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Overview

• Introduce the concept of speech recognition using a shared GMM struc-
ture, and mention prior work with MAP adaptation of the GMM

• Introduce the simplest version of the subspace based speech model

• Discuss the optimization of the various parameters in the model

• Describe the extensions to the basic model that were used in previous
experiments

• Show recognition results with the previously used model

• Describe extensions to be used in the workshop
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Conventional speech system

• A conventional speech system based on mixture of Gaussians models
contains several thousand separate Gaussian Mixture Models (GMMs),
typically with diagonal covariances.

• Each GMM (i.e. each HMM state) corresponds to one of three positions
(begin,middle,end) within one specific phone (phones correspond roughly
to letters in the alphabet).

• There are several thousand of these (not 3×40 or so) because of context
clustering (phones sound different depending on the phonetic context).

• Each GMM has a potentially different number of Gaussians in it (typically
10-20 or so) and they are separately built∗

struct GMM_HMM {
int J; // Number of states.
int *Mj; // Number of mixtures in each state.
float **c; // Mixture weights; [j][m]
float ***means; //[j][m][d]
float ***vars; //[j][m][d]

};

∗This is not strictly true in BBN-style systems based on “senones”.
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Maximum A Posteriori (MAP)-based UBM system∗.

• First build a generic Gaussian Mixture Model (GMM) on all of speech
lumped into one class.

• This can be quite big (e.g. 1000 mixtures).

• Then MAP adapt this to each acoustic state (adapting the means, vari-
ances and weights). Recall: MAP update uses τ to control backoff to
prior.

• It is possible to use the tree structure of the phonetic context decision
tree to improve the smoothing: repeatedly back off to parent nodes.

• Training can proceed for several iterations (MAP backs off to parent
nodes, not prior model).

• It was helpful to use separate Semi-tied Covariance transforms for each of
1000 “original” mixtures. (Hard to get much improvement from multiple
STC transforms normally).

• Original (unadapted) GMM can be used for pruning.

∗ “Universal Background Model based Speech Recognition”, by D. Povey, S.
Chu & B. Varadarajan, ICASSP 2008
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Maximum A Posteriori (MAP)-based UBM system: code and results

struct UBM_MAP_HMM{ // just the parameters.
int J; // #states.
int I; // #mixtures in GMM. Same for all states!
float **c; // [j][i]. Mixture weights. Index [J] for unadapted one.
float ***means; // [j][i][d]; index [J] for unadapted one.
float ***vars; // [j][i][d]; index [J] for unadapted one.
float ***stc; // [j][d][d]; STC transforms.
float *stc_logdet; // [j]; Determinants of STC transforms.

};

• Improvement, on a Broadcast News system with 1300 hours of test data,
was 16.2% WER to 14.8% WER (fully adapted: VTLN, constrained
MLLR, MLLR).

• This may overstate the improvement because although the baseline was
extremely large (1 million Gaussians), experiments on a VTLN-only setup
showed that 1% absolute improvement was possible by going to 2 million.

• “Real” improvement may have been as little as 0.5%, exact value doesn’t
matter because discriminative training would not have worked on this
system (too many parameters).
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Subspace UBM system: most basic version

• Different structure: adapt only means and weights, in a subspace.

µji = Miv
+
j

Weights: wji =
exp(wiv

+
j )∑

i exp(wiv
+
j )

.

• Notation v+
j means appending a 1 to vector vj.

• Dimension of vj is “subspace dimension” S. (This is the dimension of a
subspace of the mean parameter space which is of size DI).

• In place of STC transforms, use full covariances for each index i in the
original GMM, shared across states.

p(x|j) =
I∑

i=1

wji N (x;µji,Σi)

• Parameters are vj,Mi,wi,Σi.
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Subspace UBM system: most basic version (declarations)

struct BACKGROUND_GMM { // Background GMM (UBM) used for pruning only.
int D; int I; // feature-dim; #mixtures.
float **diag_vars; // Diagonal covariances. First stage of pruning.
float ***vars; // Inverse full covariances. Second stage of pruning.
float **means;
float *weights;
float *logdets; // of full covariances.

};
struct SUBSPACE_UBM_HMM{ // just the parameters.

int J; // #states.
int I; // #mixtures. Same for all states!
int S; // Subspace dimension
float ***vars; // [i][d][d]. Inverse full covariances per i.
float *dets; // determinants of variances.
float **v; // [j][s]. State-specific vectors v_j.
float ***M; // [i][d][s]. Projection matrices M_i.
float **w; // [i][s]. Weight-projection vectors w_i.

};
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Basic Subspace UBM system: fast likelihood evaluation

• System has 1000 full-covariance Gaussians per state: too slow? Not if
we do it cleverly.

• First use “background model” to pre-prune index i from 1000 to, say,
10.

• Then can make each Gaussian computation as fast as O(S) by appropri-
ate precomputations:

log p(xt|j, i) = logwji − 0.5
(
2πD + logdetΣi + (xt − µji)

TΣ−1
i (xt − µji)

)
= nji + ni(t) + zi(t)

− · vjkm

nji = logwji − 0.5
(
2πD + logdetΣi + µT

jiΣ
−1
i µji

)
zi(t) = MT

i Σ−1
ki xt

ni(t) = −0.5xT
t Σ−1

i xt + zki(t)(D+1)

• The per-Gaussian normalizers nji actually take much more memory than
the vectors vi, but still much less than the expanded means µji.
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Basic Subspace UBM system: fast likelihood evaluation (code)

void compute_likes(int D, float *x,
vector<int> j_idx, vector<float> &ans, // j_idx=states needed.
BACKGROUND_GMM *background, SUBSPACE_UBM_HMM *ubm, float **nji){

vector<int> i_idx; float *tmp = new float[D], *zi = new float[D+1];
prune_on_frame(D, x, background, i_idx); // i_idx is pruned indices i.
for(int n=0;n<i_idx.size();n++){

int i=i_idx[n];
m_v_prod(tmp, ubm->vars[i], x, D,D); // tmp=\Sigma_{ki}^{-1} x_t
m_v_prod_transposed(zi, ubm->M[i], tmp, ubm->S+1, D); // ...
// zi= transpose(M_i)*tmp
float nit = -0.5*vmv_prod(x,ubm->vars[i],x,D,D) * zi[D]; // n_i(t)
for(int m=0;m<j_idx.size();m++){

int j=j_idx[m];
float loglike = dot_prod(ubm->v[j], zi, D) + nit + nji[j][i];
ans[m] = log_add(ans[m], loglike);

}
}

}
}
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Basic Subspace UBM system: optimization summary

• Optimization for vectors vj (ignoring the effect on the weights wji) is
a little like Speaker Adaptive Training with MLLR: need solution of a
quadratic auxiliary function.

• Do not have to store quadratic term in auxiliary function: can work it
out from counts.

• Optimization for projections Mi is like MLLR estimation in a shared-
covariance system (because the is only one covariance Σi for each index
i: more efficent than normal MLLR.

• The parts of the auxiliary function that relate to the weights wji (con-
trolled by vj and wi) are optimized by making a quadratic approximation

to the nonlinearity of: wji =
exp(wiv

+
j )∑

i exp(wiv
+
j )

.
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Basic Subspace UBM system: auxiliary function

• If we define Γ as all the system parameters, auxiliary function is:

Q(Γ; Γ̄) =
∑
t,i,j

γji(t; Γ̄) log(wji N (xt;µji,Σi))

• The “occupancy” 0 ≤ γji(t; Γ̄) ≤ 1 is the posterior of state j, Gaussian i
on time t (given current model parameters Γ̄).

• We will usually write this as just γji(t) (dependency on Γ̄ is implicit)

• This can be decomposed as

γji(t) = γj(t)
wjiN (xt;µji,Σi)∑
i wjiN (xt;µji,Σi)

i.e. the posterior of the state times the probabilty of the Gaussian in the
state.

• 0 ≤ γj(t) ≤ 1 would be derived from a Forward Backward algorithm, or
(more efficiently) from Viterbi (single-best-path) alignment.

• Code on next slide assumes state posteriors γj are given by Viterbi align-
ment of a system (so they would all be zero or one).
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Basic Subspace UBM system: computing auxiliary function weights γji

// i_idx, i_posterior are the output, a subset of indices i with posteriors.
void compute_posteriors(int D, float *x, vector<int> &i_idx,

vector<float> &i_posterior, BACKGROUND_GMM *background,
SUBSPACE_UBM_HMM *ubm, int j, float *nji, float min_post=0.01){

vector<int> i_idx_tmp; float *tmp = new float[D], *zi = new float[D+1];
i_idx.clear(); i_posterior.clear(); // clear output arrays.
prune_on_frame(D, x, background, i_idx); // i_idx_tmp is pruned indices i.
float state_like=-1.0e+10; i_posterior.resize(i_idx.size());
for(int n=0;n<i_idx.size();n++){

int i=i_idx[n];
m_v_prod(tmp, ubm->vars[i], x, D,D); // tmp=\Sigma_{ki}^{-1} x_t
m_v_prod_transposed(zi, ubm->M[i], tmp, ubm->S+1, D); // ...
// zi= transpose(M_i)*tmp
float nit = -0.5*vmv_prod(x,ubm->vars[i],x,D,D) * zi[ubm->S]; // n_i(t)
float loglike = dot_prod(ubm->v[j], zi, ubm->S) + nit + nji[i];
i_posterior[n]=loglike; // contains log-likes right now.
state_like = log_add(state_like, like);

}
int m=0; for(int n=0;n<i_idx.size();n++){ // compute posteriors and prune.

float post=exp(i_posterior[n]);
if(post>=min_post){

i_idx[m]=i_idx[n]; i_posterior[m]=post; m++;
}}

i_idx.resize(m); i_posterior.resize(m);
}}
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Basic Subspace UBM system: optimization of vectors vj: accumulation

• First demonstrating optimization of vectors when weights do not change
with vj (e.g. with wji = 1

I
).

• Auxiliary function in V = v1 . . .vj (ignoring effect on weights and constant
terms):

Q(V) = −0.5
∑
t,i,j

γji(t)(xt − µji)
TΣi(xt − µji)

Q(V) = −0.5
∑
t,i,j

γji(t)(xt −Miv
+
j )TΣi(xt −Miv

+
j )

• Defining the data-count γji =
∑

t γji(t),

Q(V) =
∑

j

K ′ + v+
j

T
kj − 0.5v+

j Gjvj

, with kj =
∑

t,i M
T
i Σixt and Gj =

∑
i γjiMT

i ΣiMi.

• Statistics needed are kj and the data-counts γji (Gj is worked out from
counts).

• Very similar to Speaker Adatptive Training for MLLR (but update is more
complicated due to offset (·+).
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Basic Subspace UBM system: optimization of vectors vj (no weights):
update

• Auxiliary function in one vj is: Q(vj) = v+
j

T
kj − 0.5v+

j Gjvj.

• Equivalent to Q(vj) = vj · (k−j − g−
j(D+1))− 0.5v+

j G−−
j vj,

where x− means x with last element removed, gj(D+1) is last row of Gj,
and M−− is M with last row and column removed.

• The superscripts ·+, ·− and ·−− are my own personal notation, not stan-
dard!

• Solution is vj = (G−−
j )−1

(
k−j − g−

j(D+1)

)
• The actual update we do takes into account the effect on the weights!

14



Basic Subspace UBM system: optimization of matrices Mi

• The projection matrices Mi are a little similar to MLLR matrices that
transform means.

• Because each variance Σi is full but each Mi is only associated with one
Σi, the optimization of Mi is the same as optimizing MLLR on a system
with a single, shared full covariance matrix.

• The accumulation and update are very simple. The only statistics we
need are, for each Mi, a matrix Ki which is the same dimension as Mi and
dictates the linear term in the (quadratic) objective function. This relates

to the matrix K =

 ki
...

kD

 which we normally accumulate in MLLR.

15



Basic Subspace UBM system: optimization of within-class variances Σi

• Estimation of the within-class variances Σi is trivial

• Just use the weighted scatter of the data points around the means µji.
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Basic Subspace UBM system: optimization of weights wji, introduction.

• The sufficient statistics to optimize the weights wji are just the summed
data counts γji.

• But the weights wji are not parameters of the model. They are controlled
by the state-specific parameters vj and the globally shared paramters wi:

wji =
exp(wiv

+
j )∑

i exp(wiv
+
j )

.

• The reason we do this is to reduce the number of parameters in the
model: why waste 1000 parameters per state on the weights when we are
using only e.g. 50 for the means and the weights are typically considered
“less important” than the means. (E.g. in speaker ID tasks, weights are
not estimated at all).

• The terms in the auxiliary function that relates to the weights are as
follows

Q(Γ; Γ̂) = . . . +
∑
i,j

γji

(
wiv

+
j − log

∑
i

exp(wiv
+
j )

)
.

• There are two further steps that we use to get this into a quadratic form
that is easily optimized (see next two slides).
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Basic Subspace UBM system: optimization of weights wji, step one.

• We are trying to manipulate the auxiliary function terms in the weights
into a quadratic form.

• The first step uses the inequality 1 − (x/x̄) ≤ − log(x/x̄) (which is an
equality at x = x̄).

• The aim here is to get rid of the log in the expresssion log
∑

i exp(wiv
+
j )

• The letter x in the inequality corresponds to
∑

i exp(wiv
+
j ).

• We can use this to derive the new auxiliary function

Q′(Γ; Γ̂) = . . . +
∑
i,j

γji

(
wiv

+
j −

∑
i exp(wiv

+
j )∑

i exp(w̄iv̄
+
j )

)
.

.

• This is related to the old auxiliary function Q by the same kinds of
inequalities that our normal Q is related to P, and we know if we increase
calQ′ we increase Q.

• This step involves discarding some terms in the old parameters Γ̂ that
will not affect the optimization.
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Basic Subspace UBM system: optimization of weights wji, step two.

• We want to get rid of the exponential function in Q′(Γ; Γ̂).

• We do this with a quadratic approximation: a quadratic approximation
to exp(x) around x = x0 is: exp(x) ' exp(x0)(1+(x−x0)+0.5(x−x0)2).
This is just the second order Taylor series around x0.

• We won’t write down the altered auxiliary function Q′′(Γ; Γ̂) at this point
because the expression is not very pretty.

• However, given Q′′(Γ; Γ̂) it easy to optimize vj or wi.

• It is important to note that going to the maximum of the auxiliary func-
tion Q′′(Γ; Γ̂) no longer guarantees increasing the original auxiliary func-
tion Q(Γ; Γ̂).

• However, we can measure the value of Q(Γ; Γ̂) because we have the
sufficient statistics γji, so if it decreases we can take, say half the proposed
change and check again.

• The optimization for wi involves just the steps mentioned here.

• The optimization for vj also involves terms relating to the means, but
those terms have the same (quadratic) form so we can simply add the
two types of terms together.
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Basic Subspace UBM system: optimization, overall process.

• There are various different kind of parameters to optimize: the state-
specific vectors vj, the projection matrices Mi, the within-class variances
Σi, the weight-projection vectors wi.

• The derivation of the auxiliary function would suggest to optimize these
separately, e.g. all the vj on one iteration, all the Mi on the second, all
the Σi on the third, etc.: in general, it is hard to prove that the process
will converge if we do them more than one at a time.

• In practice it is possible to optimize them all simultaneously.

• Sometimes instabilities occur (especially in later versions where we intro-
duce even more parameters) but they can be controlled by introducing
a constant 0 < ν ≤ 1 that interpolates between the new and updated
parameters
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Basic Subspace UBM system: initialization.

• In my previous experiments with this type of system, the initialization was
based on storing mean statistics µij for each i and j, based on Gaussian
posterior probabilities derived from the “background model”.

• I.e. using γij = γiγj where γi is the posterior of Gaussian i in the “back-
ground model” and γj is the (zero or one) state posterior based on the
alignment of a baseline system.

• This allowed many iterations of the types of update described above, in
memory, without re-accessing the data. It is possible to start this from
a random initialization of the vectors.

• The reason why keeping these large statistics in memory is not possible
in general is twofold:

1. We need to discard means with small counts because of memory
constraints, which leads to an approximate answer

2. Later we will introduce “substates” which increases the amount of
memory we would need.

• For simplicity, probably the way we will do it during this workshop is
skip the special initialization phase but initialize the parameters Mi in a
nonrandom way so that the vj just correspond initially to an offset on
the means.
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Basic Subspace UBM system: initialization and training of of “background
GMM”

• In the previous slide, we mentioned that the initial posteriors are based
on the posteriors of the “background GMM”.

• This is a generic GMM that we have trained on all of speech.

• It is also used for pruning.

• In previous experiments, it worked best to initialize this by clustering
all the Gaussians in a trained system; this was then trained for a few
iterations on speech data.

• This can also optionally be further trained during training of the rest of
the model parameters, based on posteriors of Gaussians in the model
with the same index i.
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Subspace UBM system: (previously used) extensions to the basic model

• Introduce “sub-states” 1 ≤ m ≤ Mj within each state j. Each sub-state
has its own vector vjm and its own weight cjm. Note Mj has no connection
to Mi.

• Analogous to a mixture of Gaussians– except each vector vjm expands
to a mixture of Gaussians so it is a mixture of mixtures of Gaussians.

• Introduce “speaker factors”:

µ(s)
jmi = Miv

+
jm + Niv

(s)+

• The matrices Ni are a separate set of projection matrices that define a
“speaker subspace”.

• The vectors v(s) are speaker-specific subspace vectors that can be esti-
mated with very little data (only about 50 or so parameters).
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Subspace UBM system: prior results

• On the next page we will show three tables of results.

• The data-sets were:

– Small English system (50 hours of Broadcast News)

– Large Arabic system (about 1000 hours)

– Large Mandarin system (about 700 hours)

• For the English system we show results with and without discriminative
training.

• For the large systems we show results only with discriminative training
(we did model-space discriminative training for the “Subspace based”
system, and model and feature-space discriminative training for the base-
line).

• Trends were: much more improvement with small dataset, more improve-
ment with Maximum Likelihood than discriminative training.

24



Subspace UBM system: prior results (tables)
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Subspace UBM system: further extensions

• There are some extensions to the approach described above that we
intend to try during the workshop (we will probably think of more too).

• One is to have a mixture of the entire model described above, so we
introduce an extra index k, representing coarse regions of acoustic space.

– Each state j has at least one mixture for each k.

– This modeling approach is more memory efficient for systems with
multiple mixtures (fewer normalizers to store).

– We can have a separate constrained MLLR transform for each k.

• Another extension regards contrained MLLR (speaker adaptive feature
transforms):

– We have worked out a method for doing a subpace version of con-
strained MLLR, that should be efficient. It requires fewer per-speaker
parameters to estimate.

– This makes it easy to work out multiple constrained MLLR matrices
(i.e., for each k) with relatively little data.

• It is possible to train the generic (non-state-specific) parameters using
multiple domains or languages and the state-specific ones specific to the
domain or language, which may make better use of out-of-domain data.
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