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Abstract—In this technical report we describe a linear trans-
form that we call an Exponential Transform (ET), which inte-
grates aspects of Constrained MLLR, VTLN and STC/MLLT
into a single transform with jointly trained components. It s
main advantage is that a very small number of speaker-specific
parameters is required, thus enabling effective adaptation with
small amounts of speaker specific data. The key part of the
transform is controlled by a single speaker-specific parameter
that is analogous to a VTLN warp factor. The transform has
non-speaker-specific parameters that are learned from data, and
we find that the axis along which male and female speakers
differ is automatically learned. The exponential transform has no
explicit notion of frequency warping, which makes it applicable
in principle to non-standard features such as those derivedfrom
neural nets, or when the key axes may not be male-female. Based
on our experiments with standard MFCC features, it appears to
perform better than conventional VTLN.

I. I NTRODUCTION

This technical report is an extended version of our paper [1].
This introduction describes the exponential transform andour
motivation for it; Section II describes in general terms the
estimation processes involved in implementing the exponential
transform, and Section III provides the detailed equations.
Section IV explains our baseline VTLN implementation for
the experiments, Section V gives experimental results, andwe
conclude in Section VI.

A. Vocal Tract Length Normalization (VTLN)

Vocal Tract Length Normalization (VTLN) [2], [3], [4], [5]
is a standard feature of modern speech recognition systems.
The basic idea is to scale the frequency axis on a per-speaker
basis so as to normalize the formant positions. These can vary
by about 20% between speakers [6] because gender and other
factors affect the length of the vocal tract. The “standard”
approach to VTLN requires repeating feature extraction a
number of times (e.g. 20 times), for a discrete set of warping
factors. This is not very efficient, and can sometimes be
inconvenient to implement due to the need to access the
original waveform data.

B. Linear VTLN (LVTLN)

Linear-transform based implementations of VTLN have
been investigated by various authors [2], [7], [8], [9], [10],
[11]. The basic idea is to approximate the VTLN frequency
warping by a linear transformation of the MFCC or PLP
features. In some cases [2], [7], [9] this is based on an analysis
that leads to a formula; in other cases [8], [10] it is based
on linear transforms which are trained to approximate the
conventional feature-level VTLN warping. At test time these

techniques are equivalent to Constrained MLLR (CMLLR)
[12] but choosing from a fixed set of transforms. Note that
when applying a linear transformx→ Ax+b, one should add
log | detA| to the log-likelihoods, as dictated by the identity

N (Ax+b; µ,Σ)| detA| = N (x;A−1
µ−A−1b,A−1ΣA−T ),

(1)
where the right hand side represents the “model-space” inter-
pretation of the transformation. This is referred to as Jacobian
compensation, sinceA is the Jacobian of the transformation.
In practice not all authors include the Jacobian term; see [11]
for an investigation of the effect of this. In conventional
(feature-level) VTLN, cepstral variance normalization gener-
ally has to be applied because there is no natural way to do
Jacobian compensation [10].

Linear-transform based approaches to VTLN have generally
been found to be about as effective as standard VTLN,
while being more efficient to implement. Typically about 20
transforms would be estimated at training time, and at test time
one would select the best one of these based on the likelihood
assigned by the model to the transformed data. Linear VTLN
is in effect a specially constrained form of CMLLR.

C. Linear VTLN via Maximum Likelihood

A natural question to ask is: once we are working in
a linear transform based framework, why not estimate the
(say) 20 transforms in a purely data-driven way, without
reference to the original VTLN? For large training datasets, the
number of parameters to estimate is trivial. It is fairly obvious
how one could do this in a K-means type of framework,
iteratively estimating transforms and reassigning speakers to
transforms. One can even envision initializing these clusters
from the VTLN warp factors, thereby nudging the system
towards normal VTLN, and if necessary one could enforce
this relationship by disallowing the reassignment of clusters.
Our experiments along these lines (not described here) were
not successful, and these ideas are so obvious that most likely
other researchers have tried them and had similar experiences.

D. Basic idea of the Exponential Transform

Our thought at this point was that perhaps the essence of
“VTLN-ness” is that the transforms should forced to form a
continuous sequence. The form that we felt was most natural
was as follows:

A(s) = exp(t(s)A), (2)

wheret(s) is a speaker-specific scalar that may be positive or
negative and that is analogous to the log of a VTLN warp



factor,A is a global parameter that is learned from data, and
A(s) is the speaker specific “exponential transform”. Here,
exp is the matrix exponential function, which is defined (for
square matrices only) by a Taylor series expansion:

exp(M) ≡
∞
∑

n=0

1

n!
Mn, (3)

with Mn defined in the obvious way as a product ofM with
itself n times (M0 is just the identity matrixI). The nice
property of (2) is that if we multiply two of these transforms
together (say with two values oft: t1 and t2), we get the
corresponding transform for their sumt1+t2. This matches up
with certain intuitions about what it means to warp something
(viewing t as analogous to the log of the warping factor).

The estimation framework we have in mind is Maximum
likelihood, where in training time, we jointly optimizet(s) for
training speakers andA, to maximize data likelihood. At test
time A would be fixed and the single parametert(s) would
be estimated for each speaker.

We emphasize that, like linear VTLN, ET is a specially
constrained form of CMLLR.

E. Problems with the basic version of the idea

There is a problem with this approach that dissuaded us
from implementing it in this simple form. The issue is that
there might be ways to increase the data likelihood which
could take the functional form of (2) but would not be what
we think of as VTLN. For example,t could correspond
roughly to an energy normalization parameter (modulo certain
discussions about whether the transform is linear or affine,
and whether it matters). Alternatively, if the likelihood im-
provement from Semi-Tied Covariance [13] (a.k.a. Maximum
Likelihood Linear Transform, or MLLT) were greater than that
from a VTLN-like transform, we could get greater training
likelihood by havingexp(A) correspond to the STC/MLLT
transform, andt(s) always being one.

F. Full version of the Exponential Transform

We fix these potential problems by adding new elements
to the formulation. The end result can be thought of as
roughly equivalent to “mean-offset MLLR plus VTLN plus
MLLT/STC”. The basic intuition is that if we want to capture a
relatively subtle effect, we need to normalize for the big effects
first. Although this increases the complexity of the method,in
some sense we are only moving the complexity in the system
around, because a system with the Exponential Transform (ET)
will now not need MLLT/STC or clever approaches to mean
normalization (we might still normalize the mean to help the
first-pass decoding).

Let the feature dimension bed. We are using notation for
affine transforms wherex+ representsx with a one appended,
and an affine transformW is represented as

W = [A b] , (4)

where A is the linear part andb is the offset term (this
transformsx to Wx+). The “complete” exponential transform

(ET) is:
W(s) = D(s) exp(t(s)A)B, (5)

whereD(s) is a mean-offset-only CMLLR/fMLLR transform,
the exponential term is the core “exponential transform” part,
andB corresponds to MLLT/STC. Any quantities without the
superscripts are globally shared. The dimensions areD(s) ∈
R

d×(d+1), A ∈ R
(d+1)×(d+1), and B ∈ R

(d+1)×(d+1). We
will explain the significance of the last rows and columns of
A andB below. This transform “acts on” the extended feature
x+, so it transformsx with:

x→W(s)x+. (6)

At test time we can optionally makeD(s) a diagonal-only
CMLLR transform rather than mean only, but at training time
this would significantly complicate the estimation formulae.
Note that if we allowedD(s) to be a generic CMLLR
transform, the technique would be completely equivalent to
CMLLR so there would be no point in our method, which is
just a specially constrained form of CMLLR.

Reflecting its mean-offset function,D(s) is a matrix with
ones along ad× d diagonal, unconstrained entries in the last
column, and zeros elsewhere. At test time, we optionally allow
unconstrained entries on the diagonals, but not at trainingtime
as this significantly complicates the reestimation formulae.

G. Incorporating linear offsets

We mentioned above thatA andB are both square matrices
of dimensiond+1, so as to encompass affine transforms. This
doesn’t add any power to the transform sinceD(s) already
has an offset term; it just makes the estimation ofA converge
slightly faster. The last rows ofA and B are constrained to
take on particular values: the last row ofB is 0 0 . . . 1,
and the last row ofA is zero, which means that the last row
of exp(t(s)A) is 0 0 . . . 1. Since the transform gets applied
to x+, the purpose of this last row is to “pass through” the
last element (i.e., 1) unaltered and make it available for later
transforms in the series (noting that the transforms in (5) can
be viewed as being applied in order from right to left). The
last columns ofA andB correspond to offset terms.

II. D ISCUSSION OF THE ESTIMATION PROCESS

In this section we give an overview of the optimization
processes needed to implement the exponential transform. We
write the detailed equations in Section III. We have organized
it this way because the details of Section III are mostly of
interest to someone intending to implement the method, but
this section is of more general interest.

A. Overview

At training time we need to compute the global parameters
A andB, and also train a model on suitably adapted features.
The objective function we optimize is the data likelihood;
the procedure is based on Expectation-Maximization (E-M),
although the estimation ofA is not strictly E-M (it is not
guaranteed to increase the likelihood, although it does in
practice). An overview of the training procedure is:



• Initialize the global parametersA andB

• For a number of training iterations:
– Computet(s) andD(s) for the training speakers
– Update the model (means, variances, etc.)
– On early iterations (e.g. the first 15 iterations), alter-

nately:
∗ Update the matrixA, or:
∗ Update the matrixB.

• Compute a speaker independent model using just (the first
d rows of) B as the feature-space transform.

The speaker independent model has the same mixture-of-
Gaussians structure as the final speaker-adapted model, andis
computed in one pass using Gaussian-level alignments from
the speaker-adapted model and features. It is used at test
time for the first-pass decoding and to obtain Gaussian-level
alignments for estimating the transform.

B. Notation

We now explain some aspects of our notation:
• The feature dimension isd.
• We assume zero-based indexing of vectors and matrices

throughout this document.
• We usext for the unadapted features on timet. We don’t

have an index for the utterance (we just assume distinct
utterances have differently numbered time indices).

• x+ means the vectorx with a 1 appended to it.
• A−, whereA is a matrix, meansA with its last row

removed.
• A+, whereA is a matrix, meansA with a row with

value0 0 . . . 1 appended.
• A(+0), whereA is a matrix, meansA with a zero-valued

row appended.
• Gaussian mixture components in a HMM-GMM system

are indexedj, m wherej is the state andm is the mixture
component.

• The means and (diagonal) variances areµjm andΣjm,
with σ2

jmi as thei’th variance component.
• The Gaussian-level posteriors on timet areγjm(t).
• ei is a unit vector in thei’th dimension; the dimension

of ei is implied by the context.
• Unless otherwise defined,mi is the i’th row of M

(viewed as a column vector), andmi,j is its i, j’th
element.

C. Initialization

Inputs to the training process include some baseline features
(e.g. MFCCs with delta and acceleration) and a model trained
on those features. In our training recipes, we started from a
model with a single Gaussian per state because we intersperse
the training of the exponential transform with the normal
model training and mixing-up procedure; also, our belief based
on prior experience is that these types of estimation processes
make better progress on a model with a smaller number of
Gaussians. We initializeB to the unit matrix andA to a
random matrix with zero on the last row (we draw the other
elements ofA from a normal distribution).

D. Computing the speaker-specific transform

Computing the speaker-specific transformW(s) is some-
thing that needs to be done both at training and test time.
The problem is this: given fixed values ofA andB, we need
to compute the speaker specific transformW(s) which will
be of the form (5). The first step is to compute the standard
statistics as used to compute CMLLR/fMLLR (e.g. see [12]).
Then we iteratively estimate the scalart(s) and the CMLLR
matrix D(s). At training time,D(s) is constrained to be an
offset-only CMLLR matrix withd free parameters, but at test
time it is typically a diagonal CMLLR matrix with2d free
parameters (we will discuss the reason for this below). The
estimation of the scalart(s) is done via Newton’s method. The
estimation ofD(s) is a special case of the standard CMLLR
update formulae. We always use the Gaussian-level alignments
obtained using the previously computed transformW(s), if
applicable.

E. UpdatingB

UpdatingB is more straightforward than updatingA, so
we will cover it first. Suppose we have computed speaker-
specific exponential transformsW(s) for the training speakers.
We compute an STC/MLLT transform on top of the adapted
features. This is done in the normal way [13], with statistics
consisting ofd matrices of sized × d. Let the STC/MLLT
matrix we compute beC ∈ R

d×d, and letCf be asC but
extended with an extra row and column, consisting of zeros
except for a one in the diagonal element. As the update method
requires, we would at this point update the model means by
pre-multiplying byC. The speaker-specific feature transforms
are nowCW(s), and it not immediately obvious that these
would be valid “exponential transforms”, but they are. The
new transform can be written as:

W̃(s) = CD(s) exp(t(s)A)B (7)

= (CD(s)C−1
f )(Cf exp(t(s)A)C−1

f )(CfB) (8)

= (CD(s)C−1
f ) exp(t(s)CfAC−1

f )(CfB), (9)

and we can easily show that ifD(s) is an offset-only transform,
then so isCD(s)C−1

f (we cannot show this ifD(s) is a diago-
nal transform, and this is why we can’t letD(s) be a diagonal
transform at training time). We need to setA ← CfAC−1

f

andB← CfB, and for all the training speakers’ transforms,
to keep them up to date, we should setW(s) ← CW(s). At
this point we can “forget about”C. We refer to this as the
update phase forB even thoughA is also changed, because
it updates the STC-like part of the transform.

F. UpdatingA

The update formula forA is slightly less straightforward
than the one forB. We can without too much trouble compute
the derivative of the auxiliary function w.r.t.A. The basic
approach we use to updateA is a quasi-Newton method
where we use the derivative w.r.t.A and a reasonably close
approximation to the second derivative (the Hessian). Since
evaluating the objective function after updatingA would



involve revisiting the data (or at least, the per-speaker CMLLR
statistics), we do not use any kind of line search after the
quasi-Newton update ofA. This means that the update is not
guaranteed to converge. Divergence is possible, but we have
not seen it happen in practice.

In the rest of this section we describe how we approximate
the Hessian. What we will accumulate is a matrixGi for each
0 ≤ i < d, which is a positive semi-definite approximation to
the negated matrix of second derivatives w.r.t. thei’th row of
A. We emphasize that approximations of the Hessian do not
affect the fixed point of the update, only the convergence be-
havior. It would be possible (but quite tedious) to compute the
exact second derivative, but since this is not even guaranteed
negative definite, it would not guarantee good convergence
behavior.

DefineX(s) = exp(t(s)A). Let us writeQ′(s) for the aux-
iliary function for speakers, but ignoring the log-determinant
term for now. Expressed in terms ofX(s), it is:

Q′(s)(X(s)) = K(s) T
X(s) − − 1

2

∑d−1
i=0 x

(s)
i

T
G

(s)
i x

(s)
i ,

(10)
whereK(s) and G

(s)
i are CMLLR statistics in the standard

form that describe the auxiliary function as a function ofX(s);
we define the CMLLR statistics below, in Section III-A, and
in Section III-H we will describe how we get the statistics
needed to express the auxiliary function in terms ofX(s). We
now defineY(s) = X(s) − I, which will be convenient later,
and we re-express (10) in terms ofY(s), getting:

Q′(s)(Y(s)) =
(

K(s) − S(s)
)T

Y(s) − (11)

− 1
2

∑d−1
i=0 y

(s)
i

T
G

(s)
i y

(s)
i , (12)

whereS(s) is defined bys(s)
i = g

(s)
ii , i.e. its i’th row is equal

to the i’th row of G
(s)
i .

The Taylor series expansion ofY in terms ofA is:

Y(s) = t(s)A +
1

2
t(s)

2
AA + . . . (13)

The ellipsis in (13) involves terms of higher than order than
two in t(s)A, which we assume to be small. Expanding (12)
using (13), we have

Q′(s)(A) = linear plus constant terms inA

+ 1
2 t(s)

2
(K(s) − S(s))T (AA)−

− 1
2 t(s)

2∑d−1
i=0 aT

i G
(s)
i ai

+higher-order terms (14)

It is possible to accumulate sufficient statistics with the same
dimensions as the standard CMLLR statistics that capture
the behaviour of this approximation of the quadratic term.
Unfortunately, the effect of the second line of (14) can
sometimes destabilize the estimation process as it does not
correspond to a negative semi-definite Hessian. What we found
works better is to accumulate statistics that encapsulate an
approximate Hessian w.r.t. each row; this amounts to a block-
diagonal approximation of the overall Hessian, with a block

per row. The second line of (14) connects each row with
the corresponding column; the only part of this that operates
within a row is the part that affects thei’th element of eachi’th
row. Even this term is not guaranteed negative semidefinite,
so we only use this term (for a particular speaker) if it has the
desired sign; this avoids potential instability. The accumulation
phase is as follows, for0 ≤ i < d:

Gi =
∑

s

t(s)
2
(

G
(s)
i + max(g

(s)
i,i,i − k

(s)
i,i , 0)eie

T
i

)

. (15)

In the update phase, the change to a row ofA is given by
G−1 times the auxiliary function derivative w.r.t that row of
A. As mentioned above, we do not include any line search
because this would be quite cumbersome and would involve
revisiting the training data. There is no guarantee that this
update method will converge; failure to converge would be
obvious as the reported auxiliary function improvements not
becoming small in later iterations of update. In case this ever
happens, we included in our software a learning rate parameter
that can be set to less than one to slow down the update. If
this ever turned out to be necessary in practice, we would
insert logic to automatically detect failure of the likelihood to
increase, and slow down the learning rate or backtrack in this
case.

III. D ETAILS OF ESTIMATION PROCESS

In this section we give detailed equations for the estimation
processes needed for ET.

A. Definition of CMLLR statistics

The sufficient statistics for CMLLR (for a particular
speaker) are as follows, where0 ≤ i < d:

K =
∑

t,j,m

γjm(t)Σ−1
jmµjmx+

t

T
(16)

Gi =
∑

t,j,m

γjm(t)
1

σ2
jmi

x+
t x+

t

T
(17)

β =
∑

t,j,m

γjm(t). (18)

When we use these quantities below, we will often put a
speaker superscript·(s) on them. The auxiliary function is:

Q(W) = tr(KTW)− 1
2

∑D

i=1 wT
i Giwi +log | det(WT −

)|.
(19)

B. Manipulations of CMLLR statistics

There are some manipulations of CMLLR statistics that are
needed in our algorithms. SinceW(s) consists of a series of
chained transforms, these manipulations are sometimes needed
to “normalize away” the effect of other transforms.

Applying a transform in the feature space to some statistics
is done as follows. LetM ∈ R

(d+1)×(d+1) be a matrix with
last row0 0 . . . 1 that represents an affine transform. We do



as follows, which is is equivalent to having pre-multipliedx+

by M while collecting the statistics:

K ← KMT (20)

Gi ← MGiM
T . (21)

Applying a transform in the model space to some statistics is
done as follows. LetW ∈ R

d×(d+1) be the affine transform.
The model-space transformation can only be done ifW is
a diagonal transform, i.e.W = [M b] with M diagonal.
We’ll write the (i, i)’th element ofM as mi. The transform
corresponds to settingxi ← mixi +bi. After working out how
to equivalently apply this transform to the means and variances
and obtaining the corresponding transforms onK andGi, we
get as follows. The elements ofK change with:

ki,j ← miki,j −mibigi,d,j, (22)

where the indexd is the feature dimension (this assumes zero-
based indexing), and then the matricesGi are scaled with:

Gi ← m2
i Gi. (23)

C. Computing offset-only and diagonal transforms from CM-
LLR statistics

Given CMLLR statistics as described above, an offset-only
transform of the formW = [I b] can be computed using the
formula bi =

ki,d

gi,d,d
.

In the case of a diagonal transform, we now describe the
update process for each row of the transform (rowi, with
0 ≤ i < d). For clearer notation, we will defines ≡ wi,i and
o ≡ wi,d (the scale and offset parameters). We limit solutions
to s > 0; this is more natural and simplifies the estimation,
and it makes no difference in practice, in our experience. The
auxiliary function written in terms ofs ando is:

Q(s, o) = ski,i + oki,d

−1

2
s2gi,i,i −

1

2
o2gi,d,d − sogi,d,i

+β log s. (24)

We can solve foro in terms ofs and get

o = (ki,d − sgi,d,i)/gi,d,d (25)

Substituting this expression into (24), differentiating w.r.t. s,
equating the derivative to zero and multiplying bys to get a
quadratic function, we get the equation:

as2 + bs + c = 0 (26)

a =
g2

i,d,i

gi,d,d

− gi,i,i (27)

b = ki,i −
gi,d,iki,d

gi,d,d

(28)

c = β. (29)

Gettings > 0 requires taking the negative root (sincea < 0),
so the solution iss = (−b −

√
b2 − 4ac)/(2a). We get the

value ofo from (25).

D. Computing the matrix exponential function

For a review of ways to compute the matrix exponential
function, see [14]. The method we used is one of the simpler
methods discussed there. Suppose we are computingexp(M).
DefineP = 2−NM. We choose the smallest integerN ≥ 0
such that||P|| < 0.1 (using the Frobenius norm). The method
is a slight twist on the identityexp(P)2

N

= exp(M), using
successive squaring to compute the power. DefineB0 =
exp(P)− I, computed with:

B0 =

K
∑

n=1

1

n!
Pn, (30)

where the series is truncated when we detect that adding the
latest term has not caused any change inB0 (we remember
the number of terms asK). Then we use the recursion, for
1 ≤ n ≤ N ,

Bn = Bn−1Bn−1 + 2Bn−1, (31)

and the answer is given byexp(M) = BN + I.

E. Reverse differentiating through the matrix exponential
function

We also need to differentiate a scalar backwards through
the matrix exponential function; this is an instance of reverse-
mode automatic differentiation (but done “manually”). Sup-
poseX ≡ exp(M), and we definef ≡ tr(XT X̂), whereX̂

is a separate quantity fromX. that represents the derivative of
f w.r.t. X.

In general we will use a hat to denote the derivative of the
scalar function w.r.t. an arbirary quantity, using a convention
where there is no transpose, i.e.x̂ij ≡ ∂f

∂xij
.

In this section we are defining a function exp-backprop, of
the form

exp-backprop(M, X̂) = M̂, (32)

where the elements of̂M are the derivatives of scalarf =
tr(X̂T exp(M)) w.r.t. the corresponding elements ofM.

We will now describe the exp-backprop procedure. We
assume that the intermediate quantities used while computing
the matrix exponential function givenM (as described in
the previous section) are available. We are going backwards
through that computation computing derivatives. We first set
B̂N = X̂. Then forn = N−1, N−2, . . . , 0 we do:

B̂n = B̂n+1B
T
n + BT

n B̂n+1 + 2B̂n+1. (33)

Next we want to computêP, and we will do so with

P̂ =

K
∑

n=1

P̂n, (34)

whereP̂n is the part of the derivative arising from then’th
term of the truncated Taylor series (30). We setP̂1 = B̂0, and
for 2 ≤ n ≤ K, let

P̂n =
1

n
P̂n−1A

T +
1

n!
An−1 T

B̂0, (35)



where it may be convenient to cache the powers ofA from the
forward computation (or just start witĥB0 and left-multiply
by AT each time). The final answer is given bŷM = 1

2N P̂.
It is easy to double-check this computation using a small-
differences method.

F. Computing the speaker-specific transforms

In this section we describe how to compute the speaker-
specific parameterst and D (we will take the speaker su-
perscript·(s) as given), given the sufficient statisticsK, Gi

and β. At training time these statistics are computed with
Gaussian-level alignments given by the previous iteration’s
speaker-specific transformsW(s). At test time the Gausian-
level alignments are computed using features transformed only
with B, and an “alignment model” trained using single-pass
retraining with features transformed only withB.

We will omit the speaker superscripts. We first initialize
t ← 0 andD ← [I 0]. Then we applyB as a feature-space
transform to the statistics as described in Section III-B. We
next do several iterations of update (we used three iterations).
On each iteration we first re-estimateD and then re-estimate
t.

1) Updating D: In the update ofD, we first estimate
a transformD′ that will go to the right of any existing
transformD, and then modifyD to take into account the
new transformD′. We estimateD′ via Maximum Likelihood
from K, Gi andβ as either an offset-only CMLLR transform
(at training time) or a diagonal CMLLR transform (at test
time). We then setD ← DD′+ (the meaning of+ was
explained in Section II-B), and then applyD′ as a model-
space transformation to the statisticsK andGi as described
in Section III-B.

2) Updatingt: The update fort is similar to the update for
D in that we always estimate an “incremental part”t′ and add
this to t. To computet′ we do a single iteration of Newton’s
method , starting fromt′ = 0. The update formulas are as
follows. First defineJ ∈ R

d×(d+1) by:

J = K− S, (36)

where thei’th row si of S is the same as thei’th row gii of
Gi. This is the auxiliary function derivative w.r.texp(t′A)−,
ignoring the log determinant. We will be maximizing the
quadratic functionf(t′) = at′ − 1

2 bt′
2, with

a = tr(JT A−) + β tr(A) (37)

b = b1 − b2 (38)

b1 =

(

d−1
∑

i=0

aT
i Giai

)

(39)

b2 = tr(JT (AA)−) (40)

whereai is the i’th row of A. To ensure the correct sign of
update even in pathological cases far from convergence, we
replaceb1− b2 with b1−min(0.8b1, b2). We have never seen
this flooring take place in practice. We sett′ = a/b. We then
sett← t+t′, and apply the matrixexp(t′A) as a feature-space
transformation to the statistics as decribed in Section III-B.

After iterating the estimation ofD andt, we computeW =
D exp(tA)B.

G. UpdatingB

The accumulation and update formulas forB are based on
those for MLLT (equivalently, global STC). Definingx′ as
W(s)x+, i.e. the current transformed features, we accumulate
the sufficient statistics (for0 ≤ i < d),

Gi =
∑

t

γjm(t)

σ2
jmi

(µjm − x′) (µjm − x′)
T

, (41)

andβ =
∑

t γjm(t). Let the result of the MLLT/STC update
be the transformC ∈ R

d×d, which we optimize starting
from C = I using the formulas from [13, Appendix A]. For
convenience, we repeat them here. The auxiliary function is
β log | detC|− 1

2

∑d−1
i=0 cT

i Gici. To maximize it, for a number
of iterations (e.g. 10), we do as follows: for0 ≤ i < d,

F ← C−T (42)

ci ←
√

β

fT
i G−1

i fi
G−1

i fi. (43)

Let Cf be C extended with an extra row and column, with
zeros except for a 1 in position(d, d). After estimatingC we
do as follows:

• Transform the model by settingµjm ← Cµjm

• Transform all the current speaker transforms by setting
W(s) ← CW(s)

• SetA← CfAC−1
f , andB← CfB.

H. UpdatingA

The statistics for updating the matrixA are functions of
the standard CMLLR statistics for the training speakers. These
CMLLR statistics are computed with Gaussian alignments ob-
tained with features transformed withW(s), but the statistics
themselves contain the original featuresx, not the transformed
features.

For each training speakers, let the CMLLR statistics
accumulated as in Section III-A beK(s), G(s) andβ. Using
the current values ofD(s) and B, apply B as a feature
transform to the statistics and applyD(s) as a model-space
transform to the statistics, as described in Section III-B.Let
us write the transformed statistics asK̃(s) andG̃

(s)
i . Define

X(s) = exp(t(s)A). (44)

We will write the derivative ofQ w.r.t. X asX̂, using notation
wherex̂i,j = ∂Q

∂xij
. We have

X̂(s) =
(

K̃
(s)
i − S(s)

)(+0)

(45)

where(+0) means appending a zero row, and thei’th row of
S(s) is given by:

s
(s)
i = G̃

(s)
i c

(s)
i . (46)

The derivative ofQ(s) w.r.t A is given by:

Â(s) = t(s) exp-backprop(t(s)A, X̂(s)). (47)



The statistics for updatingA are written as follows, where
summations overs are over all training speakers. The indexi
takes values0 ≤ i < d.

β =
∑

s

β(s) (48)

βt =
∑

s

t(s)β(s) (49)

Â =
∑

s

Â(s) (50)

Gi =
∑

s

t(s)
2
(

G̃
(s)
i + max(g

(s)
i,i,i − k

(s)
i,i , 0)eie

T
i

)

,(51)

whereei is the unit vector in thei’th dimension. Note thatGi

is not the same as theGi quantities for theB update or the
speaker-dependentG(s)

i quantities in the CMLLR statistics.
The (weak-sense) auxiliary function we optimize at test time
is a quadratic function with quadratic part− 1

2

∑d−1
i=0 aT

i Giai,
and a derivative (at the current value ofA) given by H =
ÂT +βtI; theβtI comes from the log determinant. The update
equation is, for0 ≤ i < d,

ai ← ai + G−1
i hi (52)

where ai and hi are the i’th rows of A and H, viewed
as column vectors; the last row ofA is not updated (it
is always zero). The auxiliary function improvement is
1
2

∑d−1
i=0 hT

i G−1
i hi. This should generally decrease as training

progresses.
We want to keep the warp factorst(s) “centered” at training

time so that they average to zero; this makes them more
consistent between training runs, and makes the estimation
formulas for A make more sense (since we ensure smaller
values of t(s)). To do this, after updatingA we take the
“average part” ofexp(t(s)A), and put it intoB. The update
equation is:

B← exp

(

βt

β
A

)

B. (53)

We then normalizeA to have unit Frobenius norm; this keeps
the t(s) values in a more consistent range from run to run (it
doesn’t affect the actual transforms produced by the method).

IV. BASELINE VTLN IMPLEMENTATION

As the first element of our baseline VTLN implementation
we implemented a fairly standard, nonlinear, feature-level
VTLN. This operates by shifting the locations of the triangular
mel bins during the MFCC computation. The warping function
is as diagrammed in Figure 1. The two solid lines are examples
of warping functions for warping factors greater than, and less
than, one. The longest, central line segment always “points”
at the origin. Ours is similar to the approach used in the Attila
speech recognition toolkit [15], which uses a bilinear function
with the property that the inverse of each function is also in
the functional family1; it handles the upper frequency cutoff

1Brian Kingsbury, personal communication

differently from HTK [16], in which the knee is always at
the same point on the x-axis. Our function is similar to HTK
in that it also supports a lower cutoff (this would normally be
zero if the lower frequency cutoff for the mel-bin computation
was zero). In our experiments, the lower cutoff was 100 and
the upper cutoff was always 600 Hz lower than the Nyquist
frequency.

un-warped frequency
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Fig. 1. VTLN warping function

We implemented linear VTLN (LVTLN) in a way fairly
similar to [10], except that the linear functions are imple-
mented as follows. On a small subset of data (the same for
all warp factors), we compute the original featuresxt and
the warped featuresyα

t , warped with warping factorα using
the process described in the previous paragraph. We used 31
separate warping factors:0.85, 0.86, . . .1.15. For each warping
factor, we estimate a CMLLR matrixWα to minimize the
sum-of-squares error of predictingyα

t given xt: that is, if
zα

t = Wαxt, we first estimateWα to minimize the sum-
of-squares difference betwenz andy. We then scale each row
of the CMLLR matrices so that the variance ofzα

i matches the
variance ofxi (any shift in mean does not matter, for reasons
that will become clear below).

Our training process for LVTLN is essentially a constrained
form of speaker adapted training. On selected iterations of
the training process (we used iterations 2, 4, 8 and 12), we
compute sufficient statistics for CMLLR and for each training
speaker, choose theWα, that maximizes the likelihood, but
treating the offset term in the last column as a variable to
be optimized (we compare the auxiliary function values after
optimizing this offset term). Thus, we combine VTLN with
offset-only CMLLR. At test time, we optionally extend this
to estimating a diagonal CMLLR matrix, applied after the
W(s) transform. We train the model on the adapted features.
In experiments we reported here, we always used the Jacobian
as required by the math (we found that omitting the Jacobian
sometimes helped a little, but sometimes hurt a lot).

In order to implement conventional, feature-level VTLN,
we used the final warp factors computed during LVTLN
training and did an iteration of single-pass retraining, along



with the conventionally warped features, to convert the model.
At test time we used the LVTLN approach and LVTLN-trained
models to work out the warp factor to use in the feature-
level VTLN. In our implementation, we found the use of
LVTLN derived warp factors more reliable than convention-
ally estimated warp factors, even for VTLN itself. As with
ET, we did the speaker-independent decoding at test time
using a speaker independent model with the same mixture-of-
Gaussians structure as the speaker-adapted model. The speaker
independent model was obtained using a single iteration of re-
estimation using Gaussian alignments from the final adapted
model and features, but accumulating speaker-independent
statistics.

V. EXPERIMENTAL RESULTS

Our experiments are conducted with the recently re-
leased, open-source Kaldi toolkit [17], available from
http://kaldi.sourceforge.net. We report results on the Resource
Management (RM) and Wall Street Journal (WSJ) corpora.
Scripts corresponding to the experiments reported here are
available in version 1.0 of the toolkit.

The Resource Management corpus has 3.8 hours of training
data. The test results we report are averaged over the Feb’89,
Feb’91, Mar’87, Oct’87, Oct’89 and Sep’92 test sets, 1.3 hours
of data in total; we use the standard word-pair bigram language
model.

The WSJ test sets are decoded with the 20K open vocabu-
lary with non-verbalized pronunciations, which is the hardest
of the test conditions. We used a highly-pruned version of the
trigram language model included with the WSJ corpus; this
is because Kaldi does not yet have a decoder that works with
large language models (the full trigram model has 6.7 million
entries/arcs; the pruned one has 1.5 million). We report results
on the Nov’92 and Nov’93 evaluation test sets, which have
3439 and 5641 words respectively. For our results here, for
fast turnaround of experiments we trained on half the SI-84
data, using randomly sampled utterances.

Both systems use decision-tree-clustered triphones and stan-
dard HMM-GMM models. In addition, for the WSJ experi-
ments we used an extended phone set with position and stress
dependent phones, but decision-tree roots corresponding to
“real” phones (questions can be asked about the central phone).
As reported in [17], results for this setup are comparable to
previously published results on the RM and WSJ corpora.
Training is based on Viterbi. The features are based on 13-
dimensional MFCCs; we show experiments either with delta
and acceleration features, or processing with splicing 9 adja-
cent frames together and doing LDA to 40 dimensions. The
RM systems had 1473 leaves and 9 000 gaussians. The WSJ
systems had 1583 leaves and 10 000 Gaussians. Whenever we
accumulate statistics to estimate any kind of transformation
matrix, whether global or speaker-specific, at training time or
test, we always exclude the statistics corresponding to silence.

We show the unadapted WERs in Table I. Considered
separately, LDA and STC both hurt performance, but together
they improve it. Although this is unintuitive, the combination

TABLE I
BASELINE %WERS, UNADAPTED

System WSJ
Features ID RM Nov’92 Nov’93

Delta+Accel tri2a 4.0 12.5 18.3
Delta+Accel+STC tri2d 4.3 13.0 19.4

Splice+LDA tri2e 4.7 14.3 19.1
Splice+LDA+STC tri2f 3.9 12.2 17.7

of LDA plus STC/MLLT is known to work well [18]. Bear in
mind that ET does STC/MLLT as part of the training process,
so it should be at a slight disadvantage versus conventional
VTLN when working from the delta plus acceleration features.

Fig. 2. Distribution of warp factors andt values (female dark blue, male
pale green)
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Figure 2 shows the distribution oft values and VTLN
warp factors, on RM and WSJ. This is for systems based
on MFCC plus delta plus acceleration features. Both with
(linear) VTLN and ET we have a very reasonable distribution
of warp factors, with a good separation between male and
female; this is clearer in RM, and we speculate that it has
to do with the characteristics of the speakers. The number of
speakers is relatively small, which accounts for the noise in
the distributions.

A. Integration of CMLLR with ET/LVTLN/VTLN

We should emphasize that our implementations of both ET
and LVTLN incorporate an element of Constrained MLLR.
When computing the speaker-specific transformW(s) in ET,
we make the factorD(s) a diagonal CMLLR matrix at test time
(i.e. it contains a scale and an offset term for each dimension).
In order to make our LVTLN results comparable, we also
enabled the estimation of offset-only and diagonal CMLLR
matrices after the pure “LVTLN” part of the transform. This
uses the same CMLLR statics as used to estimate the warp
factor, and it is integrated into the warp factor calculation in



TABLE II
ET VERSUSLVTLN VERSUSVTLN: ON DELTA PLUS ACCELERATION

FEATURES. %WERS

Adapting per speaker
VTLN CMLLR System WSJ
type type id RM Nov’92 Nov’93
None None tri2a 4.0 12.5 18.3
None Diag tri2a 3.9 12.7 17.2
ET Diag tri2b 3.1 11.5 15.0

LVTLN Offset tri2g 3.3 11.1 16.4
LVTLN Diag tri2g 3.1 10.7 16.5
VTLN None tri2g 3.7
VTLN Offset tri2g 3.2
VTLN Diag tri2g 3.1 10.9 15.9

Adapting per utterance
None Diag tri2a 3.9 12.6 17.3
ET Diag tri2b 3.3 11.5 15.0

LVTLN Offset tri2g 3.3 11.2 16.2
LVTLN Diag tri2g 3.1 11.1 16.1
VTLN Diag tri2g 3.4 10.9 16.1

that we compare the likelihoods after including the effect of
the diagonal or offset-only transform. In the case of feature-
level VTLN, after extracting the VTLN-warped features using
the warp factor obtained from the LVTLN computation, we
estimated an offset-only or diagonal CMLLR transform on
top of the VTLN-warped features. This was done without an
extra pass of decoding, i.e. all results in Tables II and III are
done with a single speaker-independent decoding pass and a
single adapted decoding pass.

B. Results on delta and acceleration features

Table II compares ET with LVTLN and VTLN, on top of
MFCC plus delta and acceleration features. The rows that
say “Diag” (meaning, the transforms have a diagonal CMLLR
component) are probably the most suitable ones to compare,
as this is always the best configuration. We do not see any
consistent pattern— none of the three methods is consistently
best across all test sets. However, it is clear that doing some
form of VTLN or VTLN substitute is better than doing nothing
at all. We should note that ET contains STC/MLLT, and we
can see from Table I that STC makes things worse on delta and
acceleration features, so in some sense ET is at a disadvantage
here.

C. Results on LDA+STC features

In Table III we show results on top of features based on
LDA plus STC/MLLT. In the case of the ET models, the
estimation of the STC is part of the ET computation so we just
need to provide it with the LDA features. In the case of the
LVTLN or VTLN, it would have been too complex to embed
the estimation of STC/MLLT into the training procedure, so
instead we used the STC transform estimated with the baseline
LDA+STC system, and initialized the system build using
alignments from the LDA+STC model. This possibly provides
an unfair advantage to the LVTLN/VTLN system, as it uses
an extra phase of system building and better alignments.

This time, we again do not see perfectly consistent results,
but the general advantage seems to be in favor of ET. Note

TABLE III
ET VERSUSLVTLN VERSUSVTLN: ON SPLICED PLUSLDA PLUS STC

FEATURES. %WERS

Adapting per speaker
VTLN CMLLR System WSJ
type type ID RM Nov’92 Nov’93
None None tri2f 3.9 12.2 17.7
ET Diag tri2k 3.1 10.6 14.7

LVTLN Offset tri2m 3.2 10.8 15.0
LVTLN Diag tri2m 3.1 10.7 16.5
VTLN Offset tri2m 4.7
VTLN Diag tri2m 3.1 10.7 14.9
SAT Full tri2m 2.7 9.6 13.7

Adapting per utterance
ET Diag tri2k 3.0 10.4 14.6

LVTLN Offset tri2m 10.6 14.4
LVTLN Diag tri2m 3.3 10.8 14.5
VTLN Diag tri2m 4.3 10.6 14.4
SAT Full tri2l 5.1 12.0 16.8

that our implementation of VTLN seems to fail quite badly in
some circumstances on RM; we could not find the reason for
this. Something that might be relevant is as follows: we had
previously noticed, on another setup, that if we ignored the
log-determinant then when using LDA+MLLT features, the
linear VTLN training process would fail, with warp factors
all going to one end of the scale. The message we take home
from this is that one strays from the path dictated by the
mathematics at one’s own peril: that is, when one optimizes an
objective function that does not make sense, even if it seems
to work on one setup, one should not be surprised if it fails
elsewhere.

The bottom row of each section of Table III is with
Speaker Adapted Training (SAT), in which we train with
CMLLR-adapted features. We felt that this was a relevant
comparison for VTLN because both the ET and LVTLN
training procedures are special cases of SAT. It can be seen
that when adapting per speaker, SAT outperforms all the
versions of VTLN, but when adapting per utterance, the SAT
trained system performs very badly and in the case of RM,
is worse than a completely unadapted system (this could
not necessarily be fixed by adjusting the count cutoff for
estimating a transform, because the “default” transform may
not be well matched to the SAT trained model).

D. Results with Constrained MLLR

TABLE IV
APPLYING CONSTRAINEDMLLR AFTER TRANSFORMS(PER SPEAKER):

%WERS

Base Training type Adaptation type RM WSJ WSJ
Feats /system id First Second Nov’92 Nov’93

∆ + ∆∆ Unadapted/tri2a Diag Full 3.6 11.5 15.7
∆ + ∆∆ Unadapted/tri2a Full - 3.6 11.4 15.5
∆ + ∆∆ ET/tri2b ET/Diag Full 3.1 10.6 13.9
∆ + ∆∆ LVTLN/tri2g LVTLN/Diag Full 3.1 10.3 15.4

LDA ET/tri2k ET Full 2.6 10.0 13.7
LDA+STC LVTLN/tri2m LVTLN/Diag Full 2.8 10.1 13.7
LDA+STC CMLLR (SAT)/tri2l Full - 2.7 9.6 13.7

Table IV concerns the combination of various VTLN meth-
ods with CMLLR. The setup is generally that we do a



speaker-independent pass with the “alignment models” we
mentioned; then estimate an ET or LVTLN transform which
includes a diagonal CMLLR component; then redecode with
the ET/LVTLN-trained model; then estimate a full CMLLR
transform on top of the ET or LVTLN transform. For com-
parisons, we also test with models trained in a speaker
independent manner (“Unadapted”), and with SAT. For rows
with “-” indicated as the second adaptation type, this means
we did only two decoding passes and a single iteration of
adaptation. It seemed plausible to us that there might be an
inherent advantage in first doing a simpler adaptation type
and then re-decoding and using this as supervision for more
advanced type of adaptation; however, the top two rows of this
table to not support this notion. The absolute best results are
obtained with Speaker Adapted Training (SAT), but as is clear
from Table III, this does not work well if we are only able
to adapt per utterance. The general picture is similar to what
we saw without CMLLR, i.e. in some conditions LVTLN is
better and in some conditions ET is better.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a new form of adaptation which fuses
elements of VTLN, CMLLR and STC/MLLT. Our method is
a generic feature transformation with parameters learned from
data, rather than using any explicit notion of frequency warp-
ing. The experimental results show that it generally performs
about the same as linear-transform based VTLN (LVTLN) or
conventional VTLN, and may have a slight advantage when
combined with features based on spliced frames plus LDA plus
STC/MLLT, which we find to be the best type of features. For
us, the most compelling advantage is that it is a relatively
simple, attractive formulation in which the training consists of
optimizing a simple objective function, as opposed to VTLN in
which many implementation details are not obvious and have
to be tuned (e.g. frequency cutoffs; variance normalization;
what to do with the determinant). The exponential transformis
also more easily applicable in principle to any kind of feature,
which is an advantage if we want to significantly change the
features.

We have noted that both ET and the linear version of VTLN
are special cases of Constrained MLLR, and the training
procedure is just a specially constrained form of Speaker
Adapted Training (SAT). In fact, when we compare these
methods with SAT, we get the best results from SAT as long
as we are adapting per speaker rather than per utterance (that
is, as long as we are adapting on enough data). This does not
invalidate the usefulness of ET, because ET still allows us to
adapt on smaller amounts of data. However, we do question
whether VTLN or its subsitutes such as ET are really necessary
as long as there is enough data to adapt on; and even if there
is very little data to adapt on, it is possible that other methods
such as our previously published basis method for CMLLR
adaptation [19] could solve the same problem that VTLN is
solving.

Future work which we would like to do includes comparing
this method with [19]. Since both are specially constrained

forms of CMLLR adaptation, it makes sense to compare
them (we have not done so because that method is not yet
implemented in Kaldi). Another very natural extension is to
consider subspaces of dimension higher than one in the log
domain; essentially this becomes a log-domain version of [19],
and our intuition is that this type of method would probably
perform slightly better in the log domain.
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