A TUTORIAL-STYLE INTRODUCTION TO SUBSPACE GAUSSIAN MIXTUR E MODELS
FOR SPEECH RECOGNITION

Daniel Povey*

Microsoft,
One Microsoft Way, Redmond, WA 98052

dpovey@ni crosoft.com

ABSTRACT and for pruning. Section 8 describes the initializationta actual
model. Section 9 describes the process used for fast ldadileval-
uation given the main model (this is needed in training astirtg).
Section 10 describes the various statistics accumulationegses
required. Section 11 describes the various kinds of modehiep
The derivation and equations for the constrained MLLR estiiom
approach we are using is in Sections 12 and 13; Section 14 aumm
rizes the procedures used when applying these to the modateve
using here.

Appendix A describes an algorithm for fast computation @f th
top eigenvectors of a scatter matrix, which is useful in sténgation
of parameter subspaces for constrained MLLR. Appendix B con
tains a proof related to singular value decomposition wiiehuse
Index Terms— Speech Recognition, Universal Background in other parts of the document. Appendix C describes a tecierfor

This is an in-depth, tutorial-style introduction to thehaimues
involved in training a factor analyzed style of speech redton
system. Algorithms are explained in detail, with an emphasithe
how-to rather than the derivations. The recipe describeel iséoth
an extension to and a special case of the prior work we have.don
Changes include a simplification of the procedure used t@lizie
these models, the introduction of “sub-models” which samemory
and may have modeling advantages, an extended approadtido fa
based speaker adaptation that uses the sub-models, anthanisec
to estimate a subspace-constrained version of ConstraithedR
transforms in this framework.

Model, Factor Analysis using prior probabilities with the model we describe, whighhave
moved to an appendix to avoid cluttering the main document: A
1. ABOUT THIS DOCUMENT pendix D describes a probability model for offsets from thesam of

a distribution, which is used in our model as part of a prictritu-
This document was originally created by Dan Povey in the mont tion. Appendix E describes an algorithm for Maximum Likeldd
leading up to the Johns Hopkins summer workshop on speech prelustering of a number of Gaussians into clusters, eaclesepted
cessing, for the research group named “Low Development,Cosby a Gaussian. Appendix F contains derivations of some flasnu
High Quality Speech Recognition for New Languages and Do-used in the main text. Appendix G describes procedures foi-ma
mains”. It is intended to serve as a tutorial-style intrdthreto the mizing auxiliary functions involving matrices of reduceahk. Ap-
use of subspace GMMs for speech recognition. It has beenghro pendix H describes a process for limiting the condition ofatnx.
various extensions and revisions, and even during the Wworks Appendix | describes a more general process for flooring sgthm
various parts of it have been changed in order to fix errorsoglis ~ ric matrices. Appendix J describes how to estimate and us®a p
ered by other workshop participants and modify update féesu distribution over the projection matrices estimated irs thcheme.
and the corresponding derivations where problems werevised. Appendix K describes a method for renormalizing the phaneti
Also some parts of the document have been changed in order to
be compatible with the way we have actually implementedehes 3. NOTATION
techniques (for instance, not using “offset terms” whiamglifies '
the mathematics). Particular thanks go to Lukas Burget ama\ \ye ,se some non-standard notation to simplify the equatithis

Ghoshal, who found and helped to fix a number of problems. is summarized here:
2. INTRODUCTION vt Vectorv extended with a 1,

v1
Section 3 describes some nonstandard notation that we séll u
throughout the rest of the document. The model is introduned ie.
Section 4, where we describe first the basic idea and theratiwig Un
extensions which we intend to build on top of it. Section Scdiées L]

v~ Vectorv with its last element removed

the relationship between this method and previous work.
Section 6 describes in general terms the process of trathisg ~ M Matrix M with an extra last row equal 0 0 ... 0 1]

type of model and discusses the kind of code architecturemis€ ~ M™° Matrix M with an extra zero row appended

age to support it. Section 7 discusses the initializatiothefGaus- M~ Matrix M with its last row removed

sian Mixture Model (GMM) that is used to initialize the mairodel M™" Matrix M with its last row and column removed

M~¢ Matrix M with its last column removed

*Thanks to Lukas Burget, Arnab Ghoshal, Rick Rose and Geo#ig@w
for comments and suggestions.

4. SUBSPACE GAUSSIAN MIXTURE MODEL subspace GMM system is less than one tenth of that in the horma
GMM system. For this reason, we extend the model to include mi

In this section we describe the modeling approach we areyusin tures of sub-states.
Rather than immediately write down the model, we build upame
plexity starting from the basic idea. This should enableréaeler to
distinguish between the core ideas and the features thathwdt on
top. Section 4.1 describes the basic model, which is basedsab- The yse of the “offset terms” implied by is optional; the only
space representation of the mean parameters of a shared BMM s 5qvantage of constraining the last element dfto be 1 is that we
ture. Section 4.4 describes the addition of sub-stateshwhvolves go not need to estimate that parameter, and by doing awaythwith
having a mixture within each acoustic state of the basic M@Ee- constraint we only have to estimate one more parameter pgapf

tion 4.5 describes the addition of “speaker factors”, wiidkes the 5q This simplifies the equations. Without the offset, we lddave:
model mean a sum of two mirror-image terms, one coming fram th

4.3. Omitting the offset terms

acoustic state and one from the speaker. Section 4.6 desdfik i = Mv; (4)
introduction of “sub-models”, in which the model descriledubve T

is split up into a number of different models, each applying par- wy = . exp(w, v;) 7 (5)
ticular general region of acoustic space, and likelihoodatained 2= exp(wirTv;)

by summing over the sub-models. (6)
4.1. Basic model and this would affect the dimensions ®df; which would now have

dimensionD x S, and of w; which would now have dimension
In this section we describe the most basic form of the modéhout 5. |n the following, we will show the equationsith the offset terms
speaker adaptation or sub-states. We use the ihdexi < I for putwill make clear which terms and operators would disapjiee
the Gaussians in the shared GMM (e..= 750), and the indeX were not using the offsets, by putting all offset terms anetafors in
1 < j < J for the clustered phonetic states (e.j.= 8000 for a red (this may render as light gray when printed in black anitayh
reasonably typical large vocabulary system). Let the feadimen- For example, we would have:
sionbel < d < D, e.g. D = 40, and let the subspace dimension

bel < s < S,e.g. S =50, with S < ID. The “subspace” of Wi = Mivj,)

dimensionS is a subspace of the total parameter space of the means

of the GMM, which is of sizel D. . with M; € RP*5+Y 50 removing everything in red would give us

For each statg, the probability modeb(x|7) is: the form of the equations without the offsets.
I
p(xl) = D wiN(xp,) (1) 4.4. Subspace mixture model with sub-states
=1
The subspace mixture model with sub-states is the same agim E
pii = Miv) 2 P iy

tions (1) to (3) except each state is now like a mixture ofestatach
exp(w] v) 3) statej has sub-states numberéd< m < M, with associated vec-
- . . . ;
" + tors v, and mixture weightg;,, with S>27 ¢;,, = 1; we can
write out the model as:

Sy exp(wi V)

Thus, each state has a shared number of mixtures (e:g.,750).

The means vary linearly with the state-specific vestpr We use M; !

v} to represent the same vector extended with a 1, to handle con-) = D cim Y wimiN (5 pmi, i) ®)
stant offsets. The log weights prior to nhormalization alaoyMin- m=1 i=1

early withv;. The parameters of the system are the mean-projection Wimi = Mivjtn 9)
matricesM; € RP*(5+D | the weight-projection vectorss; € T+

R the variances; € RP*P, and the state-specific vectors Wimi = CXP(Wi Vim) (10)
\Z2KS §RS. Zf’:l exp(wiT,ij)

It is useful to think about the sub-states as correspondingaus-
sians in a mixture of Gaussians, and as we describe laterseve u
To give the reader a feel for the number of parameters indplve variant of a familiar Gaussian mixing-up procedure to iasethe
for the values ofl, J, D and S mentioned above the total number number of states. This model is in effect a mixture of mixtuoé
of parameters would be, from most to fewest parameters: mearaussians, with the total number of Gaussians in each stitg b
projections,] D(S 4 1) = 750 x 40 x (50 +1) = 1.53 x 10%; vari- equal tol J.,. Clearly this large size could be expected to lead
ancesiID(D+1) = B240x41 — 0 615x 10°; state-specific vec- to efficiency problems. Later we will show how despite thikeli-
tors,.JS = 0.4 x 10°; weight-projections/ S = 750 x (50 + 1) = hoods given this model can be computed in a time similar ta@ab
38.25 x 10°. Thus the total number of parameters2i§8 x 10%, diagonal mixture of Gaussians.

and most of the parameters are globally shared, not statgfisp

For reference, a typical mixture-of-Gaussians systemmopéd on 4 5 gypspace mixture model with speaker vectors

a similar amount of training data might have 100000 Gaussiian

total, each with a 40-dimensional mean and variance, whidsg Another useful extension to the basic subspace GMM framevgor
us8 x 10° parameters total, more than twice the subspace GMMa technique that uses speaker vectors, where each speaiiebe
system. Note that the quantity of state-specific paramétetse described by a speaker vectot®) of dimensionT” (e.g. we might

4.2. Discussion of model size

useT’ = 50, the same as the subspace dimensipnThe projected
mean now becomes:

n$), = Mivj, + Nov® ', (11)
o) Niv“)+ becomes a speaker-specific offset to means; for
speakers. We extend the speaker vectef®) with a 1 (assuming
we are using offsets) o™ for symmetry and to introduce the
potential for code sharing, but the offset term (if used)eidundant
with the one inv;rm. In previous work [1, 2], we omitted the offset

on the speaker vector. We do not make the mixture weightsndepe

dent on the speaker factor: this is for efficiency reasons esmbles
the speaker adaptation to be implemented as a feature-effaee
for each Gaussian index The use of separate subspaces for eac
speech state and speaker is analogous to the “factor asiafysi
proach used in speaker identification [3]. Because the numibe
parameters to be estimated per speaker is so small, in gragt
have actually been estimating these vectors for each sjgegaohent

of each speaker.

4.6. Sub-models

A further extension that we can try is a mixture of Subspace\aM
which we call a mixture of “sub-models”. Unlike the modifica-
tions described above, this has not been implemented befdrie
would involve initially partitioning thel Gaussians in the back-
ground GMM into clusterd < k < K, each of sizd}. Then, we
essentially duplicate the model above for each clustand sum
over the clusters. In place of Equations (8) to (10) (but gighre
speaker-factor modification of Equation (11)), we now have:

k A/Ijk Iy
PXGs) = DD Cikm D wikmiN (5 155, D) (12)
k=1m=1 i=1
s s)t
T+
exp(WiiVim
o (Wi Vjm) 7 (19)

T
Doy exp(wi, ij’m)

where the constraint on the mixture weights is now that
SE, S Mk cikm = 1. Now we haveK speaker vectors instead

m=1

of just one. The main advantage of the use of sub-modelsti®tha

because both of those techniques are focused on speakéataatgp
they both attempt to compactly represent the most signifitiamen-
sions of variation between speakers. In this work, we us@aim
techniques to represent the variation between phonetechsates,
and only secondarily apply the same ideas to modeling speakie
ation. The best reference point for this work is probablyeddund

in the speaker identification literature. The two-factopmach of
Equation (11) is very similar to factor analysis as used inhf¢8
speaker identification. In that work, the two factors aregheaker
and the channel, with the channel being a “nuisance factarbur
case the factor of interest is the phonetic state and thesénce
factor” is the speaker plus channel. Our model differs in mler

of respects from the one used in [3]. We model the weights ®f th
hshared Gaussians, which is not generally done in speakatifida-
tion. But we do not attempt to marginalize over any of the peaters

as is done in [3], which we believe would make very little difince
and would make the model hopelessly inefficient. We also do no
include the “diagonal term” used there, which essentiathoants

to putting a Maximum A Posteriori (MAP) estimation of thelfaét

of mean parameters of the GMM on top of the subspace. Thisdvoul
introduce a potentially vast number of parameters whichlevbave

to be heavily pruned in order to fit in memory, and would signifi
cantly complicate training. Other extensions which we hadded

to the basic scheme include “sub-states” and “sub-modatsl,we
have also done some work to devise a subspace form of coreirai
MLLR estimation and integrate it with this type of model. Tdwti-
mation process and the methods used for fast computatiouiffisr.

Our own previous work along these lines started with [6] in
which we used a shared structure of GMM together with Maximum
A Posterior (MAP) estimation to model speech states. Tleestieic-
ture of the clustered speech states was used in the MAP ¢istima
That approach gave substantial improvements with only Mag
Likelihood training, but used a very large number of pararet
which would have made discriminative training infeasible. [1]

(a book chapter, written but not yet published at the time iting)

we give a few more results on that work and also the approach we
are currently describing. We favor the current approacbesinhas

a much smaller number of parameters so it is feasible to ete¢a
discriminatively trained systems (we report discrimively trained
results in [1]), and it gives better results than the MAPeobscheme
even under ML estimation when the amount of training datans |
ited. The technical details which were omitted in [1] beeao$
space constraints are given in the technical report [2]. détails of

the one hand it reduces the memory required to train and @ecod;aining are given there in a less complete form than theeotitocu-

and on the other hand it allows us to build larger models fer th

same amount of memory. It also gives us a choice between ma

ing the speaker vectonslis) all the same, or allowing them to be
separate which allows us to train more parameters per speaic
it offers a convenient way of applying multiple constrainddLR
transforms. We envisage using a relatively small valu&ofor ex-
ample less than 20. Note that &5 approached the basic model
loses its power, since we no longer have any correlationsadein
if there is only one Gaussian in each “sub-model”. Howevewvas
will describe later we can still make use of the correlatiansoss
sub-models through the use of an appropriate prior over etors
Vjrm IN @ state.

5. RELATIONSHIP TO PREVIOUS WORK

In terms of speech recognition work, this technique propabk the
most similarity to Eigenvoices [4] and Cluster Adaptiveifiiag and
Extended SAT [5]. However, there is a very significant défece

ment, and describe a slightly different recipe than whabisrghere,
l&'orresponding to the experiments we reported in [1]. Thapeein-
cluded discriminative training, but did not include subdats, the
associated use of priors, multi-class constrained MLLRhergub-
space version of constrained MLLR. It also used a more caatad
model initialization scheme than what we describe here, usmsdi
MLLR which is very inefficient when combined with these typs
models (and gives very little additional improvement).

The results reported in [1] showed that this type of modeble a
to beat a conventionally structured HMM in an evaluatiortisgt
(i.e. comparing against the very best system we can build)otoly
by a very small margin given the recipe we were using at the.tim
Based on results we reported there on smaller amounts ofrigai
data (50 hours, as opposed to thousands of hours), we bievbe
advantages of this approach will be much clearer when thetifya
of training data is relatively small. This approach alscegivmore
improvement when no discriminative training is done, whigjain
is relevant to an environment where resources are limitetdlitdnas a

large proportion of its parameters not tied to any speedh,stdnich
enables the use of out-of-domain data in a natural way, @.éelp
train those generic parameters.

6. SUMMARY OF TRAINING OF SUBSPACE GMM

The training of this style of model is more complicated thamnal
GMM training as the model has more different types of paranset
In this section we attempt to give an overview of the process o
the more detailed treatment that will be given in later seti The
basic idea is that after initializing all the parametershefinodel in a
sensible way, we repeatedly pick a parameter type and q@ithat
parameter given the others. The optimization of parameédess
place through standard Estimation Maximization approscBeme
types of parameters can be optimized simultaneously, ané san-
not. We do not specify the exact order in which parametersildho
be updated; this is a matter for experimentation.

6.1. Overview of re-estimation

The typical procedure for model initialization and traigiwill be:

Initialize background GMM.
Initialize model.
For each iteration:
Choose the subset of types of parameters we will update.
For each speaket:
Optionally, reset the speaker factors and transforms o zer
For zero or more speaker-adaptation iterations:

We will probably do these two kinds of re-estimation on safar
passes over each speaker rather than trying to combine thigem.
have a choice as to whether to reset the speaker factorg aradis-
forms to zero each time we do the update of the global parasete
S0 we can start estimating them from scratch each time. Toigdv
probably not reach as good a training likelihood but it migéia bet-
ter match to test time when we will presumably do a small numbe
of iterations of adaptation for each speaker.

There are also globally shared (non-speaker-specific)mpara
ters that relate to the use of constrained MLLR with paransib-
spaces. They relate to the framework for constrained MLLR&s
tion which will be described in Sections 12 and 13. They are:

e |nitialization of pre-transform and mean scatter for speak
transforms: W, € R2*P+Y D e RP*P (diagonal),
and sub-model specific versioW§ \52, Dy.

e Computation of speaker transform basis elements: global ba
sis matricesW, € RP*(P+1 1 < b < B, and sub-model
specific basis matricedv (")

These parameters will be properly introduced starting ictiSe 12.
Unlike the other globally shared parameters they are ngestuto
any form of iterative re-estimation but are estimated justeo typi-
cally after at least a few iterations of model estimation.

6.3. Constraints on combining updates

There are certain constraints on which of the updates abeveaw
combine on a single iteration. The only practical probleroives
the first three items in the list above. Theoretically, if wedate
any of the three we cannot show that the update for any othtieof

Accumulate either speaker-factor or speaker-transform three will increase the data likelihood, given the updatenfdae we

statistics.
Do the appropriate update

use. We believe that practically speaking we can combinevampf
them, or any three if we introduce an arbitrary consiart % that

Accumulate the appropriate subset of types of global sizis interpolates between the original parameter values andptated

Update the selected types of parameters
Optionally do “mixing up”- increase the number of sub-state
Optionally increase the subspace dimenssoor 7'.

6.2. Types of re-estimation

Here we review the types of parameters we will be re-estirgati
this model and discuss which of them we can combine on the sal
iteration.

The types of model parameters to be re-estimated (exclymding
rameters relating to constrained MLLR) are:

o Model vectors and weights; ., € R° andc;jim € R
e Model projectionaM;,; € RP*(S+1

e Speaker projectiondl,; € ®RP*T+1

e Weight projectionswy; € ®°°!

e Within-class varianceX, € RP*P

e Background model means,; € R” and variance&y; €
RP*P and weightsoy; € R.

There are also per-speaker parameters; these relate tkespea

adaptation and are not normally considered part of the model
e Speaker factors(” € RT

e Speaker transforn&v(”) ¢ RP*(P+1)

ones, i.e. multiplies the step size by Experience seems to bear
this out. The reasoning is as follows. All of these types alatps
are essentially finding the solution of a quadratic objecfinction.
When we combine several such updates, the danger is thatafome
the different classes of parameters are doing the “sam@’tln
are effectively the same parameter, and are being updadadaay
times, leading to a learning rate that is too high. But anyatpdhat

is less than twice as fast as the “ideal” update that just gutoghe

m%nlution of the quadratic objective function, will stillmeerge. This

can easily be checked for a scalar quadratic objective ifumctt is
when we go above two “non-combinable” updates that we goatiei
practical problems. That is why we need to introduce a consta
that interpolates the old and new parameters to bring dowefflec-
tive “normalized” learning rate for any effectively shamgatameters
to less than two.

6.4. Warning on update order

In instances where we want to combine global updates, ftarice

we want to combine updating the vectars.,, with the model pro-
jectionsMy;, we will have situations where the update formula for
one parameter type refers to the other parameter type. ticdise it

is important in some cases to use the pre-update versior aftiier
type of parameter. The way we will make this clear is to useta ha
(e.g.) on newly updated parameters, so we might write something
that looks like:

(15)
(16)

Yi + Si
Zi + tiyi.

In this case the parameters with a hat will refer to the nexaéition’s the states were available these could be used, but it might\wbat
values and we will also understand that any types of paramete bias the resulting mixture towards silence which might regbod.
are not updating will just be copied from one iteration to text.

However we slightly abuse this hat notation at times; we tmiito 711 Clustering

explain in the text what is meant. We avoid introducing itera _

indices as we already have a proliferation of indices, amdesthe ~ We will use the notatiom; andX; to represent the means and vari-
updates have nested loops which would require an index fcir ea ances of the background GMM, far < ¢ < I with for example
loop. The reason why it is sometimes important to keep trdck o = 750 typically. The “background” GMM is a generic GMM that
whether the update refers to the old or updated version ofttner ~ has not yet been adapted to each state. We also define weights
parameter, is that in many cases the statistics for one paeawill ~ for each of the background Gaussians, but it may be best thesss
contain expressions that include the other parameter. Thiarthe ~ to be all the same, in order to encourage the Gaussians tetall g
update formula for one parameter we use the updated versthe o~ Similar occupation counts. In Appendix E we describe anrétiyn

other parameter it will be inconsistent with the one thatriplicitly to take a large number of diagonal Gaussians and cluster tihem
the statistics and the update becomes invalid. smaller number. We will use this to initialize the backgrd MM,

starting from a very large GMM that we obtain by taking all bét
Gaussians in a baseline system, putting all of them intoglesmix-
7. INITIALIZING AND PRE-TRAINING THE ture and renormalizing the weights to sum to one. At this poi@
BACKGROUND GMM cluster the Gaussians downkalusters, each represented by a diag-
onal Gaussian with a mixture weight, using the algorithncdbed
In the techniques we are using, we need to start out with arigene in Appendix E. We may choose at this point to make the mixture
Gaussian Mixture Model (GMM) that models all speech andsiee ~ weights all equal td /7 in order to encourage even distribution of
We call this the “background GMM”, although this term is used counts among the cluster centers during further trainingtet- we
in a slightly different sense than in the speaker identificatiter- will train these Gaussians as full-covariance Gaussianswabeled
ature. This GMM will typically have around 500 to 1000 Gaus- training data.
sians in it. In the recipe envisaged here, these would bedutri-
ance Gaussians but we also keep around the diagonalizédngers 7.1.2. Super-clustering
of them for purposes of Gaussian selection for fast comioutat)) .)
These Gaussians will be trained on some kind of baselinerfegt 1 "e use of sub-models as described in Section 4.6 requiaesvth
e.g. MFCCA+AA, possibly with adaptation applied (VTLN, con- cluster the first level of glqstered unssmns into anotbeellof.
strained MLLR). The initialization and phoneme-indepemtdee- ~ clusters, so we take_ the initidl Gaussians a_nd cluste_r them using
estimation of these Gaussians is something that we canpbt ap the same algorithm intd<” clusters each of sizé,. It might make
lot of theory to, and in this section we review the kinds oftgiques ~ Sense to do the super-clustering after re-estimation oBtgssians
that we intend to use for initializing and “pre-training’ettmixture ~ derived from the clusters as described in Section 7.2.
of Gaussians. The way this has been done in previous expasrise
to initialize a mixture of diagonal Gaussians by clusteting Gaus- ~ 7.1.3. Minimum size of clusters
sians from a baseline system, and to re-estimate them aofiali-
ance Gaussians on a subset of the data. We can also conaidigr
them from scratch, which may involve less code and does na@ ha
the dependency on the baseline system. Something else wig/can
(which has not been done before) is to alternate iteratibhaim-
ing this full-covariance GMM with iterations of re-estinvag con-
strained MLLR transforms per speaker. This means that ieetd
GMM will be a “speaker adaptively trained” GMM and we have a
natural way of computing the constrained MLLR transformthait
doing a first pass of recognition. The recipe we give in the oés
this document does not include this, although it does natire@ny
new techniques.

If we want to enforce a minimum size on clusters (e.g. whenwe d
super-clustering), it is probably most practical to enéothis in a
soft manner as follows. If the “soft” minimum cluster sizelis, we
can use a constait(e.g. k = 0.1/J) and add a “penalty term” to
the objective function of3>_, kmin(0, |S;| — M)?. Itis easy to
incorporate this into the algorithm above, as whenever wsider
moving a point from clusteito i’ we can calculate the value of this
extra term for; andi’ before and after the move, and add it to the
likelihood difference. This approach will stop the minimwhaster
size from being much smaller thad; it would be more complicated
to enforce a hard limit without either affecting the clusgerlity or
the speed of the algorithm.

7.1. Initializing the GMM from a trained, diagonal system 7.2. Re-estimating the background GMM prior to training

When initializing the GMM we start with a set of diagonal Gsiass The proposed recipe will allow the re-estimation of the tggokind
derived from a baseline HMM set. Let the Gaussians j < J GMM through E-M on some generic speech data, prior to trginin
have meangs;, weightsw; and diagonal covariances;. J will the model itself. We would have to do experiments to see veneth
typically be in the tens of thousands. Note that this not the same this actually helps. Note that we may also re-estimate tluk-ba
as theJ we have used previously to represent the number of clusground GMM during the main training procedure itself, buttis a
tered states. Let the dimension be< d < D (e.g. D = 40) so separate issue from what we are discussing here.

the mean’sd’'th dimension will bep ;4 and the variance’g’th di- The statistics accumulation for re-estimating the bacligdo
mension will beaf-d. (This is by convention that lower-caseefers GMM is quite easy and we will not write down the equations.
to a standard deviation so we need to square it to get a variaree Firstly, just a note on the fast computation of posteriorthback-
could equivalently use the notatigix;),,). The weightsw; could ground GMM. More details will be given in Section 9.2. As ribte
just be the weights of Gaussians within the individual HMMtes above, we store the diagonal inverse variances, and thénfingtwe

of the original system, renormalized to sum to one. If thentewf do on each frame is to compute the contribution of all the aliad

Gaussians’ probabilities to the frame’s likelihood andt $bhese to statistics format. Here we describe a much simpler apprdizah

select e.g. the 50 most likely indexesThe full-variance likelihood should reach the same likelihood values with only one or twicae

computation is then done using only these preselecteddadithe iterations over the data. Something that we should probiatsbsti-

full-variance statistics will be accumulated given theutésg pos- gate is whether it is important to first train to convergendthhe

teriors. A further stage of pruning takes place before weimedate ~ Gaussian posteriors of the original background GMM (whikfi

any statistics so that we can avoid using very tiny counts. fectively what we were doing with the old approach). This easily
The re-estimation formulae for the full variance Gaussiaress be simulated in the current setup by using very tight prumhiegms

too obvious to write here. Various extra details should beao when we prune using the background model, or by directlygsie

though. On each iteration of update we also store the didgdtize =~ Gaussian posteriors of the background model for the firstifemw

re-estimated variance, for purposes of fast likelihooduatioon. We ations of training which can be introduced as an option incibee

may set the weights to be all the same rather than using tmeator (j.e. sety;xmi(t) = N(Xf—ﬂlmim_)_)

formula. If we encounter an indexfor which the data count is too ! 2k N O B ,

small (.g. less than twice the dimensifnan easy thing to do is to The model initialization procedurg that we describe herqsdo

set the updated mean and variance for i’ndtexbe equal to there- not aI_Iow us to make th(_a subspace size grea‘ger than the deditur

. .) mension. To get larger sizes we can increase it at a lateg.stag

update version of the mean and variance for some other irdgXx,

i + 1. Choosing the pre-update value ensures that it will diffenf .

the post-update version of the selected other index. Fopstata ~ 8-2- Feature normalizing transform

sources, a significant amount of the data will be linearlyst®lent prior to the main model initialization we need to obtain attiea

and this can lead to singular covariance matrices. A S@EIBanS normalizing transform that will make the within class vaa unit

of preventing this is to floor the covariance matrices to ssmell 5 the between class variance diagonal. This will be usthiimi-
multiple of the global covariance. A process for flooring syetric tjajization of or in increasing the dimension of the projens Mj;

matrices is described in Appendix I. andNy;. It can be derived from the parameters of the background
GMM during the initialization of the main model. We compute

7.3. Overall order of preparing the background GMM the within-class and between-class variance as followsu(asg
Zle w; = 1):

Here we summarize the procedures we intend to use to prepare t
background GMM prior to training the main model. We descthm I
most general procedure with all the bells and whistles; sofitfeese Swo o= Z 0 % 17)
are optional (in particular, the speaker adaptation). i=1

1. Cluster the Gaussians a baseline model wusters; each o
cluster is a diagonal Gaussian. no= Z Wi i (18)
i=1

2. For several iterations (e.g. 3 or 4): .
(Z wmm?) —pp” (19)
i=1

e For each speaker: 3B
— Optionally re-estimate constrained MLLR trans-

form for the speaker We want a transformation that mak&%y, unit and diagonalizes
_ Accumulate statistics for full-covariance GMM 5. We first do the Cholesky decompositidy, = LL”, com-
parameter update puteS = L™ '3 3L~7, and do the singular value decomposition
. S = UDV7. SinceS is symmetric positive semi-definite this im-
e Update full-covariance GMM parameters. pliesS = UDUT (see Appendix B). It should be verified that
e Possibly set all weights to be the same after re-the diagonal elements dd and the corresponding columns &f
estimation. are sorted by decreasing eigenvalue. The transformationameis

)thenT = UTL~!. This transform should be recorded as it will be

e Make diagonal GMM parameters as (diagonalized
needed later.

copy of full ones.

3. Cluster thel Gaussians td< super-clusters. 8.3. Initialization if offsets are used
8. INITIALIZATION OF MODEL The mltlallzatlon in the case Fha&wg planto use offsetstmrvpctors
(i.e. if we are using terms like ™) is as follows. We require that

In this section we describe the initialization of the maindelo S < DandT < D.

M, = 1 (20)
8.1. Overview of model initialization 1

cs - 21
The procedure we describe here for model initializationiffeicnt I K (1)
from that described in [2]. In that document, we accumulateched vikr = 0¢€ RS, (22)
count and mean statistics over the product of HMM states Gaus- 1 o
sianindices and used them in an iterative update procedure in mem- My = [(T)1:D,1:S Mk } (23)
ory to update the model vectovs,, (there were no sub-modetsat N, - -1 0 o4
that time) and transformd1,; andw;, starting from random initial- ki = [()1:D,1:T ’ } (24)
izatic_)n_of the model vector_s. The disadvantage of _that an;_ntrgvas we = 0e RS (25)
that it involved a substantial amount of extra coding as quned
a whole parallel accumulation and update apparatus andadlgbar The notation(T‘l)lzD 1.g Means the firs§ columns of T L.

8.4. Initialization if no offsets are used

If no offsets will be used on the vectors we need to initialize

8.7. Initializing the speaker transforms

The speaker transformW,(j) are all initialized to the “default”

vectors to a nonzero value, and we choose to put this in the firgransform I, by which we mean the identity matrix of size

dimension. Note that below; is a unit vector in the first dimension,

e.[10...0]. Werequirethat < D+ 1andT < D.

My = 1 -
o % @27)
vien = e eR’. (29)
My = [ﬁm; (Til)lzD’lrsfl] (29
Nii = (T)ypor oo
wr = 0eR°. 5D

8.5. Increasing the subspace dimension

Itis possible to increase the phonetic or speaker subspaansion
after some iterations of training. Typically a subspaceatigion
slightly larger than the feature dimension is optimal. Wesalibe
this here as it is a similar process to the initializatiorth@algh it

would take place during model update. Note that we must wait a

least 2 iterations before doing this, as we need to wait femnthatri-

D + 1 with the last row removed. Typically the speaker transforms
would not be stored centrally but would be generated in mgfoor
each training or test speaker, so we would not have to do this.

9. LIKELIHOOD EVALUATION

In this section we describe the model likelihood computaticoce-
dure, which is needed both in decoding and statistics aclatiom.
9.1. Global and speaker-specific pre-computation

Prior to seeing any feature data there are some quantig¢séed
to be pre-computed. There are the per-Gaussian normalizers

Njkmi — log Cjkm + log Wikmi — 0.5(log det Xy
+D10g(27) + ki Zis Bskmi) 37)
with:
Wikmi = Mkivjknr (38)

cesM,; andNy; to deviate from their initial values: they do not do These normalizers take long enough to compute that it ishwdrite

so on the first iteration because the vectors have not yettbeieed
at that point.

storing them on disk, although they should be in a separatédim
the model parameters because they take up a lot of space and ca

Now we describe how to increase the subspace dimension if wgaSily be regenerated. In our previous work in [1, 2], theseew
are using offset features’™. Assuming we are increasing the model computed in parallel and combined into a single file on diskwH

subspace dimension frosito S’ (andS’ — S cannot exceed D), we
will have (if using offsets):

Mki = [mkl(l) e mkl(S) (T_l)lzD,l:(S’—S) m,“(S + 1)} 5

(32)
wheremy; (s) is thes’th column of Mx;, and withT as computed
in Section 8.2. We have a similar thing for the speaker tansf

N)ﬂ' = [n;ﬂ-(l) . n;ﬂ(T) (Til)lzD,lz(T’—T) nkji(T + 1)} .
(33)

At this point we also need to extend the model and speakeonrgect

Vikm andvf) by appending the appropriate number of ze§bs S
orT’'—T, and extend the weight projections,; by insertings’ —.S
zeros just before the final element.

If not using offsets, the step of increasing the dimensiena i
little simpler:
(34)

[Mki (Til)l;D,l;(SbS)]

[Nki (T71)1;D,1:(T’7T) } '

In this case we extend the model and speaker vestgrs andv
by appending the appropriate number of ze$6s- S or T’ — T, and

z
I

(35)

the weight projectionsvy; would also be extended by appending
S’ — S zeros at the end and not by inserting them before the fin

element.

8.6. Initializing the within-class variances

The within-class variances; are initialized to be equal to the full-
covariance background GMM'’s within-class variances

ever, we do not believe it is necessary to compute them inlphra
here since there are are certain steps in the update whibhwtiad-
ditional optimizations and approximations (which we hae¢ de-
scribed here) will take as long as computing the normaliz&tss
should be a manageable amount of time (a few minutes) as kng a
the models are reasonably small or are broken up via the umeef
models. We also need to compute the speaker-specific offsets

S S +
Ol(ci) = Nk’ivl(c)7

(39)
and the log determinants of the per-speaker constrained®ttans-
forms:

logdetgcs) = log|detA§€S)|7 (40)

whereA *) is the square part of transforkv {*).

9.2. Gaussian selection

The first stage in the process on each frame is Gaussianier|ent
which we use first the diagonal version of the background rreruts
then the full-covariance version, to select a set of Ganssidices to
limit our further computation. The set of selected indicdhve a set
of pairs(k,) reflecting the two level structure of the model with sub-
models. We have two forms of adaptation available: the caimsd

aMLLR transformsWS) and the speaker vectoxéf). We have a

choice as to whether to apply one or both of these to the twegsha
of Gaussian selection (diagonal and full). The mathemdtatew
assumes we apply both forms of adaptation to both phasethibut
can be experimented with.

Prior to Gaussian selection we pre-compute speaker adigated
tures for each sub-model indéx
Wkt (1),

xp(t) = (41)

During Gaussian selection we will also compute on the fly tie f
lowing quantity, which reflects the factor-based adaptatio

xei(t) = xu(t) — ol (42)

with 01(5) as computed in Equation (39).

The process of Gaussian selection is as below, with for el@amp

pruning parameter®*¢ = 50 and P = 10. Note that we have a
diagonal verS|on of the background model with mean and neeia

Note that typically these kinds of summations are done usifigg
add” function that computeg(a, b) = log(exp a + exp b) without
ever calculatingexp a or exp b directly, in case the floating point
range is too small.

10. ACCUMULATION

10.1. Pruned posterior computation

ae and ands ("% . This is primarily used as a speedup for the All of the forms of accumulation require us to compute pdster

full-covariance model and the mean potentially differsaagl as

over the individual Gaussians, each represented by theld-tf

the variance because we may train the two models with differe indices(j, k,7,m). This can be done using the state likelihoods

amounts of adaptation.

Fork=1... K,

Fori=1...I,, compute:

log pde8 (x(t), k, 1) = logdet(s) + log W . . .
+ 10g/\/'(xm)| 7dlag Edlag)

Prune to theP®*% pairs(k, 1) with highestlog p®*& (x(t), k, 1)
For each of these top pairs, compute:

log p(x(t),k,i) = logdetgf) + log Wi - . .

+ log/\/’(xki(t)mki, Skz)

Prune to theP pairs(k, i) with highestlog p(x(¢), k, i)

9.3. Pre-computation per frame

After Gaussian selection there are certain quantitiesshatild be
computed for each of the selected pairs of indiges). We com-
pute and store:

xki(t) = xx(t) - of) (43)

zri(t) = MLE %) (44)

nei(t) = logdet,is)70.5xki(t)T2;i1xM(t)
+2ki(t) (s41)- (45)

soxy;(t) is the “speaker-adapted” version of the features used for

Gaussian indexk, 1), zxi(t)~ is like a “covector” to quantities
v;rm (We will dot them to get the linear part of the likelihood),dan

nk;(t) is a normalizer per frame that contains terms independent o

the model.

9.4. Gaussian likelihood computation

We can compute the contribution to the likelihood from sgateix-
turem and Gaussian inde¥, ¢ as:
(46)

log p(x(t), k, m,i|j) = ki (t) + njkmi + 2ki(t) ™ Vikm.

When doing the computation for a particular stateve will iterate
over the preselected setBfpairs(k, i), and then fol < m < My,
we will compute the above quantity. We will accumulate ampof
the tuples(k, 7, m, log p(x(t), k, m, ¢|j)) and do pruning such that
if some element has probability much less than the bestgdgam
of 5), we discard it. It may be helpful to avoid adding elensentthe
array in the first place if they are lower than the current mmaxi
minus the specified beam.

We then compute the total likelihood as:

= log Z

k,m,i

log p(x()s ks m,dlg). (47)

log p(x(t)|7) and the per-Gaussian likelihooggx(¢), k, m,i|7)
described in the previous section. The posteriors of Ganssare
given as follows:

(48)

p(, k,m,ilx(t))

plale(e) 2Emrtl),

where p(j, k, m,i|x(t)) and p(j|x(t)) are as defined in Equa-
tions (46) and (47), and(j|x(t)) = ~;(t) will typically be supplied
to the module that does these computations, e.g. it will bera z
or one posterior derived from Viterbi alignment, or will berived
from some kind of forward backward algorithm. In order to get
good initialization, state posteriorg;(¢) derived from a baseline
system should be used for at least the first few iterationsagfing.

We use (49) to compute posteriors of the pruned list of tuples
(j, k,m,). We then do a further stage of pruning. Most of the ac-
cumulation steps will require more computation than theptot-
uct that was required to compute the likelihoods in (46), tsis i
worthwhile to prune more but we want to preserve expectatitum-
ing estimation. First we decide on a minimum posterior vahkasy/
f =0.125. Then we compute pruned posterior values:

Vikmi(t)
(49)

Yjkmi(t) = randprune(yjemi(t), f) (50)
x> f—-u
randprune(x7f) = T < f N {f with pr‘obablhty 7 (51)
0 otherwise

¥Ve will use these pruned posterior values in statisticsracdation.

10.2. A note on storing posteriors compactly

Itis possible to store the posteriors more compactly tharmgutoat-

ing point values. We describe this here but it is not recondadn
for a basic implementation. We can use a modified version @f th
randomized pruning described above to express all postea®an
integer multiple off. This can be combined with compression tech-
niques that compress small values in memory— a convenietfitoghe
is to store a count in one character, using positive valuestde
the actual counts and negative values to store offsets is¢parate
resizable array for “overflow” values larger than 127. If veeg a
separate resizable array for every 128 elements in the lbeeray

of integer values we are compressing we will always be abbtaice
the index, so using this method it is possible to store imeievery
little more than 1 byte, assuming most of the integers halgega
less than 128.

We do not anticipate that this will be essential- the use alb~s
models” (indexk) reduces the amount of count statistics, and any-
way (for ML training) the count statistics only take the saan@ount
of memory as the normalizers which we have to store anywaeso

normalizers would also have to be compressed (in fact, tonibrk
reported in [1, 2], we also compressed the normalizers inite qu
similar way).

10.3. Counts accumulation

The count statistics should be computed on all iteratiorth@gsap-
pear in the updates of most of the parameter types:

Yikmi = Zﬁ’jkmi (). (52)
t
10.4. Model vectors accumulation
The accumulation needed to re-compute the vestgrs, is:
Yikm = D Agmi (zri(t) ", (53)

ti

with z; (¢) as given by Equation (44), and refers to removing the
last vector element. This is the linear term in the auxilinyction
for v;,m; the quadratic term can be worked out from the counts.

10.5. Model projections accumulation
The sufficient statistics for the model projectidvk,; are
T

Yii = D Fikmi () Xui 0V -

t,j,m

(54)

If we left-multiply this by ;. it is the linear term of the auxil-

iary function inMy;, but it is more convenient to do that multipli-
cation during the update. These statistics are also neexfetthe
re-estimation of the within-class variances; .

10.6. Speaker vectors accumulation

The accumulation needed to re-compute the per-speakm’rsretéf)
is analogous to the model vectors accumulation in Sectiof. We
first define a speaker-space analoguridt), in which we treat the
main model as an offset:

Xikmi(t) = Xk (t) — Bikmi, (55)
with the un-speaker-adapted mea.n; as defined in Equa-
tion (38). It may be helpful during statistics accumulattorcache

this quantityzt;.m; on each frame for which the pruned posterior

Ajkmi IS NONZErO, since it appears in several expressions. [otéen
precomputed globally because it would take up too much mgmor
caching is possible but would not affect the speed of therdlgo

very much. We then need to define a speaker-subspace anatogue

the “co-vector’zy; (t) which we defined in Equation (44). We have
it with:

Zikmi (£) = Ni 20 Xkmi (£).- (56)
It will be useful to pre-compute the quantiN{iE;.l before this
type of accumulation. The statistics are accumulated heldvere
T (s) is the set of frames that cover the data for speaker

e = > Akma(t) (57)
teT (s),j,m
vy = S Aikmi(O)2Zirmi () (58)

teT (s),4,4,m

10.7. Speaker projections accumulation

Here are the statistics to update the speaker projechons (Note
that this is a global type of parameter, not a speaker spemify.
These are analogous to the statisfics; for the model projections
My;:

- +7
Zy; = Z i ()Xjrmi (VD

t,3,m

(59)

where we writes(t) to mean the speaker active on framé&Ve also
have to accumulate a weighted outer product of the speakésrge

SRSNOR
Rki V](g) V](g) ’

>

s,k

>

teT (s),j,m

Fikmi (1) (60)

and it would be most efficient to only update the matrix once pe
speaker using cached counts, although this is not vergakitThis
quantity is symmetric so only the lower triangular part dbooe
stored.

10.8. Statistics for within-class variances and full covaance
background model

The following statistics are needed in order to update thim
class varianceX;; and (if desired) the background model parame-
ters:

Yoo = Z Fjkmi(t) (61)

my; = Z Fikmi (t)Xki(t) (62)

Ski = Z Fjrermi () %15 (£) Xk ()" (63)
t,j,m

Note thatSy; is a symmetric quantity so we can store the lower tri-
angular part. It is common to store the lower triangle of arirat
of size N x N as a vector of siz¢ N(N + 1). The model mean
information required for the within-class variance updzda be de-
rived from the weight statistics; ., the model parameters and the
statisticSY ;.

10.9. Statistics for speaker transforms

The statistics accumulation for constrained MLLR transfations

is based on Equations (187) to (189) and can be written asfsil

B = > Akmi(t) (64)
teT (s),5,m,i
K = Sims (S 1) x(H)T" (65
k = Z Vitemi (8) 2 Njkmix() (65)
teT (s),5,m,i
E ~ T
S = > A Ox(® x0T (66)
teT (s),j,m
where we need to compute:
BSs = Bimi + 047, (67)

with pjrmi @s given in Equation (38) and](;) as given in Equa-
tion (39).

11. UPDATES

In this section we describe the various kinds of parametdaigs
that can be done, along with a brief derivation for each. \2¢ion
formulae are written in gray, so the reader who is only irgtre in
implementation can easily skip them.

11.1. Model vectors update

Here we consider the update of the model vectoys,.. Before
doing the update we need to pre-compute the quantities:

Hy; M 25 My

Z’ijmi-

(68)

Vikm = (69)

Remembering that the effect of speaker transfor’wés) and

speaker projections and subspd¥e; and Vz(f) are absorbed into
the featuresc;(t), the part of the auxiliary function iw .., that
relates to the means (not the weights) is:

Q1(Vijkm) = K —0.5 Z%kmi(t) e

ti
(ki (1) = ikmi) " Biit (%ki (1) — jrmi) (70)
= K/ + Z’7.]"”’”‘(t)ujj;(',rrmzl:ilxki (t)

ti

—0.5 Z’y/k"lluﬁmlzlz,lu/km[(71)

~ T _
- Kl + Z Vikmi (t)vj}k'm M{izk:ilxki(t)

tyi

4 T —
—0.5) AskmiVyrm MiiZp MV, (72)

2
"
= K + Vikm * Yjikm
} T
-0.5 § "ijmiv_]'km Hkivjk:m

7

1
= K +ij‘m . (yjknL § A://wm/h;»,,,/,)ﬂH\)

1

T —
—0.5 § ’V.fk'7’1iv_jk'rrszi Vikm,

7

(73)

(74)

wherehy,;p 1) is the last row oft;, H,;~ is Hy; with the last
row and column removed and;.., is as defined in Equation (53).

Now we consider a second part of the auxiliary function

Q2(v;rm) Which relates to the effect on the weights:

QQ(ijnL) == Z Yikmi log Wikmi (75)

7

f
E Vikmi (Wki “Vikm ™
i

log 11 exp(wi - v}y,,)) (76)

Here we can use the inequality — (z/z) < —log(z/T)
(which is an equality att = z) to modify the auxiliary func-

Zf};l exp (W - kam) andz to its current value):

/ E }
Q2(ij7n) - K + Yikmi (Wk‘i : V_]'k'm
i

I

g exp(Wi - Vi
B il=1 p(k jk)> 7(77)

Iy
, exp(wi -

i/ =1 Vj km

wherev .., is the current value of the speaker vector. Note that the
denominator of the fraction is a constant. The motivatiorelig to
simplify the calculus; the effect on convergence should b@mal

as only one dimension of the problem is affected. Then we use a
quadratic approximation texp(z) aroundz = xo, i.e. exp(z) ~
exp(z0)(1+ (x —20)+0.5(x —x0)?), and discard the terms constant

in 2 to getexp(z) ~ K + (x(1 — x0) + 0.52%) exp(zo). This leads

us to:

" o / }

QZ (ij:m) - K + Z[Yikmi (WkL : V_]']w,, - (78)
I, b

Z,'/k:1 (wki/ “’j}km(l*“’ki/ “’j}km)ﬂ)“r’(wki/ “’j}kmy) exp (W, “’j}km))

Iy, }
ZJ:[CXP(Wki/“’jkm)

ot
exp(Wii Vi)

—I=— 0!
i eXP(WM'V;ﬂCm)

and we can simplify this using;xm: =

Q5 (Vikm) = K' 4+ 3, Yjkmi
I — _
—Yjikm Zy‘,'kzl Wjkmi’ (WkL’ . V]‘k;m(l - Wgi’ * ij:m)

F05(Wiir * Vipm)?) - (79)

Wki * Vj km

We can write it in terms of just the;,,, (getting rid of the-) as:

Q’Q’(ij‘m) - K” + Zz Yikmi

I, - _
—Vikm Zy‘,':l wjkmi(wki/ . lemn(l — Wy ijnL)

+0.5 (W;[/ . V_jk'm)2> . (80)

Wi * Vikm

Certain extra terms appear here (if offsets are used) bustirzgi-
fied out.

Note that at this point we have no guarantee that increabkimg t
auxiliary function will increase the objective functionedause the
quadratic approximation to an exponential function is nodvaer
bound. We will just ignore this problem as it affects the rastiion
of the vectorsv .., because we believe that the quadratic term will
be dominated by the means rather than the weights in most.dase
the main situation where we expect an exception to this,vifeen
only one Gaussian has substantial nonzero counts for aylarti
sub-state, the smoothing process described in Sectiorilishbuld
prevent divergence. We will deal with the question of cogeece
more rigorously when it is time to estimate the weight profets
Wki.

Defining Q(vjkm) = Q1 (Vikm) + Q5 (v,km) and gathering

tion as follows (note,xz corresponds to the normalizing term together the linear and quadratic termwiﬂm from Equations (74)

10

and (80), we have:

O(Vjkm) = K+ Viem - jkm — O.5V?kajkajkm (81)
gijkm = Yjkm— Z%‘kmihl;'(D+1) (82)
+ ZW;i (Vikmi = VikmWikmi(1 = Wi - Vikm))
Hjm = > YemiHp
i
+Yikm Z D jemi Wiy Wi (83)
Vjkm = H;;mgj;m. (84)

Note that we use the notatiaty; andw;xm»; to mean that we should
use the latest value if available, i.e. if the weight pramts w;
have been updated before the vectors,,;. BecauseH ., can
have poor condition we should solve Equation (84) using theg
dure described in Appendix G.

11.1.1. Smoothing

We routinely use a different approach that also handles rthielgm
of singular matrices when estimating the parametegs,. This was
originally developed as a workaround for the problem of siag
matrices but is retained because it may improve the genatfian
of the model. It can be described in terms of a prior over tlutors

11.1.2. Auxiliary function improvement

We can test the auxiliary function improvement using Equra(B1),
measuring its difference in value before and after the wpdsibte
that K just means an arbitrary constant, which we can ignore. The
smoothed value oHka should not be substituted fd ;x., in
Equation (81). It would be possible to get closer to the tike-|
lihood improvement by using the exact auxiliary functiom tbe
weights (Equation (75)) rather than the quadratic appraion, but
that is probably not necessary. Refer to Appendix C for a more
principled solution to the estimation of the vectors, whistable

to model correlations between different sub-models.

11.2. Sub-state weights estimation

The estimation of the sub-state weiglts., associated with the
vectorsv i, is simple. The auxiliary function is:

9(e...) (90)

Z Yjkm 108 Cjkm,

J,k,m

with the data count;,, as defined in Equation (69). The sub-state
weights must sum to 1 over &ll, 7 for a particularj, so the Maxi-
mum Likelihood update is:

Vikm

K M ;
D1 ml

(91)

éjkm = .
=1 Vikm

vrm Where the prior is not estimated from the data but is based offhe objective function change can be computed by measudng-£

an ad hoc but dimensionally appropriate formula.
is similar to the Maximum A Posteriori (MAP) adaptation fartas
based on a smoothing valuethat are used in the HTK toolkit [7].
We modify H;z,, andg;x. as follows:

Hjp = Hjpm +7H™ (85)
Siem = gjkmwve“ e (86)
HE™ = Z%i Z%Hk (87)
o = Z - Zyﬂcm, (88)

h (89)

with v = >, Yjkmi, and to useH’;,, and g, in place
of Hjxm and gj;m in Equation (84), for some choseti*, e.g.
20. This smoothing term ignores the effect of the vectorshen t

weights because we believe that is less important and to make
For each sub'®*

the computation of the smoothing terms faster.

modelk this smoothing formula equates to a prior centered around

and with a variance equal te—H<Sm)

=1 (sm
i

Hl(:m) The
center of prior is the same as the Maximum leellhood estnudt
the vectors for that sub-model if we forced them to all hawesdime
value (and ignoring the effect on the weights).

In this sense ittion (90) before and after the update. A suitable smoothpmy@ach

to avoid getting zero weights (which might cause problenestdihe
interaction with pruning) is to define a valué*’, e.g. setto 5, and
do:

+ T(lu)
’)/jkm + T(u;))

Vikm

SR (

(92)

Cikm =

11.3. Sub-state splitting

As in a normal mixture of Gaussians system, it is necessaspltb
the sub-states represented by the vectgis,, in order to eventu-
ally reach some target number of sub-states. For instareejight
have a target number @ = 30000 for a system with/ = 7000
states. A robust way to assign the number of sub-states @dr ea
(state, sub-model) pairj(k) is to have them proportional to some
small power of the total data count of the sub-model of the
state, e.g. to the power = 0.2 (e.g. as supported in HTK by
thePS command irHHEd [7]), so we would have a targét(j, k) =
x(1, [0.5 + (T7%,/ Zj:l Y5x)]). The total number may differ
omewhat from the target due to rounding. We would desigaate
subset of the iterations as iterations to split on, and woypitally
separate these by a few iterations to give the previously\sgitors
time to separate. On each iteration that we intend to splitwan
would designate a target numbErof sub-states that would gradu-
ally rise to the final desired number, and work out the stpesific

We should still use the robust techniques described in AptargetsT'(j, k) accordingly. Within a statg and sub-modek, after

pendix G to solve the inversion problem, in case the modifigd,,
is still poorly conditioned.

In Appendix C we will describe a more sophisticated altéveat
technique to handle the problem of over-training, basedstimat-
ing priors.

11

working out how many mixtures we have to split we would chomse
subset of mixtures. to split based on highest counf... The split-
ting should take place after other phases of update, to élveideed
to split the statistics. Let us suppose we are splittingoree}y, to
the two vectorsy ji,, andv ./, with m’ a newly allocated mixture

index. We would split the weight and the vector as follows:

éjkm %Cjkm (93)
éjkm’ = %Cjkm (94)
r = Normally distributed random (95)
0.5
\Afjkm = Vikm + 041H](:m) r (96)
-0.5
Vikm! = Vjkm —O0THI™ p) (97)

(sm)

where we usdd," as defined in Equation (87). This formula is
analogous to splitting a Gaussian mean by 0.1 standardtibemsga
e.g. as done in HTK [7]H§fm)
covariance matrix) so we get something like a standard tdewiay
taking it to the power-0.5.

11.4. Update for model projections

Now let us consider the auxiliary function for the model patjon
parametefM ;. It is similar to the one for the vectors in Equa-
tion (70):

QM) = K =05 Fjkmi(t) ...

t,j,m

(X’”(t)7”]'1“”1)T21:i1(Xk:i(t)*ﬂ_jkmi) (98)
= K'+ Z Vit () mi Zii Xk (t)
t,gj,m
—0.5 Yjkmikkmi ki Hikmi (99)
= K'+ Z ﬁ.ik'mi(t)v;rkaMazlzilXM(t)
t,j,m
—0.5% itV i MEZ Myiv,, (100)

J,m

At this point we do the substitutioM},; = X, ”°My;. Then
Equation (100) becomes:

- LT _05
Q(Mkl) = K/ + Z ’Y]‘k""”"(t)vjk:rn M;“,TE]”_O" Xk’(t)
t,j,m
_0‘5Zﬂ/jk771iijnLTM;ciTM;(ziVj‘km (101)
j,m
= K +tr(My 2:20°Y)
—0.5tr (Mp; QriM},; ") (102)
where
~ T
Yii = D> Apemi(Ox0i(O)V,im (103)
t,j,m
Qri = T (104)

+
E VikmiVikmVikm >
J,m

and note thalr'y; is part of the statistics (Equation (103) is the same
as (54)) andQx; can be worked out from the count statistics and the

model vectors. NowA” A is the same as the same B3, aja; ,
wherea; are the rows ofA. So the auxiliary function of Equa-
tion (102) can be separated across the raws, of M. Defining

Y =20 Yo (105)

12

andy}.;, as thed'th row of Y7, we have:

Q(m;cid) = m;eidy;cid_0~5m;<idTQkim;<id (106)
m;m'd Q;,',ly;eid (107)
M, = YuQ' (108)
My = EQQSM;W (109)

so the update is:
Mu = YunQp' (110)

If we are on the first iteration of model update th@p; will not be

is analogous to a precision (inverse jnertible and the update of the model projections shoulskiygped.

To measure the auxiliary function change we can use:
Q(My;) = tr(ME, 25, Yii) — 0.5tr (25, My QriM7;), (111)

and measure the difference in this quantity before and #feeup-
date.

In Section J we describe an approach to estimate a prior oeer t
matricesM; and estimate them on a Maximum A Posteriori basis;
however, it is not clear that this is helpful.

11.5. Update for speaker projections

There is a symmetry between the model and speaker factarspex
as regards the weights, which do not concern us here). Tdreref
the update for the speaker projections follows the samenpatts
Section 11.4 above, except that the quadratic term comelspg to
Qx; above is now obtained during accumulation rather than fiwm t
model, since the speaker factors would typically not beestavith
the model. This quantity we caRy; and it is part of the accumu-
lated statistics, see Equation (60). We also stored a liteearZy;

in Equation (59). The update is:

Ny ZniRy, (112)
and the auxiliary function change can be measured by takiag t

difference before and after update, of:

Q(Ny;) = tr (NLE Zri) — 0.5tr (2, N Ry NL). (113)

11.6. Update for speaker vectors

The update for the speaker vectmg) is a speaker-specific update.
We use the statistics accumulated in Equations (57) and (5&
analogous to the update for the model vectors, except wittneu
extra terms relating to the weights. We skip the derivatiecduse it
is just a simpler form of the derivation in Section 11.1. Ptesti-
mating vectors for any speaker, we need to compute the djesnti

HP = N2, Ny, (114)
which are speaker-subspace versions of (68). The auxfligction
and update rule are:

T
QW) = K+vi gl —o05v) HP v (115)
HY = Yoo HE (116)
[
50 = AR, a1
~ (s s)—1 s
o= HY g (118)

This update is sufficient when there is enough data to estieemth ~ wherewy; is the current value of the weight projection vector, which
vectorv,(f). However, it could lead to over-training otherwise, es-is equivalent to:
pecially for largeK. It would be nice to be able to estimate some
. . s .
kind of prior over the whole set of vet_:tonei), but this would re- Q' (wp) = K'+ Z N jkmi (Wm Vem
quire some effort becaug€ might be quite large so the dimension of
the concatenated vector would be high, and also because wld wo

jomi

}
have to estimate the prior from estimates of the vectorseaus for B Z o exp(Wii * Vi) (126)
now we will opt for a much simpler approach that uses\alue to pyo s Zle exp(Wp/ -v;km) '
smooth eachr,(f) back to a globak®) (shared for alk). First we B
estimate a globally shared valuewf: With vjem = >, 7ikmi. Note that at this point the auxiliary
function can be separated into terms for eaclwith Q' (wy.) =
HY = Y H (119) K’ + Y, Q'(wwi), and:
k
(s) _ (s)
g - Z g (120) Ql(wk‘i) - Z Vikmi <Wk‘i *Vikm
k jim
~ (s s)—1 s
V() P H() g() (121) exp(wki . V;km)

- Yikm — — . (127)

Then we interpolate between the global and sub-model speeifi 1
sion of the vector, as follows.

We can compute the first and second derivatives of this witheet

AP = Zylgj) (122) to the vectorw,; as follows:
7
) , pk 99 (wii) "
v = e s v 29) e = 2 Ctikmi = YiemWikmi) Vi (128)
Tspk+ryk Tspk+’7k v j,m
0?Q (Wis)

. T
The valuer*** may be interpreted as a number of frames; we suggest — Z VikmWikmiViemVkm o+ (129)

P 2
a value ofr*P* = T (the same as the speaker subspace dimension) Owi; Jm
but it is worth experimenting with. Note that this techniqassumes .
that the speaker subspaces for the different valuds are related USINGW; i = EXP(WM'“%) . A natural approach would be

in some sensible way. We can ensure this by settifi§j to a very exP(Z4/ Wi/ Viem
large value (e.g. 1.0e+10) for the first few iterations oiftireg, say ~ to take

the first ten iterations, and thereafter leaving it at leaskaege as

the value to be used in testing. To compute the change inianyxil Wk = Wgi— (
function, we can work out the change in Equation (115) befo

after update.

aQQ/(wm)l 09 wi)" (139

2
Owki é)wkz

to do this for all: simultaneously and to measure the auxiliary
function of Equation (126); if the auxiliary function in@ged we
11.7. Update for weight projections would accept the update and otherwise we would keep haltieg t
step size until the auxiliary function increased. Unfoetaly this
approach does not seem to be stable and it often becomesasces
to halve the step size many times. The reason is that a two-ter
Taylor series approximation is a very poor approximatiotheex-
ponential function if we are moving too far. We find the comesrce
is better with the following approximation which amountsnt@ak-
O(wy.) = Z Yjkemi 108 Wkmi !ng the guadratic part of thg approximgtion larger (moream'eg)
in certain cases. We do this by replacing the tem,w;rm: in
Equation (129) withmax (V;km, VjkmWjkmi). The reason is that
(Wki ij:m

The weight projectionsvy; are updated using an approach similar
to the one used in Section 11.1 for the model vectors. Thdianki
function for the set of weight projection vectovsy ... wy, for
sub-modelk is as follows (usingwy. to refer to this whole set of
vectors):

jomyi

= Z Yikmi

J,m,t

the Maximum Likelihood solution for the weighit;.; without the
subspace constraint would B€.m:/v;jkm, and we believe that the
I update should take us closer to the Maximum Likelihood estiém
) + At that point~,xmw;xm: Would take on the value;,... We take
—log Z exp(Wii Vj’“”)> - (124) the larger of tﬁe twé for safety. This leads to the f]ollowimg(idiary
vt function and update.
Following similar steps to Section 11.1 using the ineqyalit—

Stc-/j) < —log(z/z), wherez is the current value of, we arrive Q" (Wii) = Whi-&hi — %wkTiFkiw/m' (131)
8ki = Z('ijmi - ijmwjkmi)v;:cm (132)
Q,(Wk) = K+ Z Yikmi (sz V;km hm
i Fri = > max(Yitmi, YikmWikmi)V fimViim (133)
_ ity XP (Wi "’jkm)> (125) "
fle exp(Wyr - V;km ’ Wii = Wpi+ F);ilgkr (134)

13

BecauseF',; can be of reduced rank or have poor condition, wewhich is a repetition of Equation (54), we can right-mukiply M7,
should use the techniques described in Appendix G to solige thto get:

problem. Note that we are solving for a chanyg; in wy,; where
the auxiliary function isAg; - gr; — %AfiFmAki adn the initial
value of Ay; is zero.

After doing the update of Equation (134) for aJlwe should
check the auxiliary function value of Equation (126), andt iias
not increased keep halving the step size until the auxifiamgtion
change is positive. We have never observed the halving pfsite
to take place, though. The whole procedure can then be exbéat
say, three iterations, i.e. do Equation (132) through (X84nll 7,

setwy; := Wy for all and repeat. Note that if we are updating the USING L2 kmi = Mgiv]
vectorsv ., before the weight projections it is the updated vectorsjg is:
V;1m that should appear in Equations (132) and (133), and lilkewis
as mentioned in Section 11.1 if we update; first we should use

their updated valueér,; during the update of ;xm:.

The change in the approximated quadratic auxiliary fumctib
Equation (131) and the change in the exact auxiliary functib
Equation (126) should be measured as diagnostics on eaatidte
of weight update. The two auxiliary functions should botbrease
on each iteration and if the approximation is good they shbolth
increase by a similar amount.

11.8. Update for within-class variances
The auxiliary function for the within-class varianc&y,; can be

written as follows:

QTk) = K-05) :/jkm(t)<logdet2ki (135)

J,m,t
n (in(t)—ujkm)Tﬁif(in(t)—ujkmi))- (136)

Without doing the derivation as this type of update is vemyown,
the answer is:

~ Zj/m,t ﬁ/jkmi (t) (ka (t) — Mjikmi) (Xk:i (t) — Mjikmi)T
i = =
Z_y‘,m,t Fjtemi (t)

1 -
(Ski - Z ﬂ/jk'rni(t)p/jk'rnixki(t)T

Yri

J,m,t

- Z ijkmi(t)xki(t)liﬁ:rm + Z’ijmi”jk?mi/-l‘_?kmi> (137)

J,m,t J,m
Ski = Zﬁ_y‘kmi(t)xki(t)xki(t)T (138)
J,m,t
i =D Fiemi(t) (139)
t,7,m
= Z Yikmi (140)

jom

YriMi; = D A (%8 () 1k
t,j,m
which is one of the cross terms we need in Equation (137) (we ca
transpose to get the other). As for the weighted outer prtoafuthe
means, we can compute this as:

(142)

means T
Ski = E YikmiMikmiMjkmai,

J,m

(143)

J1m t0 compute the means. The update equa-

i = % (Ski + SIS — Y M, — Mszsz) - (144)
7

In order to handle the problem of very small counts and ot&saons
why 3.; may be singular, it is desirable to flod; to a small
fraction (e.g.1/10) of a global average variance quantity. This will
make it unnecessary to enforce a minimum count. See Appéndix
for a method of flooring full covariance matrices.

The auxiliary function improvement can be calculated as:

AQ(Syi)=—2%t (log det 33 —log det Sp; + D —tr (z;;i,”)) .

(145)
This is not valid in the presence of flooring but should be good
enough for diagnostics.

11.9. Updating the “background” model

Here we describe the equations used to update the “backdjroun
GMM during training of the entire HMM set. This refers to any
training of the “background” GMM parameters that is done levhi
training the main model, not the “pre-training” which wasndo
through standard E-M and alluded to in Section 7.2. Theretis-a
ally no theoretical justification for training the “backgmd” model
during model training, since formally the background mogat
rameters are not part of the model at all; they are only used fo
pruning. In fact, proofs of convergence the update forméda¢he
main model in the presence of pruning would only work if we lef
the background model constant. Despite this, there is aipahc
and intuitive reason why we might want to train the backgtbun
model, which is to keep it in correspondence with the Gaunssia
posteriors of the main model, so the pruning can be more ateur
Experiments have failed to show any difference between tiqggla
and not updating the background model. We show the equations
here anyway.

11.10. Updating the full-covariance background model

The full covariance background model can be updated (ifedsas
follows:

S Yki

In Equation (137), the outer product of the data itself areddbr- Wiy = 27 (146)
responding counts have been accumulated (we accum8atehd ki Thi
vki; Equation (138) is the same as (63) and Equation (139) is the -1)
. Pri = my; (147)
same as (61)); now we show how we can compute the cross terms Vki
between the data and the means from stati¥igswhich were ac- - 1 2 A
ki = —Ski — Wkilbii (148)

cumulated in order to update the projectidvs.;. Recalling that
~ T
Yii = Y Ajromi ()X (Vi

t,3,m

(141)

14

Vki

with ~x;, my; and Si; as accumulated in Equations (61) to (63).
We can skip the update for a particular Gaussian if the cameiy

small, e.g. less tha. Note that in practice we may just set all wherex™ is x with a 1 appended to it, and the speaker transfor-

the weights to be all the same rather than using Equation) (T4®
variance should be floored to e.g. one tenth of a globallysmest
variance, using the method described in Appendix |. Theliuyi
function improvement from the mean and variance update is:

AQ(fiks, Eki) = _’ysi

<log det £y; — logdet £y; + D
—(Bowi — Bri) " Bi (Bowi — ki)

—tr (S;ﬁiki)) . (149)
This is the improvement in the auxiliary function we use toate
the full-covariance background model, which is not aciuail aux-
iliary function for our overall data likelihood; it is simpluseful to
tell how much the background model is changing.

11.11. Updating the diagonal background model

Assuming the diagonal version of the background model itueva

ated with features that have the same level of adaptatioheafull
version, we can just set its parameters to be the diagodalaesion
of the full background model’s updated parameters:

e = fu (150)
o = diag (Zk), (151)
(152)

wherediag (M) is M with all its off-diagonal elements set to zero.

12. ESTIMATING CONSTRAINED MLLR FOR THE FULL
COVARIANCE CASE

Here we describe a method of estimating constrained MLLRstra
forms on a set of full-covariance Gaussians. We describethade
that is designed to be easily combinable with subspace igadsin
which we constrain the transform to vary in a subspace of uhie f
parameter space. The gist of the technique is that we coraptap-
proximation to the Hessian of the likelihood function widspect to
the transform matrix parameters, for data generated frenmibdel
itself. This tells us what the second gradient will be, agprately,
for “typical” statistics. We can use this information to geale the
parameter space so that the expected second gradient @twopl
to the unit matrix. Then when presented with actual data, em-c
pute the sufficient statistics to update the transform, Aedupdate
then consists of repeatedly choosing the optimal step sitdeei di-
rection of the gradient, within the pre-scaled parametacsp The
pre-scaling ensures that this type of update will conveegsanably
fast. The actual Hessian given the statistics we accuntutagy dif-

fer somewhat from the one we pre-computed, but all we neeat is f

the estimate to be in the right ballpark— a factor of two erfarin-
stance, will not slow down the update too much. Because treeafo
this technique is a simple gradient descent method, it ip teelémit
to a subspace of the matrix parameters; this is not the caseafo
ditional row-by-row updates, which although they can be lsiorad
with subspace techniques [8] and full covariance model$(®,are
hard to use efficiently with a combination of the two.

12.1. Constrained MLLR
The transformation we use in constrained MLLR is:

x = WExt, (153)

15

mation matrixW) is a D by D + 1 matrix which can be written
as:

Wi = [AG;b0)], (154

whereA) is a square matrix arld®®) is the offset term.

The objective function is the likelihood of the transforndata
given the GMM, plus the log determinant Af*). The need for the
log determinant term is clearer if we view this form of adaipta
as a transformation of the model rather than the featurels fli
the process is probably easier to visualize if we view it asadure
transformation.

12.2. Pre-transform

In order to make the second gradient computation easier, rate fi
(conceptually) pre-transform the features and the modzi that the
average within-class variance is unit, the average meaercsand
the covariance of the mean vectors is diagonal. We will neeha
apply this transformation to the model or the features, hettans-
forms we compute here will appear in the optimization foraeuflor
the transforms we are estimating.

The input to this stage assumes we have Gaussian intiges
j < J, with meansp; and (possibly full) varianceX;, and oc-
cupation probabilitiesv; such thatzt1 w; = 1. By using this
notation we do not assume that we have a flat mixture of Gansssia
it could be a HMM but in that case we have to work out the expkcte
occupation probabilities; of the individual Gaussians within the
whole HMM. It is not absolutely critical that these be examgking
approximations such as assuming that all states are edilally
would probably not affect the optimization speed too much.

We first compute:

J
Swo= Y w; (155)
j=1
J
o= > wiy (156)
j=1
J
£ = (ijlijlijr>—lil~bT~ (157)
j=1

We are computing a pre-transfoiW e = [Apre; bpre], Which will
give our model the desired properties. The square part ahtitex
A .. should be such tha«ttpreEWAgre =1 andAprezBAgre is
diagonal, and we need .. + b = 0. We first do the Cholesky
decomposition

Sw = LLT, (158)
computeB = L3 3L~7, do the singular value decomposition
B =UDV” (159)

(this impliesB = UDUT becauseB is positive semi-definite, see
Appendix B), and the transform we want is

Apre - UTL7 ! (160)
Mpre = _Apreﬂ (161)
Wpre = [Apre; bpre] . (162)

We also need to compute the inverse transformatidvig., which
we callWiy, (this is not the same 8.+, as it is not square).

Wi,

pre

= [Apun].

Winy (163)

(164)

The notation-* in this context means appending a row whose lastin (167), usingQ® (W) to meanQ(W) with just the quadratic

element is 1 and the rest are zero;means removing the last row.

12.3. Hessian computation

Now we compute the Hessian (matrix of second derivativeshef
expected per-frame model likelihood with respect to trammsfpa-
rametersW around the point wher® = [I; 0], for typical data

terms kept we can write:

QW) = 05 aijaj+al(1+d;)

2,7
—0.5 b7,

(170)

generated from the model. At this point we assume the model havhere we usé; for the j'th diagonal element oD. Thus, the Hes-

been transformed as above so the average within-classearia
unit, the scatter of the means equBls and the average meanQs
In addition we are making the approximation that all the asaces
are equal to the average variarice Thus, we are in fact comput-
ing an approximated, expected Hessian. This approximé&inaot a
problem since we are only using the computed Hessian foopdie
tioning the problem; it will not lead to any inaccuracy in dweswer
but only a slower rate of convergence.
The auxiliary function is:

O(W) log | det A|

J
—05 > wE; ((Ax +b—)T (Ax+b— uj)) , (165)
j=1

where the expectatioi; is over typical featurex generated from

Gaussianj. The auxiliary function has a simple form because the

sian of the objective function in the elementsWf has a particularly
simple covariance structure where there is a correlatigntmtween

an element and its transpose. The diagonal @nd the elements of
b are not correlated with anything. It would be possible tanaage
the elements oA andb into a big vector such that the Hessian had
a block diagonal structure with blocks of size 2, but it widl basier

to avoid that because the mapping would be somewhat cortgalica
Instead we write down the transformations that make the rqtiad
term equal to-0.5 I, as linear operations on the elementstof

Q45

Let us consider a vectov

}, where: # j, and

g
let us arbitrarily stipulate thaf < i to fix the ordering. Writing
down a matrixM such that the relevant terms in (170) would equal
—0.5vTMv, we have:

variancesy; are assumed to be unit. Then we use the fact that th@yorking out the Cholesky decompositiondf, we have:

featuresx for Gaussiary are distributed with unit variance and mean
w;, to get (keeping only terms quadraticAnand/orb):

(W)

K +log|det A|
J
05> w (tr (A(T+ p;pul)AT)
j=1

+b7b + 2(Ap;) - b) . (166)
Now we can use the fact that the megns have zero mean and
varianceD, to get:

(W)

K +log|det A|
~0.5 (tr (AI+D)AT) + bTb) . (167)

We can work out the quadratic terms in the expansidogf det A |.

If we use the fact thaf'°89st2 — A~! (using the convention
where(2£);; = 2L), we haveZ!25L4 AL — (A=) ;. To find

Jr £

the second derivative we can use the fact that if the mairide-
pends on a parameter 44— = —A"'42 A~ Considering
the special dependency whetg; = ¢ and the rest are fixeo%
would just equalS;; which we define as matrix with a 1 in posi-

[1+d; 1
M = {1 1+d¢}' (171)
M = LL” (172)
(14d;)*® 0]
L = 173
{ (14+d) % (1+di—(1+dy))" (173)
-1
. : . a 0 _ 1/a 0 .
The inverse oL is, usmg{ b e] = { “b/(ac) 1/c }
L [@dy 0 174)
= 1+d;—(1+d;)~ 1) 7 1y —0.5|
S) (1 di - (1))

Now since the quadratic term in the objective function egual
—0.5vTLL v, it is clear that a transformation on that makes
the Hessian equal te-1, is L7 (since the quadratic term can be
expressed as-0.5(L7v)TI(L”v)). Now let us suppose we have
a transformationrW = [A; b]. To transform its parameters into
the space where the Hessian equak we need to transform the
parameters witf.”, i.e. the transpose of (173): far< i < D and
1<j<i

(14 d)*wig + (14 dj) ™" wji
(1+d— (1+d)H"°

Wii,
and for the diagonal oA we can scale by the square root of the

(175)
(176)

@i

@ji

tion i, j and zeros everywhere else. Evaluated as a constant aroug@propriate term in (170): for < i < D,

A =1 we havea‘:;_1 = —A7'S;;A™' = —8;;. This implies
ij

9
that 2A i _ —6(i,k)6(4,1). Thus we have:
day, - ’ 2 t)- .
Olog | det A| _ O0(AT) (168)
8ai]~akl aakl

This means that the quadratic term in the Taylor expansion of

log det A can be expressed as0.5_,; aija;:. Using this and
doing a similar element-by-element expansion of the otkems

16

(2 + di) " Pwi. a77)

Wii

The elements ob, i.e. w(p1);, are just copied. In order to trans-
form the matrix back from this space to the original space,rt
verse transformation ik~ which is the transpose of (174): for
1<i<Dandl <j<i

(14 dy) ™"y
—1y—0.5 —1 ~
(1+di— (1+d;)")"y (179)

Wij

Wyq

and for the diagonal,

wi = (2+di) "W (180)
Suppose we have a gradidAtwith respect to the matrix parame-
ters, whereP has the same dimensions @ so that the objective

function contains a termr (WP7T). TransformingP to be in the

transformed spac® — P involves the inverse transpose of the

“forward” transformation; this is clear as a general ruledese if
we have a vectax and a gradieng and we transfornx with M and
gwithM~7, we haveMx) - (M~ Tg) =x"M"MTg =x-g.
Therefore fol® — P the transfornL~* applies: referring to (174),
fori<i< Dandl <j<i,

(1+d;) """
(Ut di— (1+d)) (U dy)

Dij (181)

Dji =

+(1+di—(1+d)™) " psi (182)
and for the diagonal, for < i < D,
P = (24d) "pu. (183)

For the reverse transformatid? — P, the transformiL. applies:
referring to Equation (173), for <: < D andl < j < 1,

pi; = (1+d;)*°py (184)
Dji (1+d;)~"°piy
+(tdi—(+d) ™) (185)
and for the diagonal, for < i < D,
pi = (24+di)" pii (186)

In Section 12.5 we will show how these transformations aeslis
the update rule.

12.4. Statistics accumulation

Here we describe the statistics accumulation for constaMLLR
estimation using this method.

We assume that we have done some kind of E-M to to get pos-

teriors+y;(t) for each Gaussiafi on each time. We write the al-

gorithm assuming we have a “flat” mixture of Gaussians, bigt th

applies equally to a HMM; in that case the indewould range over
the individual Gaussians in all the states of the HMM. If we do-
ing multiple passes over the data to estimate a transfornwvarete
not on the first pass, the posteriorgt) will be computed using the
existing transform, but we accumulate statistics givendtiginal
features. We compute the following statistics:

B o= > wu® (187)
[2%]

K = Y %0z 'wxt)" (188)
[2%]

8; = Dowuxtox®)" (189)

17

and the auxiliary function is:

QW) = > 7;(t) (log | det A| (190)

—0.5(Wx" (1) =)" (W (1) = 1)) (19D)
= K+ flog|det A| + tr (WK")

~05Y tr (Wsz—lwsj) (192)
J

12.5. Update

The update is an iterative update where on each iteratiorompuate
the gradient of the objective function w.r¥, use the pre-scaling
described in the previous section to compute an updatetidineand
compute the optimal step size in that direction. On eachtitan of
update we refer to the current (pre-update) valuB\oasW. If we
were using iteration indices we would write something N&&?—1)
instead ofW. At the very start of the proce3 equalsI; 0]; if we
are not on the first iteration of the update or we are startioign fan
already estimated transform, this will not be the case. Weel¢he
equations for a single iteration of update as follows. Adirization
of (192) aroundW = W is:

QW) ~ K'+ptr(AA™") +tr(WTK)
=Y (W (z'Wsy)) (193)
~ K +tr (WTP) (194)
P = 8 [A-T; o] LK-S, (195)
(196)

= > 3;'WS;
J

whereM ™ is M extended with an extra row of zeros. Bais the
local gradient. In order to transform witW .. into the correctly
normalized space, we can defifé’ asW in the pre-transformed
space, so that we could take an original featsireand transform
with W, W’ and theriW,,,, (which is the inverse transformation
to Wye). Itis convenient to turn all the transforrW’ into the form
‘W which has an extra row whose last elemerit @d the rest are

zero; this leaves & on the end of the transformed vectors and makes

W™ asquare matrix. So we have:

vx, Whxt = wi wiwi x" (197)
wt = Wi wWiwi, (198)
W= Wi Tiwrw (199)
w’ W e WIWE (200)

We can use this to transforii? to P’ to apply in the transformed
space. Again it is useful to represent everything as squatgaes:

YW, tr(W'P) = tr(W'P) (201)
YW, tr(WP) = tr(Wi, W WZL.P') (202
YW, tr(WH P = (W WL P'W ") (203)
P = wWI.pPwh' (204)

At this point we use the fact thalVi*nVT_W]?re = I. This s true
becauseA "B~ ¢ = (AB)~~, with -—, -~ and-~~ meaning re-

moving respectively the last row, the last column, and battd we

use this together with the fact thi;" “ Wi, = I. We can then
arrive at:

P = wi ' powh" (205)
_ [A;rf; o] prows " (206)

T
= ALPW/. ., (207)

whereA;,, = A;}3 is the firstd columns ofWi,,. Note that (207)
is similar to the inversed and transposed equivalent of)(2@ich is
what we expect for a quantity and its derivative. After cotimyP’
using (207), which means we have applied the pre-transforthet
gradient, we apply the transformation of Equations (181)1&8),
which gives us a quantity we can c&l In this space the proposed
changeA in W will be:

1~
A = =P 208

3 (208)
We then transformA to A’ using Equations (178) to (180); note
that A takes the place oW in those equations. Then we transform

A’ to A; referring to Equation (198):

A = W, AW (209)

At this point a useful check to do is to make sure that:
tr (APT) = tr(AP'7") (210)
= tr(AP"). (211)

This is a check that the co-ordinate transformations haea lben-
sistently done. At this point we have a suggested chahge W in
the original co-ordinates, which in most cases we shouldote ta
apply without problems. But we are still not guaranteed tvéase
the objective function. At this point we decide to make a st&yp,

with derivations of the parts of Equations (217) and (218} ih-
volve matrices put in Appendix E. The update is:

5O(k)/6k

i k+ Ty TR (219)

On each of these iterations we should compute the value cd-Equ
tion (214) to check that it is not decreasing, and in that ¢esp
halving the change it until it is not decreasing. This situation
should rarely happen. Updatirkgfor five or ten iterations should be
sufficient; the time taken to do this does not dominate theprda:
tion.

The final value ofk should be reasonably close to 1. It may be
helpful to print out the optimal values d&f on each iteration as a
sanity check on the algorithm. Each step (i.e. each time \wrica
late aA and estimate the optimai), the value of Equation (214)
given the optimalk is the objective function change. We can see
this becausé = 0 corresponds to no changeW, and in that case
Equation (214) is zero. After we estimdtgthe update is:

W — W+ EA. (220)
The overall process has three levels of iteration. The detes
is where we accumulate statistics using Equations (187)188)(
where typically one or two iterations should suffice. Theinte-
diate level is where each time we compute a chafgeteratively
optimizek and update the matri¥V, using roughly Equations (195)
to (220); we expect to do perhaps 5 to 10 of these iteratiome T
inner level is the number of iterations needed to estinkatehere
also perhaps 5 to 10 iterations can be used but this choia ieny
critical.

13. SUBSPACE VERSION OF CONSTRAINED MLLR

wherek will be close to 1 if our approximations are accurate, and

we will choosek to maximize the auxiliary function.
Referring to the auxiliary function in Equation (192), arging

W =W + kA, we can express the auxiliary function as a function

of k (ignoring constant terms) as:
Q(k) Blog|det A| + ktr (AK") (212)
—ktr(AST) — 058> tr (ATE;IASJ-), (213)
J

with S as defined in Equation (196). We will iteratively optimize th
scalark using Newton’s method, starting/at= 0. First we simplify
the auxiliary function ink as below, usingd ~¢ to meanA with its
last column removed:

Q(k) = pBlogdet(A+ kA~)
+km — 0.5kn, (214)
m = tr(AK") —tr(AS") (215)
n = (216)

zj:tr (a™s;'as;).

On each iteration of optimizing, we need the first and secamivat
tives of the auxiliary function with respect to We can compute:

—dgl(f) = ptr(A+kA™9)TTATY)
+m — kn (217)
—deQk(f) = Br(A+kA) TTAT YA +EATY)TTATY)

—n,

(218)

18

Let us suppose we have a set of “basis” constrained MLLR oesri
W, for1 < b < B, and we force our estimated matiV¥% to have
the form:

B
W = Wo+ > dW,

b=1

(221)

where W, = [I; 0], and we include this to ensure the “default”
transform is in our subspace. We are borrowing some notation
from [8]. It is actually more convenient to express this tielaship

in the fully transformed space:

B
WO = Wot S dIW,,

b=1

(222)

The transformW, does not have the simple form 8, because
when we change co-ordinates we scale the diagona ,abut we
never have to refer t8, in our calculation so we don't write down
the expression for it. It is useful to represent the seWf as an
orthonormal basis, so that:

= 1
0, c#b.

(223)
(224)

r (W, W)
r (W, W)

Note thattr (AB”) is the the same as the dot product of the con-
catenated rows (or columns) of the matricksand B, and Equa-
tions (223) and (224) make the most sense while thinking tatheu

matrices as vectors. In the baseline approach, the updtite irans-
formed space was very simple:

1~
= =P,

B
to repeat Equation (208). With the subspace approach, wvdou
instead:

A (225)

B
A LS Wyt (W, P7). (226)
ﬂ b=1
Note that in this method of calculation the quantiu'éé) are “im-
plicit” and are never referred to in the calculation, but tipelated
‘W will still be constrained by the subspace. This makes it iptess
to do more code sharing with the non-subspace-constraiession
of the Constrained MLLR computation and simplifies a lot afqa-
dures, but at the cost of memory and possibly disk space. §defu
the subspace will not slow down the update significantli ifs not
much larger tharD and if we computer (W, P7) in a reasonable
way (without actually computing the matrix product).

13.1. Training the basis

Training the basis is quite straightforward. Assuming owesH
sian is correct and the update is reasonably small, we caputem
our auxiliary function improvement in the transformed spas

0.5tr (APT). This is is the same a5tr (=P J=P”), which

is half the sum of squared elements %15. If we are using a
subspace, our auxiliary function improvement is the trat¢he
scatter of this quantity projected into the subspace. Sabtsés
computation consists of computi%P“) for all speakerss,

turning each matrix into a vector by concatenating the ravesthen
computing the top eigenvectors of the scatter of this qiantiote
that in order to do this, it is not necessary to actually comphbe
scatter. It can be more efficient to do the eigenvalue contipatan
the vectors themselves, as described Appendix A. The agedci
eigenvalues are useful for diagnostics; we expect the eidees
to drop off quite rapidly. The quantity\lfBP“) is computed once
for all speakers without actually doing any adaptation: wepute
it for each training speaker as if we are about to start optimizing
W) for that speaker.

13.2. Interaction with class-based constrained MLLR

In class-based constrained MLLR, we apply a different fiains
for different sets (“classes”) of the Gaussians in a systémithis
case it would most likely be beneficial to compute all the gene
parameters, such 8¥;,,, D and the basis matricéd’,, separately
for each class. It is common to do regression tree based MIrLR,
which the classes are arranged into a binary tree (the atigiasses
are at the leaves), and the transform is estimated at nodks tite,
not necessarily leaf nodes, where there is enough data. cbhis
responds to hierarchically merging similar classes. Thyseeric
parameters should probably be estimated at all nodes ofebdrt
that case. In the recipe we have in mind for the subspaceisyse
tem, there will probably be about 10 regression classee(an
the “sub-models”l < k < K). We will most likely just enable
computation for these regression classes, and one “glotzad$ cor-
responding to the merge of all of them. Because there arefeery
parameters to estimate per speaker, there is not much pajoing
to the trouble of coding a regression tree since in most casesill
have enough data to estimate transforms at its leaves.

19

14. SPEAKER TRANSFORMS (CONSTRAINED MLLR)

In this section we summarize the various forms of updatecéessal
with constrained MLLR estimation. This section simply suaam
rizes how to use the techniques described in Sections 12 &md 1
the context of a factor analyzed GMM. The reader who is simply
trying to understand the fundamental ideas may find it beskij
this section.

14.1. Phases of transform computation

There are three different phases involved in the computdtiothe
subspace-based speaker transforms. The first phase isrtipico
tation of the pre-transforms and associated parametetis ghabal
and sub-model-specific versions. These are quantitiesifietar in
our update equations for Constrained MLLR estimation. ‘phiase
should probably take place after we have already begunrathe
subspace based model, but before we have begun traininggkep
adaptively (using the speaker vect0r§§) and projectioniNy;). The
reason is that to estimate these parameters we need a matdebith

responds as much as possible to the model we are going to use in

testing, but the incorporation of the other form of spealdapa-
tion in this phase would be very complicated, and would pobba
not help. The second phase is the estimation of the subspace—
the basis matrice8V,, both globally for the sub-models. This re-
quires us to accumulate statistics for each speaker as ifengoing
to estimate transforms, but instead just compute a gratéemtthat
we store for each speaker; the subspace is computed by fititing
top eigenvectors of the scatter of these quantities. Weogithpute

a subspace separately for each sub-madahd also a global one
for back-off when there is very little data. The third phasevhere
we already have the pre-transforms and subspaces, andhdsetoe
compute speaker transforms. At this point we start estimgdtans-
forms for training speakers, and the other parts of accuinléake
place on top of the transformed features.

Note that these three different phases would be interleaitbd
other phases of model training; they would each be done ditpar
lar iterations of the model training. For example, suppgsue have
20 iterations of model training overall, we might decidettbhase
1 (pre-transforms) takes place on iteration 5, phase twsiglesti-
mation) takes place on iteration 6, and transform estimgjphase
three) takes place on iteration 7 and every 5'th iterati@rehfter.
Typically other forms of estimation would take place on #ndsra-
tions also.

The order of estimating the constrained MLLR transforms and
the factor-based adaptation,(j) and Ny;) needs to be decided.
They should probably be estimated in the same order in trguaund
testing. There is also the question of whether to reset thptation
parameters prior to re-estimating them each time. Thesisides
do not affect the equations, since we write each form of wgdat
assuming the other is already in place, and if not the othijust
take some default value that implies no adaptation is tagiage.

14.2. Pre-transform computation

The pre-transform computation is something that can be dtaie
cally from the models only, without reference to the data. Wile
generally choose a particular iteration of update, typjcatar the
beginning, on which to do this. The output of this phase i®Ha\s.
First we have a global pre-transform pa¥ .. and Wi, with its
associated diagonal projected mean-scdiidiwe just store the di-
agonal elements of this). Then we have the same for each sdbtm

k; we can call thes&V '), W) andD®),

inv?

turn the result back into sets of basis matrices. To makeetkis

For this phase we need to have a prior for each acoustic state plicit, supposingvec(A) means concatenating together the rows

and we can either just assume a flat prgr= 1/J or estimate it
from counts. Then we can compute:

Y =D ViCikm (227)
J,m
1
2%’3) - = Z Vi CikemWjkmi Bki (228)
Ve fomi
. 1
u(k) = —_— Z YiCikmWikmi Mhjkmi (229)
Vo fomi
k
253) — % <Z 'yjcjkmwjkmiujkmiufkmz)
J.m,i
—p® @ (230)

It may be helpful to prune away very small counts (i.ey;if j km w;rmi
is very small) to avoid computing the megi.; or its outer prod-
uct, both of which require some computation. The pre-ti@msf
computation starting from these statistics is describedSét-
tion 12.2.

To compute the global version of the required quantitiescare
average the sub-model-dependent statistics with:

Yw = kaﬁ(vﬁ) (231)
k

po= > wnu® (232)
k

¥p = Zwk (Eg")-f—u(k)u(k)T)
k
—pu’. (233)

Again, the pre-transform computation is as described in- Sec

tion 12.2.

14.3. Basis computation

Next we need to compute the basis matrices; these includgdbal
basis matrice®V,, for 1 < b < B, and the sub-model basis matrices
VVZE’“). In order to do this, for each speakee need to compute
statistics3.™, K*) andS'*) . This is as described in Equations (64)
to (66). We can just sum these statistics up to gfét and K](:)
which apply to the global (not sub-model-specific) versidrthe
computation. The global version of the computation usesthis-
ticsS'* for all values ofk.

Using these statistics for speakerwe need to compute the
global matrix of gradient®() for each speakes and the sub-
model-specific one?,ﬁs). Using the global version to illustrate
the process, we comput®‘) with Equations (195) and (196),
pre-transform it toP’) using Equation (207), and tB() with
Equations (181) to (183). We then scaleg% and store the result.

of A, for a particulark we would compute the scatter matrix
— 1 pls) 1 ps\T R
M = Zses Vec(mP)Vec(—mP)*, do an eigenvalue

decompositiolM = VDV7, and assuming the columns ®f are
sorted from highest eigenvalue to lowest we could take tise fr
columnsvy, 1 < b < B of V as our basis, turning eash into a
matrix W, by making each block oD + 1 elements a row of the
matrix. The associated eigenvalues (the diagon@ p§hould also
be useful for diagnostic purposes as they tell us how muchef t
speaker variation is present in each dimension.

14.4. Speaker transform computation

The computation of the speaker transforms needs the 'Edaﬁéf),

K!” andS_?) which are accumulated as described in Equations (64)
to (66). The update is as described in Section 12.5 with theace
modification described in Section 13. If any sub-mokédias less
than some specified minimum count (e.g. twice the subspacerdi
sion), we can back off to a global version of the transformaluhi
may be estimated by summing up the statisﬁﬁfé andK,i,s) to get

a globally summed version of the statistics, and doing theeseom-
putation.

15. REFERENCES

[1] Pelecanos J. Povey D., Chu S. M., “Approaches to Speech
Recognition based on Speaker Recognition Techniquesk Boo
chapter in forthcoming book on GALE project, 2009.

[2] Povey D., “Subspace Gaussian Mixture Models for Speech
Recognition,” Tech. Rep. MSR-TR-2009-64, Microsoft Re-

search, 2009.

Dehak N. Kenny P., Ouellet P. and Gupta V., “A study of In-
terspeaker Variability in Speaker VerificationZEE Trans. on
Audio, Speech and Language Processing, vol. 16, no. 5, pp.
980-987, 2008.

Kuhn R., Junqua J.-C., P. Nguyen, and N. Niedzielski, pida
Speaker Adaptation in Eigenvoice SpackZEE Transactions
on Speech and Audio Processing, vol. 8, no. 6, Nov. 2000.

(3]

[4]

[5] M. J. F. Gales, “Multiple-cluster adaptive training gches,”

in ICASSP, 2001.

[6] Chu S. M. Povey D. and B. Varadarajan, “Universal Back-
ground Model Based Speech Recognition,1GASSP, 2008.

[7] S. Young, Evermann G., Gales M., Hain T., Kershaw D., Liu
X., Moore G., Odell J., Ollason D., Povey D., Valtchev V., and
Woodland P., The HTK Book (for version 3.4), Cambridge
University Engineering Department, 2009.

[8] Visweswariah K., Goel V., and Gopinath R., “Structuribig-
ear Transforms for Adaptation Using Training Time Informa-
tion,” in ICASSP, 2002.

The outcome of the above process is that we have a set of9] Sim K C. and Gales Mark J. F., “Adaptation of Precision Ma-

matrices for each speakér< s < S, namely the global version

1 H(s) . s - 5(s)
\/WP , and also the sub-model specific versi (S)Pk, .

The rest of the basis computation is simple: we turn each mafL0]

trix into a vector, compute the scatter of these vectors, thed
globally and for eachk we compute the top eigenvectors and

20

trix Models on Large Vocabulary Continuous Speech Recogni-
tion,” in ICASSP, 2005.

Saon G. Povey D., “Feature and model space speaker adap-
tation with full covariance Gaussians,” Interspeech/ICSLP,
2006.

[11] M.J.F Gales, “Maximum likelihood linear transformatis for ~ which at one Gigaflop would take about one minute. So it isequit
hmm-based speech recognitionComputer Speech and Lan- possible to do this in the standard way. However, it is pdssdodo

guage, vol. 12, 1998. it much faster as described below.

[12] Golub and van Loan,Matrix computations, Johns Hopkins]]
University Press, 3 edition, 1983. A.l. Fasttop N eigenvalue computation

[13] Cullum and Willoughby, Lanczos Algorithms for Large Sym- This section describes an algorithm for quickly computihg NV
metric Eigenvalue Computations. eigenvalues with the largest absolute value and their sporeding

eigenvectors, for a symmetrie x D matrix M, with D > N. The
technique used here is a form of the Lanczos method [12, 13]. |
is also related to the technique described in [14] (and ig@rsplthe
same problem), but it is faster.

Let us formulate the problem as saying we need an orthonormal
set of vectora,,, 1 < n < N, such that if the columns oA area,,
andB = ATMA, B is diagonal and the sum of absolute values of
the diagonal elements & is maximized. This is basically the same
APPENDICES problem we have when doing PCA and related methods. An exact
solution to this could be obtained by makiagthe N eigenvectors
with the largest magnitude eigenvalues. Typically in thedki of
problems that this arises in, we will only be dealing with ifies
eigenvalues, but in order for this approach to work we havasto
sume we need the largeaisol ute eigenvalues; this is of no practical
consequence in most cases.

In this algorithm, we construct a sequence of vectorgl <
i < I) which form an orthonormal basis{- v; = d;;), and a se-

[14] Paliwal K. K. Sharma A., “Fast principal component a/sid
using fixed-point algorithm,Pattern Recognition Letters, vol.
28, pp. 1151-1155, 2007.

A. FAST TOP-N-EIGENVALUE COMPUTATION

Many situations arise where we need to compute theNopigen-
values and eigenvectors of a symmetric malvix= Z,{;l ViVE,
with v, € R”. We will assume thaV < D andN < K (i.e.
the number of eigenvalues we need is quite small comparéutheat

other quantities), but the number of vectéfamay be greater or less quenceu; (1 < i < I) such thatw, — Mv,. If we haveU andV

thanD_. . . uch that the rows obJ areu; and the rows oV arev;, we have
This problem can be solved via SVD. The most obvious methooi}T — MVT_ If we then compute thé x I matrix W = VUT

would be to computéMI and do the singular value decomposition then;V _ VMVT. W is just?\/[restricted {0 a subsp;ce defi’ned

T . .
g/rfal_eltérlr?;:]ts’ igtf;[gﬁ] ?g:;zsrﬁoogmzr;li ;??Sc\?g ?;%?Qg}'ggg;;%s by the vectorsv;. Within this rest_ricted sub;pace, we can solve our
generally do not do this sorting exactly so the user must)dauid problem as defined above py taklr)g themplgenvectors oW and
return the firstN columns ofU as the top eigenvectors and the first repre_sentlng them qpproprlately in the orlglngl space. ﬂ'rbel_em
N diagonal elements dD as the corresponding eigenvalues thenis to geta re_str_lcted subspac_e t_hat contains as mudssﬂ;)le
f K < D.we can solve this more efficiently: I be théD of the variance withifMl. The basic idea is to start with a random

by II((taIE ma'trix whosek'th column isve. 5o th)z;-tM CAAT vectorr and ke(_ap muItipIyiqg by and _orth_ogonalizing. At Erhe1 end
We can work out the SVD oM via S\]/CD on a smalleri b)./ thg rows ofV’ WI.|| be some linear combination @f Mr...M.’ r.
K matrix, as follows. First, comput”A and do the singu- This process will tend to lead to a subspace dominated byigeae

' : ' vectors ofM with the largest eigenvalues. The theory behind this is

HH T _ T T H
lt?c:u\@luteo (z)eecorgsi(t)iiglosn:miie% itggz Cén Bsi(c:)z\j/l\tjstag’f AA '_S quite complicated; see the chapter on Lanczos methods jridia
P - discussion and references.

T . . : .
UDU" (i.e. we can discard). At this point we can write down The way it is done in the algorithm we write below, we never

— T _ —0.5 —0.577TT AT _ T
Ni} - tﬁA | - (A[VIVD_ A)I?I(DD‘OS v Atr? - vlebW ’ have to stordJ because we construd¥v as we go along an®
where the columns oW = are orthonormal DeCause ., i4ins all the information needed to constrlicfrom V. W has

VVTVV _ —0.57TT AT —0.5 __ P
: = D U A AUD P L Th's. Is the same as a tri-diagonal structure and this could in principle be userteduce
singular value decompositioNl with W' containing only the first the number of vector-vector multiplies we do: we dotwith all
K columns, and and we could easily construct the full SVD frgmb "~ ;" j < i, but it is not necessary fof < i — 1. However
. .‘NT H J Py = 1l .)
zr;?nn:r:?sg oﬂ)[la?rllgrlﬁgrgcr::ri.sshi]ﬁ dsir?gaicgﬁm:lesvgSf:)c:tn:hlear(z;ggtonah\/()iding those dot products leads to numerical instabditg they
. . n min h m ion an . We al
to smallest eigenvalue, and return the t¥p This argument does do not dominate the computation anyway. We also waste spate a

L time by making no use of the tri-diagonal naturéwfin its storage
not cover the case Wheln.elementsD)iare zero, but extending it to or in the singular value or eigenvalue decompositioiWdf(see [12]
cover that case is not difficult.

. - o for methods to do this), but these things do not dominate vieeatl
A simpler but less efficient way of doing it in the case where

!) Lol T memory or time of the computation.
([fjss<umDe' ;Ei;ﬂsdt?wéhzzlnnr?ylilasr\/\glg gegg%nge(osll:uaén%_ « PKLZn d The algorithm is as follows. Let the number of iteratidnsqual

V & REXK) soM — UL?UT. The diagonal elements af wil min(N + X, D), with for instanceX = 40; X is the number of ex-

" o . . traiterations. We only get a saving by using this approaéhdf D.
always be positive (this is how SVD is defined), so we only have We setv; to be a random unit vector, aldV to be anl by I ma-
sort the diagonal elements bfand the corresponding rows Bf as '

bef dth is the fitst col fU and th trix whose elements are initially all zerdV represents a sequence
elore and the answer IS the TSt columns ofL) and thesquares of vectorsu; in the orthonormal basis representedy eachu;
of the first/V diagonal elements dt.

equalsMv;. On each iteration we set; to Mv,; and setv; ;1 to

The methods described above should be reasonably fast, egy e girection inu; that is orthogonal to all previous;. The algo-
SVD on M whereD = 40 - 41 = 1640 as we would encounter i .

in the CMLLR computation with 40 dimensional data shouldetak
about12D? = 53x 10° floating point operations [12, Section 5.4.4],

21

Setv; to be a random, unit-length vector.
For each iteration < i < I:
Vitl < MVZ'
forl1 <j <y,
Wz’j = Vi1 -V
Vitl = Vi1 — V; Wy
ifj <i—1,
Check thatwW;; is small; set it to exactly zero
(in this case we only did it for numerical stability)
ifi<1I,
Wit < |Vig1]

Vitl < —\v7:+1\vi+1
(where|x| = />, z:)

Make sure the tri-diagonal matr is exactly symmetrical
(symmetrize in case of small errors)

Use a standard method to do the eigenvalue decompositigvi of
asW = PDP7T

SortP andD in terms of theabsolute eigenvalue, by
rearranging the columns & and the diagonal elements B¥.

Let P} ; equalP” truncated to dimensiolV x I.

LetV be al by D matrix whose rows are;, 1 < < I.

The topN eigenvectors we return are the rowsRYf; ; V

The topN eigenvalues are the firdf diagonal elements dD.

Given the way we have formulated the problem above, a sensl-€t

ble testing approach is as follows. If the routine returngetor A
whose rows are the (approximate) eigenvectors, we cart tesfal-
lows. A should be orthonormal{” A = I), and we should evaluate

This is the same as the spectral decompositioA dfecausdJ’ =
U~!. Equation (235) represents the intersection of the SVD and
spectral decompositions & since both decompositions are non-
unique in different ways. We can prove this result as folloRisstly,

let || - || refer to the 2-norm in the rest of this section, iex|| =

Vx-x and |[M|| = max,o D22l Let S be the set of vectors

[I=<|
x # 0 such thatlfxl — [|A|. Let the largest singular value ot
(i.e. the largest diagonal elementbj be A,.x. We can assume
that \max > 0 because if it is zero theFOVT = U0U7T and we
are done. Ifk elements ofl. share the valu@\.x, with & > 1,
let i1 ...ix be the set of indices such thatl;; = Amax. If u; is
the7'th column of U andv; the:'th column of V, it is not hard to
show from the decomposition of Equation 234 and by symméat t
S = span (vi, ... Vs,) = span (u;, ...u;,). W andX be them
by k& matrices[u;, ... u;,] and[v;, ...v;,] respectively. Because
the rows of W and andX are orthonormal, we havlV’ W =
XTX =1. Letw; ... w; be the columns oW and likewise forX.
For any matrix likeW or X with orthonormal columns (sayV), if
v is in the space spanned by the columnd¥fthenWW7Tv = v.
This is true for any column oKX as both sets of columns span the
same space, so

X =WW"'X (236)
W = XX"W. (237)
S=wW"X. (238)

Now, X = WS from (236) andW = XS7 from (237), and mul-
tiplying the latter on the right bys and equating taX we have

B = AMAT”. B should be diagonal, and the sum of the absoluteWsS = X = XSS, soS”S is unit (becauséX has full rank).

values of its diagonal elements should be very close to theau
the NV largest eigenvalues &1 (it cannot be more than that).

We can check that we have set the number of iteratiolasge
enough by evaluating the sum of absolute diagonal elemérig o
(or equivalently, the largedd elements oD inside the algorithm)
and testing whether it seems to be converging as we incieadee
number of required iterations will depend on how closelycspthe
matrix’s eigenvalues are.

An extension of this that can be used when the large matkix
consists of a sum of outer produd$ = Zle m;m] is to do the
multiplicationu; + Mv; asu; + >+, (v; - m;)m;. If we take
into account the time used to construct the malIxthis modifica-
tion will be faster whenever (approximateBy K D < (K + I)D?,
wherel is the number of iterations. If > K then we can set = K
because the extra iterations will not help. Therefore itificent to
show that2I KD < 2K D?. This reduces td < D, so given that
we only claim that this technique is useful wher« D, this modi-
fication will always help where the overall technique is &zible.

B. SINGULAR VALUE DECOMPOSITION IN THE
SYMMETRIC POSITIVE DEFINITE CASE

Here we prove a result that is used in other parts of this decgm

namely that ifA € R™*™ is symmetric positive definite and we do

the singular value decomposition
A =uLv? (234)

where by definitiolU and'V are orthogonal (e.gUU” = I) and
L diagonal with non-negative diagonal elements, then

A =ULUT, (235)

22

This means tha8 is orthogonal.

We will now show thatS is symmetric. Suppose th&tis not
symmetric, which means we can find someuch thaSa # S7a.
We can use this to construct a veckosuch thatAb # ATb, which
is a contradiction becausk is symmetric. We will seb = Xa.
Becauséb is in the span of the columns &, it is also in the span
of the columns oW, and it is orthogonal to all the “other” columns
of U andV, so we can consider onlyV and X when computing
Ab. We haveAb = Anax WX"b = Amax (XS”) X" (Xa) =
Amax XSTa. For the transpose, we have’ b = Aoy XW7b =
AmaxX (SX”) (Xa) = AmaxXSa. Now, we stated thaBa #
ST a, and becaus¥ is full rank we can show thaXSa # XS a,
which meansAb # ATb which is a contradiction.

BecauseS is both symmetric and orthogonal, it must be a reflec-
tion matrix, and reflection matrices have eigenvalues etpall.
BecauseA is positive semi-definite, we can show ttg&imust not
have negative eigenvalues (otherwise, as above we cousdraoha
b such thab” Ab < 0). This means that the eigenvaluesSomust
all equal 1, and since it is also symmetric it must be the uaitrix
This means thaWW = X.

The rest of the proof is by induction on the number of nonzero
singular values iPA. We construct

A = A— DuaxWW7T
= ULVY,

(239)
(240)

whereL is asL but with any diagonal elements equal X@... set

to zero. If we can show thah = ULU7 we can also show that

A = ULUT because we have shown that the singular vectors cor-
responding to the largest singular values are the same kxiregp
columns ofV with the corresponding columns &f would not lead

to any change.

C. PRIOR PROBABILITIES FOR STATE VECTORS

This section describes an approach to smoothing the estiméthe

vectorsv;i, that is able to take advantage of correlations between

the different sub-models (indéy. This is a more principled solution
to the problem of insufficient data to estimate vectoys,, than the

ad-hoc smoothing approach used in Section 11.1.1. It makes use

of a prior distribution over the set of subspace vectoyg,, for a

statej. This becomes a modification to the basic update for the

vectorsv;i, of Equation (84). This is an optional feature. The
approach described in Section 11.1.1 should be sufficier basic
implementation.

The use of priors over the vectovs,, is mainly motivated by
the introduction of sub-models, which makes it likely that will
have instances of vectoxs: for particular values of7, k) that do
not have enough training data points to estimate them (tkéungi

The large matr&®" is estimated by:

1 J

= 5 Z
i=

with v; as defined by Equations (241) and (242). Referring to Equa-

tion (263) in Appendix D, the prior on the deviations from theans
is computed fol < k£ < K as:

5 (

variance flooring.

(pr)

Iz (249)

»(Pr)

~l e

Vi,
1

J -
Z VjV]-T> _ N(Pr)N(PY) (246)
=1

Mg
Jk T T
i m=1 ijmijm> = Mk v;Kviy,
E(pl) i
k= J
Zj:l Mjr —1

(247)

index m would be 1 because we would never split such a vector)with v, as defined in Equation (241).

Since the vectors i, will not always comprise a majority of the
model's parameters we do not anticipate that the use ofgvidr
make a very large difference, unless the number of sub-raddel
becomes quite large. However it is an attractive featureumse it
allows us to model correlations between different sub-rso@edex
k) which fixes a weakness of the model.

C.2. Flooring the prior

Flooring the variance of the prior is necessary for a numieea-
sons. Firstly, if we try to estimate it from vectors that hiwg been
initialized or whose dimension has just been increasedribe will

The way we propose to use priors is to estimate them fronhave zero variance in at least some dimensions which witl te

the current value of the vectors, on each iteration of tr@niThe
prior parameters estimated this way will not be very exacgbse
we have to estimate them from noisy estimates of the vedhuts,
it is probably better than thead-hoc approach described in Sec-
tion 11.1.1. A convenient way of modeling the vecters.,, is to
model the correlations between the mean vector valygsefined
below:

My,

1
My, Z Vakm:
m=1

We model these correlations across different values, é6r a par-
ticular j, by concatenating the vectovs, into one long vectow ;

of dimensionK S and modeling it with a full-covariance Gaussian
distribution:

(241)

Vik =

Vi1

Vj = (242)
ViK

p(vi) = N(viu®, =), (243)

We also need to model the deviation of individual vectoys,,
from the mearw;, in cases wheré/;;, > 1. We derive a suitable
model for this in Appendix D, which is:

p(Vjk-|Vjk) x exp—0.5 ((MJk — 1)(Dlog 27 + log det El(cpr))

My, .
2 : T (pr) ~

+ Vikm Ek Vikm
m=1

-1
— jijk E;’p) ij> , (244)
with trainable parametei® ™" for 1 < k < K.

C.1. Estimating the prior

The estimation of the prior parameters from an existing betctors
is quite simple. We first cover the ML estimation and then abers

23

training from going anywhere. Secondly, since we will mastlly
apply the prior during estimation with a scaling factor agglto it,

if the scaling factor is too large and we have a lot of pararsetéth
few observations associated with them it is possible to lzas#-
uation where the prior can force the parameters to take vaslls
values, which makes the prior even smaller, and so on. A flaor o
the prior is a good way to arrest this process. Thirdly, itasgible
that we may attempt to train a system where the dimenaighof
the variances ®?) is greater than the number of observationand

in this casex ®*) will be singular.

See Appendix | for a description of method used to floor a co-
variance matrix. It is analogous to diagonal variance flugpaxcept
generalized to the full covariance case. There we define @ifum
A = floor(B, C) whereC is the “floor” matrix which must be pos-
itive definite andA is the floored version dB.

The flooring applied to the matric@,ip") is:

sr(pr) (pr)
D3Py = ﬂoor(Ek, » —on Hek

L gem ’1> , (248)

with H,i,sm) as defined in Equation (87). The quanﬂﬂf,:m) lis
dimensionally the same as a variance so it makes sense teosdla
multiple of this for the variance floor on the prior. We arpiie
using a value of-®") of around 5 to 10, although the calculation
will probably not be very sensitive to this. It will be usetol keep
track of how many eigenvalues are floored in the matrix flaprin
process above; we expect a minority at most to be floored if the
process is working as expected. The eigenvalues on therdiagb
L in Equation (291) will be a useful diagnostic; we expect thtem
decrease quickly at first and then more slowly.

A suitable formula for flooring the joint variancg®”) is:

< (pr T 1
=0 floor (2“”) WF) (249)
Hgsm)71 0 »
F — 0 H{™ (250)

Again*? is a constant that can be set to 5 or 10, and as before weation is, suppose we have a collection of N vectors. . x and

should keep track of the number of eigenvalues floored armbats
the eigenvalues in Equation (291) within the flooring preces

C.3. Applying the prior

This section describes how we apply the priors obtainedeldov-
ing model estimation. We apply them with a weigtit”) which we
anticipate might be in the range 5 to 10 for speech tasks. vBelo
we use the letteP for the inverse of a variancE, so for instance
PP — £ 7" We break up the large precision mati®
into S by S blocks and usf’l(jr) to refer to the block at row-position
k, column-positior/; similarly we useu](c"r) to refer to thek’th S-

dimensional sub-vector of vectgr®”. When updating the vector
Vjkm, the prior termis:

1 P(pl

P(Vikm) —0-5Vkam (M -

Mjr — 15 (pr)>
_A'_Jip Vikm
My, * I*
1 o (pr

Y jhm > TPV

m/ el My \{m} "

— P(Pr)< (k k))V , (PY))> (251)

E: Kk’ gk Mg :
k=1

We would then use modified valug¥;,, andg;x. when comput-
ing the vectow jx., using Equation (84), as follows:

) T 1 5 r Mk - 1= T
Hjm = Hjpm +70 (—MjkP,?,;) + 75\4;@ P >)(252)
gjkm jkm T T(pr) Z / P(pr)Vka
m/e{l. M \{m} ~ IF
S PO (1= (K k) ¥nr — ui‘?”)) (253)
k/=1
Viem = HjgnBjkm (254)

Note that the vectors that appear on the right of Equatiosi®)(Rave
a hat on. This is supposed to indicate that where other \&watithin

the same state appear in the equation, we should use thelyalrea

updated versions if they have already been computed, rétaethe
pre-update ones. The vector which is being updated,., appears
with zero coefficient on the right hand side of Equation (258)
Equation (254) does not contain a circular reference. Thiate
may be done several times for each state, iterating vand m
each time, to get a more exact answer. The reason why we fatenul
it like this is to avoid the need to invert a very large matiix éach
state.

The data likelihood improvement should be measured usiag th
unmodified form of Equation (81). With a prior involved we cam
longer guarantee that the auxiliary function excludinggtier term
will improve on each iteration but we still expect it to impein
practice.

D. MODELING OFFSETS FROM A MEAN

For the prior distributions over the vectorsy,,, we require a model
for deviations from a mean value in a particular situatiome Bit-

24

we have already somehow modeled their mgas + >0 x,..
We want to model the deviations from the mean. These deutio
X, = X, — X cannot be modeled independently because they are
correlated (they are constrained to sum to one). A sensitale-p
ability model is to assume that the vectors were independently
generated with a variandg, and the mean was then removed. We
use this assumption below to work out the distribution of dffset
vectorsx,.

Let us first cover the single-dimensional scalar case ¥ith-
[1] and then generalize to higher dimensions. We retain thewect
notation even though the vectors have only one dimensioa.dig:

X1

tribution of x = (before normalization) i¥x. We now

XN
want to work out the probability distribution over the offs&,,. We
can use a form of Bayes' rule:

px) = P ;T%T) (255)

with K a constant that reflects that fact that althosgiindx deter-
minex and vice versa, the likelihood valup$x, x) andp(x) may

not be the same because of scaling issues. This may depend on a
choice of what exactly we mean when we wrifg), but for current
purposes it does not mattek is a function only of N and we will

not need to work out its value. We can work @ik) by noting that

it has variancek, and using the fact that = +x" 1 with 1 a vector

of all ones. Ignoring normalizers, the distributions oxgrx andx

can be expressed as:

p(x) o exp (70.5XTIX)

p(X) exp(%lelTx>

(257)
(258)

p(X]%) o exp<—0.5xT< T)x). (259)

The normalizing factor for Equation (259) can be worked oatrf
Equation (256), putting ix = 0. We get:

1
I-—11
N

1
Kexp—§ ((N —=1)log2rm

+xT <I - %11T> x
Note that although we write the likelihood agx|x) the result does

not actually depend on the value ®f For the vector-valued case
with non-unit variance of dimensionD, we can work out:

p(x[x) (260)

(261)

p(x|x) = Kexpf% ((N = 1)(Dlog 27 + log det X2)
N
+> %, 27 %, — NXE ') (262)
n=1

If we are in a situation where we want to train the variabtgiven
given a collection of setg!™ .. x\™ for 1 < m < M, each
potentially of a different sizéV,,,, the update equation is:

SN (S) = Ny) &
= - (263)
Zm:l Nm -1

with the average quantities™ being defined in the obvious way.
The derivation is fairly simple.

E. MAXIMUM LIKELIHOOD GAUSSIAN CLUSTERING
ALGORITHM

What we are describing in this section is an algorithm to dxiMa

mum Likelihood clustering off diagonal covariance Gaussians to a

smaller number of diagonal covariance Gaussians, by minimizing
the likelihood loss (weighted by ;) that we would get if we were
to model the data from each Gaussiarc j < J by the Gaussian
from its clusterl < i < I. Note that the indiceg and: as used here
have no intrinsic connection with the same letters usedwleee in
this document (except that the number of clustensll typically be
the same as the number of Gaussiansthe shared GMM).

The input to this algorithm is a set of Gaussians with weights
wj, meangu; and diagonal covariancés; (with diagonal elements
afd). The output is a set of Gaussians corresponding to cluster
centers, with weightso;, meansii; and diagonal variances;, to-
gether with a mapping from each of theGaussians to thé cluster
centers which are represented as diagonal Gaussian diginib.

This algorithm is not particularly fast. There are variousys/
of speeding it up but they tend be quite complicated. We sstgge
initially throwing away all but the Gaussians with the higheounts
(e.g. just keep the 10k most likely Gaussians) in order toariak
acceptably fast, and also limiting the number of iteratjang. to
40 or so. Regardless, Gaussians with zero weights shoutt e
away at the start. We should also avoid taking a log on eackrim
sion of the computations below, instead keeping a runnioglymt
and taking a log at the end; we can detect if we have a floatimg po
overflow or underflow by checking for zeros or infinities whea w
come to take the log, and in that case just back off to the oiefft
version.

The algorithm is easiest to write down if we represent thiahi
and clustered Gaussians as statistics. We will write

Cj = wj (264)
m; = iy (265)
S; = Sjd, 1< d <D: (266)
sja = ¢i(ta+0ja) (267)

as the zeroth, first and diagonal second order statistigectsely
of the initial Gaussians. Let us use the notatfon= {j1,7j2 ...} as
the set of Gaussians in clusterandc(j) as the cluster to which
currently belongs. We start with a random assignment of &8ans
to clusters, e.g. us€j) = (j mod I) + 1. We maintain throughout
the algorithm the statistics for the clustered Gaussiarsctware
always equal to:

& o= Y ¢ (268)
JES;

m, = » m (269)
JES;

S; = ZS]' (270)
JES;

The likelihood contribution of a clustérns:

=2
m;,

=)) (271)

Sid
Ci

2

D
1(i) = —0.5¢; <27rD +D+log [| (
d=1

25

and we can ignore thizr D + D as it will not affect the answer. The
objective function we are optimizing is the sum of all #ig). It is
useful to keep the values &fi) stored throughout the process. The
basic operation of this algorithm is: supposing Gausgias cur-
rently in clusteri (and is not the only element in clust&gr try mov-
ing j to some other clustef and see if this would increase the like-
lihood. We do this by making a temporary copy of the statstir
statesi andi’, subtracting the statistics fgrfrom i and adding them
tos’, and computing the altered values 6f) andi(i’). If the sum of
the altered valueKi) + 1(i') is greater than the current sum, we can
movej from clusteri to i’. Moving j will involve keeping various
quantities updateds;, ¢;, m;, 8;, (i), Sy, ¢y, My, S, 1(i'), c(j).

The exact order of attempting to move Gaussidrom i to i’ is
up to the coder. The obvious approach is: on each iteratiovisite
eachj which is not part of a singleton cluster, and actually test th
improvement we get from moving to each:i’ other thanc(j), and
then pick the best. A possibly more efficient approach woelab
each iteration to test movingto some subset of all thé, where the
subset is determined by the iteration number: e.g. oniterat pick
all i’ such that(i’ + j) = p(mod K) for someK (e.g. K = 10).
Then the first time we find aii that we would be willing to move
to, move it and continue on to the neit

The stopping criterion can be either to stop when we see ne mor
changes (e.g. when we have goReiterations with no Gaussians
moving), or to stop after a predetermined number of iterstid\fter
we stop, we have to convert the statistics back into the foira o
mean and variance and a weight. This is quite obvious:

hi = —m (272)
Ci
5, m2
52 = Sgd - “;;d (273)
- ZCC (274)

The covarianceX; that result from this procedure are diagonal.

F. MATRIX CALCULUS DERIVATIONS

F.1. Derivations for Equations (217) and (218)

For Equations (217) and (218) we need to compute the firstend s

ond derivatives of the expressidog det(A + kA) with respect to
k. The first derivative is

d _
k

3 log det(A + kA)

= tr((A+EkA)'A), (275)
which we can obtain from the formutg log M| = tr (M~ "9M).

For the second derivative we first ugbtr (M) = tr ($X). This
tells us that

2

a5 log det(A + kA)

(A +kA)"A)).(276)

= tr (i
B dz
We then use the formulg: (MN) = M <Y + 9MN to turn the
right hand side of Equation (276) to (<= (A + kA)"")A). We
can use the formulgE M~" = —M~" <M M~ with M equivalent
to (A + kA), to arrive at the final formula:

d? —1 —1

7 log det(A + kA)=tr (A +kA) 'A(A +kA) T A).
(277)

G. OPTIMIZING POORLY CONDITIONED QUADRATIC
AUXILIARY FUNCTIONS

G.1. Vector optimizations

The techniques described in this document include a nunilpeob-
lems where the auxiliary function and update are of the gefi@m:

Q(x)
x = H'g,

(278)

X g — %XTHX
(279)

whereH is symmetric. There is no problem hereHr is of full
rank; however, there are many cases we encounter where Elthe
is not of full rank, or the condition oH (the ratio of smallest to
largest singular values) is so large thtis indistinguishable from
a reduced rank matrix. This arises naturally whErés a weighted
outer product of vectors,, andg is a weighted sum of,,:

N

H = Zanvnvz (280)
n=1
N

n=1

with a,, > 0. It will always be the case in the problems we deal with

here that nonzeré,, implies nonzeroa,, (otherwise the auxiliary
function might have an infinite maximum value). If the numbér
nonzeroa,, is smaller than the dimension of the problemwill be
of reduced rank and we cannot invert it. If we had access torilge

inal vectorsv,, we could solve the problem in a least squares sense

in the space spanned by the vectors, but we are generallgdidoc
work from the statisticg andH themselves. Numerically determin-
ing the rank of a matrix likéH is usually not practical [12]. There-
fore we have developed a procedure for solving this problémchv
is robust given imprecise statistics. Because we cannatlgieen-
tify the “null-space” of the problem, trying to solve the ptem in a
least squares sense and setting those dimensiaasoafero would
be dangerous. Instead we aim to leavéhe same as it originally
was in those dimensions by reformulating the problem in seofn
the offsetA = x — x.

The method is as follows:

o If H is the zero matrix, leave the variabtehe same. Other-
wise:

e Computeg = g — Hx. This is the value of in the auxiliary
function inA.

e Do the SVDH = ULV7, which impliesH = ULU7”
becausd is positive semi-definite.

e Compute a floorf = max(e, 22tkii), with K a maximum
condition (e.g.10") ande for example10~*°.

o Compute the floored diagonal matiix with 7;; = max(f, ;).

e ComputeA = U(L~*(U”g)) (the bracketing shows the
order of evaluation).

e Computex = x + A.

e Measure the change in the auxiliary function of Equation 278

betweenx andx.

Note that if the largest (absolute) elementkfis nonzero but
very tiny (e.g. less thahd~*°), it may be necessary to scale it before
doing the SVD and then apply the reverse scale to the méirix
standard SVD algorithms can fail with very small values.

G.2. Matrix optimizations
In the update of the projection matrich$;; andINx; we encounter

an auxiliary function and update which is of the general form

QM)

M

tr(MT27Y) — %tr(zflMQMT) (282)

YQ

= (283)
with Q a symmetric positive semi-definite matrix, adthe same
dimension adVI, and X is symmetric positive definite. Again the
problem arises if the condition @@ is poor. We will simply state
the procedure used, as the rationale is the same as above.

e If Qs the zero matrix, do not updadd. Otherwise:
e ComputeY =Y — MQ

e Do the SVDQ = ULVT, which impliesQ = ULU7?
becausd) is positive semi-definite.

e Compute a floorf = max(e, 2252lit) with K a maximum
condition (e.g.10*) ande for example104°.

o Compute the floored diagonal matilix with I;; = max(f, Li;).
e ComputeA = (YU)L™H)UT,andM = M + A.

e Compute the change in auxiliary function by evaluating
Equation (282) fotM and M.

e [fthe auxiliary function decreased, print a warning, rattire
old valueM and continue. Otherwise, accumulate the change
in auxiliary function for diagnostic purposes and retura th
new valueM.

H. CONDITION-LIMITED INVERSION

Here we describe a method of inverting symmetric positivaise
definite matrices using a method that gives a result for cegrihat
are singular or close to singular. Given a symmetric pasisemi-
definite matrixA, we are returningd !, whereA is a matrix very
close toA but modified to floor its eigenvalues the largest eigenvalue
of A divided by a specified condition numbét.

The 2-norm conditionsz (A) is the ratio of largest to smallest
singular values (it can be defined in various ways dependmnthe
matrix norm used, but this is a common one). For matrix ineers
to be stable, the condition should be much smaller than trerse
of the machine precision [12], e.g. much smaller than ab&tifor
single precision arithmetic. Typically, depending on skt we will
be able to limit the condition to be much smaller than thig, ¢o
1000 or so.

First we define a function:

A = limitcond (A, K), (284)

e If this change is negative, print out a warning, do not updatewhich limits the condition of a symmetric positive semi-aét ma-

this parameter (returr), and continue. Otherwise, retugn

trix A by flooring its eigenvalues to/K times the largest eigen-

and accumulate the total auxiliary function change for €diag value. The process of computinl gives an easy way to compute

nostic purposes.

26

its inverse.

Given a matrixA which is symmetric positive semi-definite, and
a specified maximum conditioR’, we do the singular value decom-
position
A =ULv” (285)

with U andV orthogonal and. diagonal, and return the matrix

A =ULU”T (286)
with the modified diagonal matriL. with its diagonal elements
floored to the valug = max(e, 22%ilit), sol;; = max(f, li;). We
can use a number like0~4° for ¢; this is to avoid getting infinite
answers. In the kinds of problems where we will use this, ithis

acceptable. The number of diagonal elements floored is allusef

diagnostic. In the situations where condition-limitinguiseful we
will generally actually require the inverse of this condiitilimited
matrix, which we can do as:

A7t =uL'u”. (287)
AssumingA was positive semi-definite, the differengd — A||
will be no more thanf. Note that we returiJ” rather thanv'”
on the right to ensure symmetry and positive definitenesg\- i
symmetric,U and'V will in general be the same up to signs of the
columns, and these signs will be the same for positive defiit

However if A has a rank deficiency of more than two, the rows and

columns ofU andV corresponding to the null-space could be ro-
tated arbitrarily, and by replacing with U we ensure that the result
is symmetric. Note that if a column &f had a different sign from
the corresponding column & and the correspondinlg; was larger
than the floor we would effectively be flipping the sign of thgen-
value from negative to positive, but this violates our agstiom that

A was initially positive semi-definite.

Note that if the largest absolute value of any elemenAins
nonzero but very tiny, e.g. less thad~*°, standard singular value
decomposition algorithms may fail. Our implementationiofsilar
value decomposition detects this condition and preschkgtatrix
before giving it to the standard algorithms, and then schlessin-
gular values afterward by the inverse of the pre-scalintpfac

. FLOORING A MATRIX

Here we describe a general procedure for flooring a matrat, ith
useful for flooring full covariance matrices and for othergmses.
We define the function

A

floor(B, C) (288)
whereB is a symmetric positive semi-definite matrix aflis a
symmetric positive definite matrix of the same dimensionfoks
lows. First, we do the Cholesky decompositién= LL”. Then we

define

D = L'BL™” (289)
We do the singular value decomposition
D = UMV’ (290)

which becaus® is symmetric positive semi-definite implies

D uMuU” (291)

27

(see Appendix B), witlM diagonal andU orthogonal, and define
M’ as the diagonal matrid of Equation (291) with its diagonal
elements floored at 1, 30;; = max(1, m;;). Then we set

uM'u”
LD'LT.

D’
A

(292)
(293)

This functionfloor(-, -) is like amax operation on symmetric ma-
trices, except that it treats the first and second arguméifiesehtly
(in particular, the second is required to be positive def)nit

J. ESTIMATING AND USING PRIORS OVER THE
PROJECTIONS

In this section we describe how to train and use prior digtiiins
over the projection®I andN. This is in order to get better parame-
ter estimates and to solve the problems of poor conditiottiagwe
encounter during update.

We will describe the procedure only fd1 sinceM andN are
mirror images of each other and the generalization is olsvidine
prior distribution we will use oveM is a Gaussian prior with a
constrained covariance structure. Essentially we aredryo find
a covariance, and%; such that the elements &; °°M%, %5
are independently distributed with unit variance. We wilkame
that we are estimating a single prior that is shared betwkesoila
modelsk; we do this because it is possible that the number of pro-
jections I, within a particulark could be less than the number of
rows or columns oM, which would cause problems in parameter
estimation. This procedure does assume that the total mwhpeo-
jections is more than the larger of the number of rows or colsiof
M, but if not we could simply limit the condition of the covamnizes
by some floor as described in Appendix H.

We will simply state the procedure as the derivation is not
too difficult. Recall thatMy; is a D by S+1 matrix. First we
find the mearM = ﬁ >k Myi. We initialize =, = T €

REFDXEHD gand 3, = I € RP*P. Then for several iterations
(e.g. five iterations), we do:

1

DY, I
1

b . S

(S+1) 35 Ik

= > My —M)E (M —M) T (294)

ki

> (M =M= (My; — M). (295)
ki

At this point we can limit the condition o¥; and 3, to some
large value (say, 1000) by flooring eigenvalues as desciibég-
pendix H, in order to cover the case where there are too fewicrat
to estimate the prior. We can make sense of these equatiortiby
ing that if M; = (My; — M)X;"%5 which isM, with the global
mean removed and with the columns decorrelated, aiid.jf; is the
d'th row of this, then we are setting; to the variance of these rows.
The expression for the likelihood of a mati™ given our prior is:

log P(M)

exp 7% (D(S+1) lOg(Qﬂ') + (S+1) det 3,

+Ddet S, + tr (2;1(1\/1 ~ M) N (M - M)T)) (296)

We will scale the prior with a scale®™ (e.g. 10 or 20), the same
value that we use for the priors over the other parameteiis.ig he-
lated to the language model scale used in decoding as itvedigt-
ing factor between probabilities produced by our model ameal”

probabilities. The auxiliary functio®’ (M) that includesr (P*)
times the prior plus the original auxiliary function of Edjiaa (100)
can be written as follows:

Q' (My) = K'+tr(M'Z.'"Yii)
1 _
*itr (25 My Qri MY,;)
+rP (M S ME)
(pr)
T (27 MLE M), (297)
We can write this more compactly as:
FM) = tr(MTG)—%tr(PlMQlMT)
- %tr (P.MQ.M7) (298)
G = X,'Yu+r®x 'Met (299)
P, = 3} (300)
Qi = Qu (301)
P, = 3! (302)
Q = 7Py (303)

whereP;, P, and Q. will be symmetric positive definite an@;
will be symmetric positive semidefinite. We can maximize &qu
tion (298) by computing a transformatidh that simultaneously di-
agonalize®?; andP, and doing a row by row update in the trans-
formed space. Let us suppose we want to mBkeunit and diago-
nalizeP,. We do the Cholesky decomposition

P, =LL", (304)
defineS = L™ 'P,L~7, do the SVD
S =UDV” (305)

(which impliesS = UDUY? because is positive definite, see Ap-
pendix B), and our transform is

T=U"L", (306)

so thatTP;T? = I and TP,TT = D. Let us defineM’ =
T-TM, and if we defineG’ = TG we can write our auxiliary

function as:

FM) = M/TG/—%tr(M/QlM’T)

(307)
(308)

—%tr (DM'Q.M'").

We can separate this out for each remy, of M’, so (usingg/, as
then'th row of G’, andd,, as then'th diagonal element oD):

F(my)

/ / 1 / !
m), - g}, — s, (Qi + dyQa)my,, (309)
so the solution is:

g;L(Ql + anQ)_l
T M.

(310)
(311)

5~

28

K. RENORMALIZING THE PHONETIC SUBSPACE

It can be useful to renormalize the phonetic subspace (theesin
which the vectorss;,, lie) on each iteration. This is firstly to avoid
numerical issues that can arise if the vectors are too higbiye-
lated between dimensions or have a too large or too smallndigna
range, and secondly to concentrate most of the importaidticar
in the lower-numbered dimensions, which is convenient ifweat
to display the phonetic subspace. If we ignore humericakissand
questions of flooring, condition-limiting and so on thatsarisec-
ondary to numerical issues, this renormalization makeslately
no difference at all to the model.

The aim in this renormalization is to ensure that the vectors
v;rm have unit variance and that the most important variatiohén t
vectors is localized to the first dimensions. We ensure thididgo-
nalizing the matrixH ™™ of Equation (87) and sorting its projected
dimensions from largest to smallest. This is appropriateabse
Hl(jm) is analogous to a precision matrix (an inverse covarianug) a
vjrm IS analogous to a mean, so if we have ensured that the means
have unit variance if we put the largest elements of the diatiped
precision first it corresponds to having the dimensions wiittallest
within-class variance first, once the between-class vegidgsm made
equal to unity. Some of these equations will look a littlefefiént
from the typical LDA formulation because we are dealing véth
inverse variance like quantity rather than with a varianoarjty.
We avoid inverting ™ because it will be singular before the sec-
ond iteration of training.

The renormalization is done separately for each sub-mbdel
For each sub-modél we compute the variance

S (312)

M
- — Ziv v
JkmVjikm,
>, My,

i m=1

which is the variance of the vectors prior to normalizatidh.Sy,
is singular (e.g. its condition is more than'®) we should skip
the renormalization because the vectors are linearly dagren it
probably means we have not yet done any iterations of upisite.
then do the Cholesky decomposition

S, =LLT. (313)
A transformation that diagonaliz&s, is nowL~!. We then compute
the “transformedH\"™ as:

P=L"H"™L. (314)

(Note that becausHl(f’“) is a precision-like quantity we must trans-
form with the inverse transpose of the transformation traild ap-
ply to a variance-like quantity). We then do the singulaueatie-
composition:

P=ULVT, (315)

which implies thalP = ULU7 becausé is positive semi-definite.
We must make sure to sort the diagonallodnd the corresponding
columns ofU from largest to smallest singular value. Now we can
clearly diagonalizeH,ism) with UTLT, and the appropriate trans-
formation on the vectors themselves is the inverse tranpbtdas,
which isUTL ™! (we use here the fact thif ~! = UT becausdJ

is orthogonal). So the transforii and the resulting updates to the

parameters are below:

F = U'L™! (316)
Vikm = FVjim (317)
Wi = F Twe (318)
My, = MF L (319)

It is easy to show that the produdid ;v xm andwy; - vxm Will

be the same before and after this transformation. Notefthag are

not using offsets on the vectotsy,,, i.e. we do not have expres-
sions Iikevj,m then the vectors themselves contain the unit offset
term; typically after the transformation described abdig tinit off-

set term will to the first dimension in the transformed spax¢he
most significant dimensions for display and visualizatiomppses
would be dimensions two and three.

29

