi-tied covariance transform (STC)

Related to other techniques: HLDA (Heteroscedastic Linear Discriminant
Analysis), which is a dimension-reduction form of STC; MLLT (which is
an alternative basically equivalent formulation of a globally shared STC).

Transformation: normally applied as x — Ax,u — Apu. Transform the
features and means with the same transformation. Used for training
(not adaptation).

Equivalently, ¥ — ATYXA. Only useful if ¥ is diagonal.

Likelihood function is: P(A) =3, log|det A|+log S"M_. e N (Axs; Apim,).

Auxiliary function is: Q(A; A) = Zle Zﬂ]‘le Ym (t) 109 (epN (AX¢; Apim, Xm)),
where ~,,(t) = ZC’”;V”, S\?&f’gﬂzm;)

Sufficient statistics are the D x D matrices Gy, 1 <d< D: g=T,G, =
Zthl Y (£) (%t — pm) (Xt — pm) 02 ;. Like simplified constrained MLLR.

Auxiliary function Q(A;A) = Blog|det A| —0.55."_. alGay, if a, are the
rows of G.

36

Semi-tied covariance transform (STC): accumulation code

e Assumes any existing STC transform has already been applied to the
means.

void stc_accu(int M, int D, int T, float **data, float **A, float **mu,
float **var, float *weights, float ***G){
float *Ax = new float[D], *loglikes = new float[M];
for(int t=0;t<T;t++){
float log_sum=-1.0e+10; float *x=datalt];
do_stc_transform(Ax, A, x); // Ax = Axx"+
m_v_prod(Ax, A, x, D,D); // Ax := A * x;
for(int m=0;m<M;m++){
loglikes[m] = diag_loglike(Ax,mu[m],var[m],D)+log(weights[m]);
log_sum=log_add(log_sum,loglikes[m]); }
for (int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum) ;
for(int d=0;d<D;d++)
for(int e=0;e<D;e++)
for(int £=0;f<D;f++) // in reality would do f<=e: symmetric.
G[d] [e] [f]+=gamma_m_t* (Ax[e]-mu[m] [e])* (Ax[f]-mu[m] [£])
/var [m] [d] ;

37

Semi-tied covariance transform (STC): update
Derivation and update is the same as fMLLR except no terms k.

Since the statistics above were estimated WitQ the transformed data and
means, we are estimating a new transform A that is applied after any
existing transform.

We estimate A starting from the unit matrix, and will multiply A := AA.

A left-multplies features so A going after A means A needs to be on the
left. (Imagine an x on the right: AAx).

We need to transform the means but they will already be transformed by
the existing part of the transform A so we need to multiply only by the
new part A.

This is only one way of implementing STC and it does not converge very
fast.

Alternative methods (e.g. used in HLDA estimation) are based on ac-
cumulating full-covariance statistics ~,,, m,,,S,, for each Gaussian and
within memory, alternating the accumulation and update phase we de-
scribe (accumulating from the statistics), with updating the model’s di-
agonal variances. But this is memory intensive for large models.

338

Semi-tied covariance transform (STC): update code

void stc_upd(int D, float **A_in, float ***G, float beta, float **means, int M){
float **A = alloc_matrix(D,D), **Ainv = alloc_matrix(D,D),
**GInv = alloc_matrix(D,D);
float *cd=new float[D],*tmp=new float[D],*anew=new float[D];
for(int d=0;d<D;d++) A[d][d]=1.0; // Set A to unit matrix.
float tot_objf_change=0;
for(int iter=0;iter<10;iter++){
for(int d=0;d<D;d++){
invert_matrix(Ainv,W,D,D); // Ainv := inverse(A);
invert_matrix(Ginv,G[d],D,D); // Ginv:=inverse(G[d]);
for(int e=0;e<D;e++) cdl[e] = Ainv([el[d]l; // c := d’th column of Ainv.
float a=vmv_prod(cd,Ginv,cd,D,D), c=-beta, f=(-0 + sqrt(0*0 -4x*axc))/(2xa);
for(int e=0;e<D;e++) tmplel=f*cd[e]l; // tmp := cx*f.
m_v_prod(anew,Ginv,tmp,D,D); // anew:=Ginv*tmp.
float objf_change = betax*log(beta/f) // log-det term
-0.5*%(vmv_prod(anew,G[d] ,anew)-vmv_prod(A[d] ,G[d],A[d]));
Assert(objf_change >= 0); tot_objf_change += objf_change;
for(int e=0;e<D;e++) A[d] [e] = anewle];
}} // should print objf value on each iter.
for(int m=0;m<M;m++) // Transform means by new part of transform.
m_v_prod(means[m] ,A,means[m] ,D,D); //assume function works w/ repeat args.
// Assume A_in is unit if first iteration.
m_m_prod(A_in, A, A_in, D,D,D); // A_in:=A*A_in. Assume works w/ repeat args.

I
39

Speaker adaptive training for MLLR

For most speaker adaptation techniques, Speaker Adaptive Training (SAT)
simply means training the HMM on appropriately adapted features (e.g.
Constrained MLLR).

This ensures models that are “compatible” with the form of adaptation.
For (unconstrained) MLLR, it is different.

Consider training a single GMM on speakers s = 1...5, with mean trans-
forms W),

Each speaker has training samples X&) = xg‘S) 5\?())

Likelihood function in means M = {u1...uap} is:
PM) =3, ,10g M enN (x(; WOt 3,).

Auxiliary function is Q(M) = K + Zstm’Ym)(t)N(X D WLt 3.
QM) =K' =053,y () (x®) = W) 1 (x(9) — W)ty

Statistics: for each mixture m, store linear term v,, = Zstm’ym)(t)A(S) »-1(x()—
b()) and quadratic term G, =3, YOAGOTB-IAE),

40

Speaker adaptive training for MLLR- mean-stats accumulation code

// call this for each speaker.
void accu_mllr_sat_mean(int T, int M, int D, float **data, float x**W,
float **mu, float **xvar, float **v, float ***xG){
// mu provided to this function is pre-transformed mean (W mu~+).
float *loglikes=new float[M], *offset=new float[D], vtmp=new float[D];
for(int t=0;t<T;t++){
float log_sum=-1.0e+10; // very negative->log(zero)
for (int m=0;m<M;m++){
loglikes[m] = diag_loglike(datalt],mulm],var[m],D)+log(weights[m]) ;
log_sum=log_add(log_sum,loglikes[m]); 1}// log(exp(a)+exp(b));
for (int m=0;m<M;m++){
float gamma_m_t = exp(loglikes[m]-log_sum); // posterior of mix.
for(int d=0;d<D;d++) // offset=Sigma~{-1} * (x-b)
offset[d]=(datalt] [d]-w([d] [D])/var[m] [d];
m_v_prod(vtmp,W,offset,D,D); // vtmp:=Axoffset.
for(int d=0;d<D;d++) v[m] += gamma_m_t*vtmp;
for(int d=0;d<D;d++)
for(int e=0;e<D;e++) //
for(int £=0;f<D;f++) // G += gamma_m_t * A"T Sigma~{-1} A
G[m] [e] [f] += (gamma_m_t/var[m] [d])*W[d] [e]l*W[d] [£f];
}
+
+

41

Speaker adaptive training for MLLR continued

Mean update: p, = G, lvy,.

invert_matrix(G[m], Ginv, D,D);
m_v_prod(mu[m], Ginv, v[m], D,D);

Variance: accumulation and update must be done separately from mean
(theoretically)

Variance statistics: v, = Y., . ~$S (), Sim = Dt (X = W by (x (o) —
W))T

// full-variance case:

S[m] [d] [e] += gamma_m_t*(datal[t] [d]-mul[m] [d])=*(datal[t] [e]-mul[m] [e]);

//or, diagonal case:
S[m] [d] += gamma_m_t*(datalt] [d]-mu[m] [d])*(datalt] [d]-mul[m] [d]) ;

Variance update: X, = %Sm.

m

var[m] [d] [e] = S[m][d][el/count[m]; // full case.
var[m] [d] = S[m] [d]/count[m]; // Diagonal case.

42

Maximum A Posteriori (MAP) training.

Maximum A Posteriori (MAP) has a generic meaning, from Bayesian
statistics:

— Refers to estimating something with a point estimate given evidence,
i.e. after seeing some kind of observation (combining it with prior).

— E.g. choosing z to maximizie P(z|y) = P(x)P(y|z) if y is some kind
of observation.

MAP has a specific meaning in speech (if used wihtout further expla-
nation): refers to adapting the mean and variance to a new speaker or
condition, but “backing off” to the original parameters if there is not
enough data.

Original paper is by Gauvain and Lee and described a rather complicated
technique.

When people refer to MAP in speech they often mean a simplified
“Cambridge-style” MAP that uses a parameter called v to control backoff
for means (an option in HTK code).

43

Maximum A Posteriori (MAP) training: HTK-style/Cambridge-style MAP.

e HTK code contains the following update for means:

. _ TRTX

/J[,_
T+

where v,x,S are zeroth,first and second order statistics.

e Controlled by parameter 7 (equivalent to a number of frames/observations),
if 7 = 10, it takes 10 observations before we go halfway to the "data”
estimate.

e Variance update (not in HTK code, but in a similar style), would be:

o2 — (05 + (pa — Ba)?) + (Saa — Xapa + Y43)
d T+

e Think of it as adding "fake statistics” with count 7 and same mean and
variance as the Gaussian we are backing off to: S = S + (= + up’),
X =x4+7u, ¥y =4+ 7. (Only true if using same = for means and
variances).

e Can easily imagine a similar update for mixture weights. In a mixture

m M m
with M components, a sensible update might be: ¢, = Ym + Mre .
Mt~ Ym

44

Maximum A Posteriori (MAP) training: code

// Note: only the mean part of this is ‘‘standard’’ but the rest is reasonable.
void map_update(int M, int D, float **mu, float **var, float *weight,

float **mu_stats, float **var_stats, float **count_stats,
float tau_means=10, float tau_vars=20, tau_weights=10){

float tot_count=0;
for(int m=0;m<M;m++) tot_count+=count_stats[m];

for(int m=0;m<M;m++){
weight[m] = (count_stats[m] + tau_weights*M*weight [m])

/ (tot_count + tau_weights*M) ;

for(int d=0;d<D;d++){
float mu_hat = (mu_stats[m] [d] + taux*mulm] [d]) / (count_stats[m]+tau);

float backoff_term = taux*(var[m] [d]+(mu_hat-mu[m] [d])*(mu_hat-mul[m] [d]));
float data_term = (var_stats[m] [d] - 2*mu_hat*mu_stats[m] [d]
+ gamma*mu_hat*mu_hat) ;
var[m] [d] = (backoff_term + data_term)/(tau*gamma) ;

mu[m] [d] = mu_hat;

}
}
}

45

