Speaker Adaptation with an Exponential Transform

Daniel Povey, Geoffrey Zweig, Alex Acero

Microsoft Research, Microsoft, One Microsoft Way, Redmawédl 98052, USA
dpovey@ri crosoft.com gzwei g@n crosoft.com al exac@ri crosoft.com

Abstract—In this technical report we describe a linear trans- techniques are equivalent to Constrained MLLR (CMLLR)
form that we call an Exponential Transform (ET), which inte-  [12] but choosing from a fixed set of transforms. Note that
grates aspects of Constrained MLLR, VTLN and STC/MLLT when applying a linear transforsa— Ax-+b, one should add

into a single transform with jointly trained components. Its S . . .
main advantage is that a very small number of speaker-specifi log | det A| to the log-likelihoods, as dictated by the identity

arameters is required, thus enabling effective adaptatin with _ _ _ _
gmall amounts c?f speaker specific ?jata. The keyppart of the N(Ax+b; p, B det A = N(x; A 1“_A lb’A 'ZA T)’
transform is controlled by a single speaker-specific paranter (1)
that is analogous to a VTLN warp factor. The transform has Where the right hand side represents the “model-spacer-inte
non-speaker-specific parameters that are learmned from dataand  pretation of the transformation. This is referred to as Bauo
\évi?fefrl?gatlt]t?)trntgt?c jl)(lsleglr(r)]:% V_‘r’nggxmgrieen%';?t:srrl';?é‘fmsﬁaesaﬁirs compensation, sincA is the Jacobian of the transformation.
explicit notion of fre)cquency warping, 5vhich makes it applicable In pract[ce no_t aII_ authors include the Ja<_:ob|an term; S@ [1
in principle to non-standard features such as those derivedrom fOF @n investigation of the effect of this. In conventional

neural nets, or when the key axes may not be male-female. Base (feature-level) VTLN, cepstral variance normalizatiomge

on our experiments with standard MFCC features, it appears ©  ally has to be applied because there is no natural way to do
perform better than conventional VTLN. Jacobian compensation [10].

Linear-transform based approaches to VTLN have generally

. . . . been found to be about as effective as standard VTLN,
This technical report is an extended version of our paper [H/hile being more efficient to implement. Typically about 20

This introduction describes the exponential transformamd y,53s50rms would be estimated at training time, and at it t
motivation for it; Section Il describes in general terms thg,o \oyid select the best one of these based on the likelihood

estimation processes involved in implementing the exptalen assigned by the model to the transformed data. Linear VTLN

transform, and Section Il provides the detailed equationg i, effect a specially constrained form of CMLLR.
Section IV explains our baseline VTLN implementation for

the experiments, Section V gives experimental resultsvead C. Linear VTLN via Maximum Likelihood

I. INTRODUCTION

conclude in Section VI. A natural question to ask is: once we are working in
A. Vocal Tract Length Normalization (VTLN) a linear transform ba_sed framework, Why not estlma_te the
L (say) 20 transforms in a purely data-driven way, without

Vocal Tract Length Normalization (VTLN) [2], [3], [4], [S] reference to the original VTLN? For large training datastts

.\ ransforms. One can even envision initializing these ehsst
factors affect the length _of the vocgl tract. The stanc_iarqrom the VTLN warp factors, thereby nudging the system
approach to VTLN requires repeating feature extraction g, arqs normal VTLN, and if necessary one could enforce

number of times (e.g. 20 times), for a discrete set of warpiqgis relationship by disallowing the reassignment of @t

factors. This is not very efficient, and can sometimes kQﬁur experiments along these lines (not described here) were

|n(_:o_nvtlan|ent fto m:jplement due to the need to access g successful, and these ideas are so obvious that mdst like
original waveform data. other researchers have tried them and had similar expesenc

B. Linear VTLN (LVTLN) D. Basic idea of the Exponential Transform

Line_ar-tra_nsform base‘?' implementations of VTLN have Our thought at this point was that perhaps the essence of
been investigated by various authors [2], [7], [8], [9], [10 “VTLN-ness” is that the transforms should forced to form a

[11]. The basic idea is to approximate the VTLN frequency,niinous sequence. The form that we felt was most natural
warping by a linear transformation of the MFCC or PLR\as as follows:
features. In some cases [2], [7], [9] this is based on an sigly ' AL — exp(t(S)A) @)

that leads to a formula; in other cases [8], [10] it is based ’

on linear transforms which are trained to approximate theheret(*) is a speaker-specific scalar that may be positive or

conventional feature-level VTLN warping. At test time thesnegative and that is analogous to the log of a VTLN warp



factor, A is a global parameter that is learned from data, arfetT) is:
A®) is the speaker specific “exponential transform”. Here, W) = DO exp(t®) A)B, (5)

exp is the matrix exponential function, which is defined (for (s) i
square matrices only) by a Taylor series expansion: whereD'®) is a mean-offset-only CMLLR/fMLLR transform,

the exponential term is the core “exponential transfornrt,pa

M) = =1 M" 3 andB corresponds to MLLT/STC. Any quantities without the
exp(M) =) Y ®) superscripts are globally shared. The dimensions &) ¢
n=0 RAX(d+1) " A ¢ RE+DX(d+]) gnd B ¢ REFTD*(@+1) \We

with M" defined in the obvious way as a productMdf with i explain the significance of the last rows and columns of

itself n times (MO is just the identity matrixI). The nice A andB below. This transform “acts on” the extended feature
property of (2) is that if we multiply two of these transformsx+, so it transformsc with:

together (say with two values df ¢; andty), we get the ()t
corresponding transform for their sum¢,. This matches up x — W¥x™, (6)

with certain intuitions about what it means to warp someghiny; tast time we can optionally mak®®) a diagonal-only

(viewing ¢ as analogous to the log of the warping factor). cpLLR transform rather than mean only, but at training time
_ The estimation framework we have in mind is Maximung,is would significantly complicate the estimation formaila
likelihood, where in training time, we jointly optimizé®) for Note that if we allowedD) to be a generic CMLLR

training speakers and, to maximize data Iikelih(?é(;)d. AL test yansform, the technique would be completely equivalent to
time A would be fixed and the single paramete? would =y | R so there would be no point in our method, which is

be estimated for each speaker. , _just a specially constrained form of CMLLR.
We emphasize that, like linear VTLN, ET is a specially gefiecting its mean-offset functiof)(*) is a matrix with

constrained form of CMLLR. ones along al x d diagonal, unconstrained entries in the last

E. Problems with the basic version of the idea column, and zeros elsewhere. At test time, we optionaltyall

There is a problem with this approach that dissuaded chonstralned entries on the diagonals, but not at traitirmeg

from implementing it in this simple form. The issue is thatS this significantly complicates the reestimation forraula
there might be ways to increase the data likelihood whiab. Incorporating linear offsets

could take the functional form of (2) but would not be what \y,e mentioned above tha# andB are both square matrices
we think of as VTLN. For example{ could correspond ot gimensiond+ 1, so as to encompass affine transforms. This
roughly to an energy normalization parameter (modulo @ertgyyesn't add any power to the transform sifbé”) already
discussions about whether the transform is linear or affing,s an offset term: it just makes the estimatiomotonverge

and whether it matters). Alternatively, if the likelihoothA slightly faster. The last rows aA and B are constrained to
provement from Semi-Tied Covariance [13] (a.k.a. Maximug}ke on particular values: the last row Bf is 0 0 ... 1

Likelihood Linear Transform, or MLLT) were greater thanthag g the last row ofA is zero, which means that the last row
f_rom_ a VTLN-Iike_ transform, we could get greater training, exp(t®A)is 00 ... 1. Since the transform gets applied
likelihood by havingexp(A) _correspond to the STC/MLLT ., x*, the purpose of this last row is to “pass through” the
transform, and*) always being one. last element (i.e., 1) unaltered and make it available f@rla
F. Full version of the Exponential Transform transforms in the.series (_noting that the tran_sforms in é) c
We fix these .potential problems by adding new elemeqtgsitvéimemdnisotff'g% da]gpgggégpgrnd de:cfrgf';g éﬁgtﬁ;osleft)' The
to the formulation. The end result can be thought of as '
roughly equivalent to “mean-offset MLLR plus VTLN plus Il. DISCUSSION OF THE ESTIMATION PROCESS

MLLT/STC”. The basic intuition is that if we want to capture a |, this section we give an overview of the optimization

relatively subtle effect, we need to normalize for the biges o cesses needed to implement the exponential transfoem. W
first. Although this increases the complexity of the methind, \jte the detailed equations in Section Ill. We have orgediz
some sense we are only moving the complexity in the systgMnis way because the details of Section Ill are mostly of

around, because a system with the Exponential Transform (Eferest to someone intending to implement the method, but
will now not need MLLT/STC or clever approaches to meajis section is of more general interest.

normalization (we might still normalize the mean to help the
first-pass decoding). A. Overview

Let the feature dimension bé& We are using notation for At training time we need to compute the global parameters
affine transforms where™ represents with a one appended, A andB, and also train a model on suitably adapted features.
and an affine transforfV is represented as The objective function we optimize is the data likelihood;

W= [A b 4) the procedure is_bas_ed on E_xpectatio_n-Maximizqtipn (E-M),
’ although the estimation oA is not strictly E-M (it is not

where A is the linear part and is the offset term (this guaranteed to increase the likelihood, although it does in
transformsx to Wx™). The “complete” exponential transformpractice). An overview of the training procedure is:



« Initialize the global parameterA and B D. Computing the speaker-specific transform

« For a number of training iterations: Computing the speaker-specific transfoWi(®) is some-
— Computet(*) andD*) for the training speakers  thing that needs to be done both at training and test time.
— Update the model (means, variances, etc.) The problem is this: given fixed values &f and B, we need
— On early iterations (e.g. the first 15 iterations), alteto compute the speaker specific transfob&(*) which will
nately: be of the form (5). The first step is to compute the standard
x Update the matrixA, or: statistics as used to compute CMLLR/fMLLR (e.g. see [12]).
x Update the matrixB. Then we iteratively estimate the scalat) and the CMLLR
« Compute a speaker independent model using just (the fifgatrix D). At training time, D(*) is constrained to be an
d rows of) B as the feature-space transform. offset-only CMLLR matrix withd free parameters, but at test

The speaker independent model has the same mixtureldie it is typically a diagonal CMLLR matrix wittd free
Gaussians structure as the final speaker-adapted moddk arRframeters (we will discuss the reason for this below). The
computed in one pass using Gaussian-level alignments frggtimation of the scalaf®) is done via Newton's method. The
the speaker-adapted model and features. It is used at sfimation ofD(*) is a special case of the standard CMLLR
time for the first-pass decoding and to obtain Gaussiari-lepPdate formulae. We always use the Gaussian-level aligtamen

alignments for estimating the transform. obtained using the previously computed transfoW®), if
. applicable.
B. Notation
We now explain some aspects of our notation: E. UpdatingB
« The feature dimension i&. Updating B is more straightforward than updatingy, so
« We assume zero-based indexing of vectors and matri¥g Will cover it first. Suppose we have computed speaker-
throughout this document. specific exponential transforiW (*) for the training speakers.

« We usex; for the unadapted features on timewe don't We compute an STC/MLLT transform on top of the adapted
have an index for the utterance (we just assume distirfégtures. This is done in the normal way [13], with statsstic
utterances have differently numbered time indices). ~ consisting ofd matrices of sized x d. Let the STC/MLLT

« x* means the vectat with a 1 appended to it. matrix we compute be&C € R?*4, and letC; be asC but
« A—, where A is a matrix, meansA with its last row e€xtended with an extra row and column, consisting of zeros
removed. except for a one in the diagonal element. As the update method
« AT, where A is a matrix, meansA with a row with requires, we would at this point update the model means by
value0 0 ... 1 appended. pre-multiplying byC. The speaker-specific feature transforms
o A0 whereA is a matrix, meand with a zero-valued are nowCW ) and it not immediately obvious that these
row appended. would be valid “exponential transforms”, but they are. The
« Gaussian mixture components in a HMM-GMM systerfiéW transform can be written as:
2:)(;:22%?]?, m wherej is the state andh is the mixture WO — DO exp(tA)B )
» The means and (diagonal) variances arg, and X, (CD(S)Cfl)(Cf eXP(t(S)A)Cfl)(CfB) (8)

with o2, ; as thei'th variance component. = (CD®C; ") exp(tCrAC;!)(CsB), (9)
« The Gaussian-level posteriors on timare ;,, (t). ) ' )
« e; is a unit vector in the'th dimension; the dimension and we can easily show thafli*) is an offset-only transform,

of e; is implied by the context. then so isCD*)C ! (we cannot show this iD(*) is a diago-

« Unless otherwise definedn; is the i'th row of M nhal transform, and this is why we can't Ex(*) be a diagonal
(viewed as a column vector), anch;; is its 4,;'th transform at training time). We need to s&t«— CfAC;1
element. andB — C;B, and for all the training speakers’ transforms,

to keep them up to date, we should 38*) — CW ), At

this point we can “forget aboutC. We refer to this as the

Inputs to the training process include some baseline featupdate phase faB even thoughA is also changed, because
(e.g. MFCCs with delta and acceleration) and a model traingdipdates the STC-like part of the transform.

on those features. In our training recipes, we started from a ]

model with a single Gaussian per state because we inteespérsUpdating A

the training of the exponential transform with the normal The update formula foA is slightly less straightforward
model training and mixing-up procedure; also, our beliefdzth than the one foB. We can without too much trouble compute
on prior experience is that these types of estimation pesmsesthe derivative of the auxiliary function w.rfA. The basic
make better progress on a model with a smaller number afproach we use to updaté is a quasi-Newton method
Gaussians. We initializ8 to the unit matrix andA to a where we use the derivative w.rA and a reasonably close
random matrix with zero on the last row (we draw the othepproximation to the second derivative (the Hessian). &inc
elements ofA from a normal distribution). evaluating the objective function after updatiny would

C. Initialization



involve revisiting the data (or at least, the per-speaket CRI per row. The second line of (14) connects each row with

statistics), we do not use any kind of line search after thiee corresponding column; the only part of this that operate

guasi-Newton update oA. This means that the update is notvithin a row is the part that affects thi¢h element of eacli'th

guaranteed to converge. Divergence is possible, but we hawe. Even this term is not guaranteed negative semidefinite,

not seen it happen in practice. so we only use this term (for a particular speaker) if it has th
In the rest of this section we describe how we approximatiesired sign; this avoids potential instability. The acalation

the Hessian. What we will accumulate is a matéx for each phase is as follows, fob < i < d:

0 < < d, which is a positive semi-definite approximation to )

the negated matrix of second derivatives w.r.t. ille row of G; = Z () (GZ(-S) + Inax(gg,?i — kfi), O)eieiT) . (15)

A. We emphasize that approximations of the Hessian do not s

affect the fixed point of the update, only the convergence bgy ihe update phase, the change to a rowAofs given by
havior. It would be possible (but quite tedious) to compti t ;-1 fimes the auxiliary function derivative w.r.t that row of
exact second derivative, but since this is not even guadntey, aq mentioned above. we do not include any line search
negative definite, it would not guarantee good convergengg., se this would be quite cumbersome and would involve
behavior. ® ® e revisiting the training data. There is no guarantee that thi
_ DefineX®) = exp(#'*A). Let us write Q""" for the aux- ,,qate method will converge; failure to converge would be
lliary function for speakes, but |gnor|(ng); the log-determinant yp,\is as the reported auxiliary function improvements no
: &
term for now. Expressed in terms &', it is: becoming small in later iterations of update. In case ther ev
T B - T . . .
o'® (X0) = K& x6 7 %Ziol Xl(-s) Ggs)xf-s), happens, we included in our software a learning rate pasmet
(10) that can be set to less than one to slow down the update. If

where K® and Ggs) are CMLLR statistics in the standard_th's ever turned out to be necessary in practice, we would

form that describe the auxiliary function as a functiors5o®); !nsert logic to automatically detect _failure of the likalibd tp .
we define the CMLLR statistics below, in Section lI-A, andncrease, and slow down the learning rate or backtrack s thi
in Section IllI-H we will describe how we get the statistic$25¢:
needed to express the auxiliary function in termSXdf). We

now defineY®) = X(5) — I, which will be convenient later,

and we re-express (10) in terms ¥f*), getting: In this section we give detailed equations for the estinmatio
T _ rocesses needed for ET.

IIl. DETAILS OF ESTIMATION PROCESS

1 (T (s) (s A. Definition of CMLLR statistics
1Yy ey, () - » .
) ) The sufficient statistics for CMLLR (for a particular
whereS(*) is defined bys;” = g;;”, i.e. itsi'th row is equal speaker) are as follows, whebe< i < d:
to the i'th row of G,

The Taylor series expansion &f in terms of A is: K = Z 7.jm(t)E;nllujmx;“T (16)

1 2 t,j,m
YO =tOA 4+ -t AA 4. (13) 1 T
2 G, = Z Vim () ——x¢ xi" (17)
The ellipsis in (13) involves terms of higher than order than t,j,m Tjmi
. (S) . .

twp in t'*) A, which we assume to be small. Expanding (12) 3 = Z Yim(t). (18)

using (13), we have .
(s) i ; " .
Q" (A) = linear plus constant terms iA When we use these quantities below, we will often put a
+% ()2 (K®) —SENT(AA)~ speaker superscript®) on them. The auxiliary function is:
$) 2 —d—1 (s) _
—5 197 al Ga QW) = tr(KTW) — L "2 wTG,w; +log | det(WT )],
+higher-order terms (14) (19)

It is possible to accumulate sufficient statistics with thens . : -

dimer;lsions as the standard CMLLR statistics that captu%é Manipulations of CMLLR statistics

the behaviour of this approximation of the quadratic term. There are some manipulations of CMLLR statistics that are
Unfortunately, the effect of the second line of (14) caneeded in our algorithms. Sind& (*) consists of a series of
sometimes destabilize the estimation process as it does ¢lained transforms, these manipulations are sometimetedee
correspond to a negative semi-definite Hessian. What wetdfou “normalize away” the effect of other transforms.

works better is to accumulate statistics that encapsulate a Applying a transform in the feature space to some statistics
approximate Hessian w.r.t. each row; this amounts to a blodk done as follows. LeM € R(@+Dx(d+1) phe a matrix with
diagonal approximation of the overall Hessian, with a blodist row0 0 ... 1 that represents an affine transform. We do



as follows, which is is equivalent to having pre-multiplieti D. Computing the matrix exponential function

by M while collecting the statistics: For a review of ways to compute the matrix exponential

K — KMm? (20) function, see [14]. The method we used is one of the simpler
7 methods discussed there. Suppose we are compaxis(@M).
Gi —~ MGM. (21)  DefineP = 2-¥M. We choose the smallest integdt > 0

Applying a transform in the model space to some statistics §§ch that|P|| < 0.1 (using the Frobenius norm). The method
done as follows. LeW € Ré*(d+1) pe the affine transform. iS @ slight twist on the identityxp(P)*" = exp(M), using
The model-space transformation can only be don®Vifis successive squaring to compute the power. Dele =

a diagonal transform, i.eW = [M b] with M diagonal. exp(P) — I, computed with:

We'll write the (4,4)’th element ofM asm;. The transform K

corresponds to setting; < m;x; +b;. After working out how By = Z %pnv (30)

to equivalently apply this transform to the means and vagan el

and obtaining the corresponding transformsKrand G;, we

; where the series is truncated when we detect that adding the
get as follows. The elements & change with:

latest term has not caused any chang®in(we remember

kij — miki; — mibigia, (22) the number of terms a&’). Then we use the recursion, for
’ ’ o 1<n<N,
where the index is the feature dimension (this assumes zero-
based indexing), and then the matridgs are scaled with: Bn =Bn 1Bn 1+ 2By, (31)
G, — m2G,. (23) and the answer is given byp(M) = By + 1.
C. Computing offset-only and diagonal transforms from CME- Rgverse differentiating through the matrix exponential
LLR statistics function

Given CMLLR statistics as described above, an offset-only Ve also need to differentiate a scalar backwards through
transform of the formW = [I b] can be computed using thethe matrix exponential function; this is an instance of reee
formulab; — Fid mode automatic differentiation (but done “manually”). Sup

1 T .

Gid,d . = i = T X
In the case of a diagonal transform, we now describe th@S€X = exp(M), and we definef = (X" X), whereX

update process for each row of the transform (rguwith is a separate quantity frold. that represents the derivative of
0 < i < d). For clearer notation, we will define= w,; and fwrt X. . o
0 = w; 4 (the scale and offset parameters). We limit solutions In general we will use a hat to denote the derivative of the

to s > 0; this is more natural and simplifies the estimatiorpc@lar function w.r.t. an arbirary quantity, using a coiem
here there is no transpose, if&; = 5.

and it makes no difference in practice, in our experience TH _ ; o i
auxiliary function written in terms of ando is: In this section we are defining a function exp-backprop, of

the form
Q(s,0) = ski;+okia exp-backprop(M, X) = M, (32)
1 1 -
_53291’,1',1’ - 5029i,d,d — 80Gi,d,i where the elements aVl are the derivatives of scalgf =
+Blogss. (24) tr(XT ex_p(M)) w.r.t. the corresponding elements bf.
We will now describe the exp-backprop procedure. We
We can solve fow in terms ofs and get assume that the intermediate quantities used while comgputi
the matrix exponential function givelM (as described in
0= (ki,a — 89i,d:)/9idd (25)

the previous section) are available. We are going backwards

Substituting this expression into (24), differentiating.tvs, through that computation computing derivatives. We first se
equating the derivative to zero and multiplying byto get a B~ = X. Then forn = N—-1,N-2,...,0 we do:

quadratic function, we get the equation: B, — Bn+1Bf I B£Bn+1 n 2Bn+1- 33)

as® +bs+c = 0 ) (26)  Next we want to comput®, and we will do so with
a = Tudi _ Giisi (27) K
Yid,d P=> P, (34)
b = ki;i— 9idsikid (28) n=1
c = B Ji.d,d (29) whereP,, is the part of the derivative arising from théth

term of the truncated Taylor series (30). We Bgt= B, and
Getting s > 0 requires taking the negative root (singe< 0), for2 <n < K, let

so the solution iss = (—b — Vb2 — 4ac)/(2a). We get the . 1. sl T
value ofo from (25). Pp=—Pr1A"+ A By, (35)



where it may be convenient to cache the powerA dfom the After iterating the estimation dD and¢, we computéW =
forward computation (or just start witB, and left-multiply Dexp(tA)B.
by AT each time). The final answer is given By = - P. .
It is easy to double-check this computation usingQa smaﬁ'—' UpdatingB
differences method. The accumulation and update formulas #rare based on

, . those for MLLT (equivalently, global STC). Defining’ as
F. Computing the speaker-specific transforms W)x* i.e. the current transformed features, we accumulate

In this section we describe how to compute the speakeie sufficient statistics (fob < i < d),

specific parameters and D (we will take the speaker su- ()
perscript-(*) as given), given the sufficient statisti®§, G; G, = Z %’g (tjm — X) (pjm —x)" . (41)
and 3. At training time these statistics are computed with r
Gaussian-level alignments given by the previous iter&ioryng 3 — S, Yim(t). Let the result of the MLLT/STC update
speaker-specific transformd (*). At test time the Gausian- pe the transformC e Re*4, which we optimize starting
level alignments are computed using features transformbd ofom ¢ = I using the formulas from [13, Appendix A]. For
with B, and an "alignment model” trained using single-pasgonvenience, we repeat them here. The auxiliary function is

retraining with features transformed only wilh. 3150 | det C|-1 3% ¢I'G,c;. To maximize it, for a number
We will omit the speaker superscript We first initialize jterations (e.g. 10), we do as follows: for< i < d,

t «— 0 andD « [I 0]. Then we applyB as a feature-space

gmi

transform to the statistics as described in Section IlI-B2 W F — Cc* (42)
next do several iterations of update (we used three itersitio B

iterati i - i ————G'f, 43
On each iteration we first re-estimdi® and then re-estimate Ci -1 i (43)
t ) 2 G

1) Updating D: In the update ofD, we first estimate Let C; be C extended with an extra row and column, with
a transformD’ that will go to the right of any existing zeros except for a 1 in positiof, ). After estimatingC we
transformD, and then modifyD to take into account the do as follows:
new transformD’. We estimateD’ via Maximum Likelihood  « Transform the model by setting;,, < Cp;m
from K, G; and as either an offset-only CMLLR transform , Transform all the current speaker transforms by setting
(at training time) or a diagonal CMLLR transform (at test W) — CW(®
time). We then seD — DD’' (the meaning of+ was . SetA — C;AC;', andB « C;B.
. . . o f
explained in Section II-B), and then appl)’ as a model- )
space transformation to the statistissand G; as described H- Updating A
in Section 1I-B. The statistics for updating the matrix are functions of
2) Updatingt: The update fot is similar to the update for the standard CMLLR statistics for the training speaker&sgh
D in that we always estimate an “incremental paftand add CMLLR statistics are computed with Gaussian alignments ob-
this to¢t. To computet’ we do a single iteration of Newton’s tained with features transformed wiW (*), but the statistics
method , starting from’ = 0. The update formulas are asthemselves contain the original featusgsot the transformed
follows. First defineJ € R4 (¢+1) py: features.
J_K_S (36) For each training speake#, let the CMLLR statistics
’ accumulated as in Section llI-A BE(*), G(®) and 8. Using
where thei'th row s; of S is the same as théth row g;; of the current values oD(®) and B, apply B as a feature
G,. This is the auxiliary function derivative w.reip(t’A)~, transform to the statistics and apply(*) as a model-space
ignoring the log determinant. We will be maximizing thdransform to the statistics, as described in Section Ill-8t

quadratic functionf (t') = at’ — $bt'*, with us write the transformed statistics K&*) and G\, Define
a = tr(JTA7) + ptr(A) (37) X = exp(tPA). (44)
b = bld_1b2 (38)  we will write the derivative ofQ w.r.t. X asX, using notation
— where#; ; = 22 We have
by = (Z afGiai> (39) el = Ba
i=0 - . (+0)
(s) _ () _ q(s)
be = u(IT(AA)) (40) X0 = (K -s0) (45)

wherea; is thei'th row of A. To ensure the correct sign ofWhere(+0) means appending a zero row, and ftie row of
update even in pathological cases far from convergence, ®e is given by: ~

replaceb; — by with b, — min(0.8b1, by). We have never seen s = GVl (46)
this flooring take place in practice. We gét= a/b. We then
sett — t+t/, and apply the matrixxp(¢'A) as a feature-space
transformation to the statistics as decribed in SectioBII! A®) = () exp-backprop(t¥) A, X)), (47)

The derivative ofQ(*) w.r.t A is given by:



The statistics for updating. are written as follows, where differently from HTK [16], in which the knee is always at

summations oves are over all training speakers. The index the same point on the x-axis. Our function is similar to HTK
in that it also supports a lower cutoff (this would normally b

takes value$) <i < d.
zero if the lower frequency cutoff for the mel-bin computati
B ) was zero). In our experiments, the lower cutoff was 100 and
p= Zﬁ (48)  the upper cutoff was always 600 Hz lower than the Nyquist
° frequency.
By =Y g @y o
A =3"A® (50) Nyauist
G = Y107 (G mastely, ~ K 0l ) 6 8
) ya
: = S
wheree; is the unit vector in thé'th dimension. Note tha&; g 4
is not the same as th&,; quantities for theB update or the s
speaker—depender@ﬁs) guantities in the CMLLR statistics. e
The (weak-sense) auxiliary function we optimize at testetim 2 '
is a quadratic function with quadratic part; ) al Gyay, S ower cuto
and a derivative (at the current value Af) given by H =
AT 4 3,I; the 5,1 comes from the log determinant. The update ; Mel bin cutoff

equation is, for0 <i < d, un-warped frequency

a; «— a; + G;lhi (52)
Fig. 1. VTLN warping function

where a; and h; are thei'th rows of A and H, viewed
as column vectors; the last row ok is not updated (it we implemented linear VTLN (LVTLN) in a way fairly

is always zero). The auxiliary function improvement igimilar to [10], except that the linear functions are imple-

1 _ . ..
o h¥ G, 'h;. This should generally decrease as trainingiented as follows. On a small subset of data (the same for

1 d
3 Qe
all warp factors), we compute the original features and

progresses.
We want to keep the warp factors) “centered” at training the warped featureg?*, warped with warping factos using

time so that they average to zero; this makes them maffe process described in the previous paragraph. We used 31
consistent between training runs, and makes the estimaté¥parate warping factors:85, 0.86, . .. 1.15. For each warping
formulas for A make more sense (since we ensure smallgfctor, we estimate a CMLLR matri¥W e to minimize the
values of t(*)). To do this, after updating\ we take the sum-of-squares error of predicting® given x;: that is, if

“average part” ofexp(t()A), and put it intoB. The update z& = Wox,, we first estimateW® to minimize the sum-
equation Is: of-squares difference betwanandy. We then scale each row

B < exp (&A) B. (53) of t_he CMLLR matricgs SO that the variancez§f matches the
B variance ofz; (any shift in mean does not matter, for reasons

We then normalizeA to have unit Frobenius norm; this keepdhat will become clear below). _ _
the t(*) values in a more consistent range from run to run (it Our training process for LVTLN is essentially a constrained

doesn't affect the actual transforms produced by the mgthotPrm of speaker adapted training. On selected iterations of
the training process (we used iterations 2, 4, 8 and 12), we

IV. BASELINE VTLN IMPLEMENTATION compute sufficient statistics for CMLLR and for each tragnin

As the first element of our baseline VTLN implementatiogP€aker, choose th&v, that maximizes the likelihood, but
we implemented a fairly standard, nonlinear, featuretlevéeating the offset term in the last column as a variable to
VTLN. This operates by shifting the locations of the triategu P& Optimized (we compare the auxiliary function valuesrafte
mel bins during the MFCC computation. The warping functioAPtimizing this offset term). Thus, we combine VTLN with
is as diagrammed in Figure 1. The two solid lines are exampf@éset-only CMLLR. At test time, we optionally extend this

of warping functions for warping factors greater than, aess| 10 estimating a diagonal CMLLR matrix, applied after the

than, one. The longest, central line segment always “point®/ (*) transform. We train the model on the adapted features.
at the origin. Ours is similar to the approach used in thelatti!n €xperiments we reported here, we always used the Jacobian

speech recognition toolkit [15], which uses a bilinear fioe  8S required by the math (we found that omitting the Jacobian

with the property that the inverse of each function is also #Pmetimes helped a little, but sometimes hurt a lot).

the functional family; it handles the upper frequency cutoff [N order to implement conventional, feature-level VTLN,
we used the final warp factors computed during LVTLN

Brian Kingsbury, personal communication training and did an iteration of single-pass retrainingnal



TABLE |

with the conventionally warped features, to convert the ehod BASELINE %WERS, UNADAPTED

At test time we used the LVTLN approach and LVTLN-trained System WSJ
models to work out the warp factor to use in the feature- Features ID RM Nov92 Nov'93
level VTLN. In our implementation, we found the use of IIDeIta+Ac|ceI tr_iZS 40 125 18.3
LVTLN derived warp factors more reliable than convention- Deé%;?:ffgfm g'ée i’? ﬁ"g ig'_i
ally estimated warp factors, even for VTLN itself. As with Splice+LDA+STC | wi2f 39  12.2 17.7

ET, we did the speaker-independent decoding at test time
using a speaker independent model with the same mixture-of-

Gaussians structure as the speaker-adapted model. THespea , .
independent model was obtained using a single iteratiop-of £ LDA plus STC/MLLT is known to work well [18]. Bear in

estimation using Gaussian alignments from the final adapt'@dnd that ET does STC/MLLT as part of the training process,

model and features, but accumulating speaker-independ%?\tit should be at a slight disadvantage versus conventional
statistics VTLN when working from the delta plus acceleration features

V. EXPERIMENTAL RESULTS Fig. 2. Distribution of warp factors and values (female dark blue, male
Our experiments are conducted with the recently r82'e green)
leased, open-source Kaldi toolkit [17], available from =
http://kaldi.sourceforge.net. We report results on thedrece
Management (RM) and Wall Street Journal (WSJ) corpora.

Scripts corresponding to the experiments reported here are
available in version 1.0 of the toolkit. ,
The Resource Management corpus has 3.8 hours of training -
data. The test results we report are averaged over the Feb’89
Feb’91, Mar'87, Oct'87, Oct’89 and Sep’92 test sets, 1.3rRou
of data in total; we use the standard word-pair bigram laggua
model.
The WSJ test sets are decoded with the 20K open vocabu-
lary with non-verbalized pronunciations, which is the restd
of the test conditions. We used a highly-pruned version ef th
trigram language model included with the WSJ corpus; this
is because Kaldi does not yet have a decoder that works with
large language models (the full trigram model has 6.7 nmillio
entries/arcs; the pruned one has 1.5 million). We repotltes (c) WSJ: ET scale (d) WSJ: VTLN warp factor
on the Nov'92 and Nov'93 evaluation test sets, which have
3439 and 5641 words respectively. For our results here, for
fast turnaround of experiments we trained on half the SI-84Figure 2 shows the distribution of values and VTLN
data, using randomly sampled utterances. warp factors, on RM and WSJ. This is for systems based
Both systems use decision-tree-clustered triphones and son MFCC plus delta plus acceleration features. Both with
dard HMM-GMM models. In addition, for the WSJ experi{linear) VTLN and ET we have a very reasonable distribution
ments we used an extended phone set with position and strefssvarp factors, with a good separation between male and
dependent phones, but decision-tree roots corresponding@male; this is clearer in RM, and we speculate that it has
“real” phones (questions can be asked about the centrag)hoito do with the characteristics of the speakers. The number of
As reported in [17], results for this setup are comparable speakers is relatively small, which accounts for the naise i
previously published results on the RM and WSJ corporte distributions.
Training is based on Viterbi. The features are based on 13- ) )
dimensional MFCCs; we show experiments either with delfy ntegration of CMLLR with ET/LVTLN/VTLN
and acceleration features, or processing with splicingj8-ad We should emphasize that our implementations of both ET
cent frames together and doing LDA to 40 dimensions. Tled LVTLN incorporate an element of Constrained MLLR.
RM systems had 1473 leaves and 9 000 gaussians. The Wden computing the speaker-specific transfoWit®) in ET,
systems had 1583 leaves and 10 000 Gaussians. Whenevemeenake the factdD(*) a diagonal CMLLR matrix at test time
accumulate statistics to estimate any kind of transfornati(i.e. it contains a scale and an offset term for each dimefsio
matrix, whether global or speaker-specific, at trainingetion In order to make our LVTLN results comparable, we also
test, we always exclude the statistics correspondingénai. enabled the estimation of offset-only and diagonal CMLLR
We show the unadapted WERs in Table |. Consideredatrices after the pure “LVTLN”" part of the transform. This
separately, LDA and STC both hurt performance, but togethgses the same CMLLR statics as used to estimate the warp
they improve it. Although this is unintuitive, the combiimat factor, and it is integrated into the warp factor calculatio

8e

(@) RM: ET scalet (b) RM: VTLN warp factor




TABLE I TABLE Il

ET VERSUSLVTLN VERSUSVTLN: ON DELTA PLUS ACCELERATION ET VERSUSLVTLN VERSUSVTLN: ON SPLICED PLUSLDA PLUSSTC
FEATURES %WERS FEATURES %WERS
Adapting per speaker Adapting per speaker
VTLN CMLLR | System WSJ VTLN CMLLR | System WSJ
type type id RM  Nov'92 Nov'93 type type ID RM  Nov'92 Nov'93
None None triza 4.0 12.5 18.3 None None tri2f 3.9 12.2 17.7
None Diag tri2a 3.9 12.7 17.2 ET Diag tri2k 3.1 10.6 14.7
ET Diag tri2b 3.1 115 15.0 LVTLN Offset tri2m 3.2 10.8 15.0
LVTLN Offset tri2g 3.3 111 16.4 LVTLN Diag tri2m 3.1 10.7 16.5
LVTLN Diag tri2g 3.1 10.7 16.5 VTLN Offset tri2m 4.7
VTLN None tri2g 3.7 VTLN Diag tri2m 3.1 10.7 14.9
VTLN Offset tri2g 3.2 SAT Full tri2m 2.7 9.6 13.7
VTLN Diag tri2g 3.1 10.9 15.9 Adapting per utterance
Adapting per utterance ET Diag tri2k 3.0 10.4 14.6
None Diag tri2a 3.9 12.6 17.3 LVTLN Offset tri2m 10.6 14.4
ET Diag tri2b 3.3 115 15.0 LVTLN Diag tri2m 3.3 10.8 14.5
LVTLN Offset tri2g 3.3 11.2 16.2 VTLN Diag tri2m 4.3 10.6 14.4
LVTLN Diag tizgg | 3.1 111 16.1 SAT Full tri2l 51 120 16.8
VTLN Diag tri2g 3.4 10.9 16.1

that our implementation of VTLN seems to fail quite badly in
that we compare the likelihoods after including the effefct some circumstances on RM; we could not find the reason for
the diagonal or offset-only transform. In the case of featurthis. Something that might be relevant is as follows: we had
level VTLN, after extracting the VTLN-warped features ugin previously noticed, on another setup, that if we ignored the
the warp factor obtained from the LVTLN computation, wéog-determinant then when using LDA+MLLT features, the
estimated an offset-only or diagonal CMLLR transform otinear VTLN training process would fail, with warp factors
top of the VTLN-warped features. This was done without aall going to one end of the scale. The message we take home
extra pass of decoding, i.e. all results in Tables Il and ifl afrom this is that one strays from the path dictated by the
done with a single speaker-independent decoding pass anthahematics at one’s own peril: that is, when one optimires a

single adapted decoding pass. objective function that does not make sense, even if it seems
) to work on one setup, one should not be surprised if it fails
B. Results on delta and acceleration features elsewhere.

Table Il compares ET with LVTLN and VTLN, on top of The bottom row of each section of Table IIl is with
MFCC plus delta and acceleration features. The rows thapeaker Adapted Training (SAT), in which we train with
say “Diag” (meaning, the transforms have a diagonal CMLLRMLLR-adapted features. We felt that this was a relevant
component) are probably the most suitable ones to compatemparison for VTLN because both the ET and LVTLN
as this is always the best configuration. We do not see aliigining procedures are special cases of SAT. It can be seen
consistent pattern— none of the three methods is condisterihat when adapting per speaker, SAT outperforms all the
best across all test sets. However, it is clear that doingesoigrsions of VTLN, but when adapting per utterance, the SAT
form of VTLN or VTLN substitute is better than doing nothingtrained system performs very badly and in the case of RM,
at all. We should note that ET contains STC/MLLT, and w& worse than a completely unadapted system (this could
can see from Table | that STC makes things worse on delta i@ necessarily be fixed by adjusting the count cutoff for

acceleration features, so in some sense ET is at a disageanggtimating a transform, because the “default” transforny ma
here. not be well matched to the SAT trained model).

C. Results on LDA+STC features D. Results with Constrained MLLR

In Table 1it we show results on top of features based OnAPPLYINGCONSTRAINEDMLESBAI;EIIZ\IQ TRANSFORMS(PER SPEAKER:
LDA plus STC/MLLT. In the case of the ET models, the %WERS '
estimation of the STC is part of the ET computation so we just
need to provide it with the LDA features. In the case of the Base Training type Adaptation type |[RM WSJ WSJ

. Feats /system id First Secong Nov'92 Nov'93
LVTLN or VTLN, it would have been too complex to embed AT AA | Unadapiedfiiza biag Ful 136 115 157

the estimation of STC/MLLT into the training procedure, SOA + AA | Unadapted/tria Eull - |36 114 155
instead we used the STC transform estimated with the baselid + AA ET/tri2b ET/Diag ~ Full |31 106 139
LDA+STC system, and initialized the system build using2+22 "V;'T';:lr/igfg LVTLE'T/D'ag Eﬂllll gé ig'g ig‘;
alignments from the LDA+STC model. This possibly providegpa+stc| LvTLNAri2m  |LVTLN/Diag Full |2.8 101 13.7
an unfair advantage to the LVTLN/VTLN system, as it use$DA+STC|CMLLR (SAT)/tri2| Full - |27 96 137
an extra phase of system building and better alignments.

This time, we again do not see perfectly consistent results,Table IV concerns the combination of various VTLN meth-

but the general advantage seems to be in favor of ET. Natds with CMLLR. The setup is generally that we do a




speaker-independent pass with the “alignment models” i@ms of CMLLR adaptation, it makes sense to compare
mentioned; then estimate an ET or LVTLN transform whickthem (we have not done so because that method is not yet
includes a diagonal CMLLR component; then redecode wittplemented in Kaldi). Another very natural extension is to
the ET/LVTLN-trained model; then estimate a full CMLLRconsider subspaces of dimension higher than one in the log
transform on top of the ET or LVTLN transform. For com-domain; essentially this becomes a log-domain version@jf [1
parisons, we also test with models trained in a spealkand our intuition is that this type of method would probably
independent manner (“Unadapted”), and with SAT. For rowserform slightly better in the log domain.

with “-” indicated as the second adaptation type, this means
we did only two decoding passes and a single iteration of
adaptation. It seemed plausible to us that there might be &H
inherent advantage in first doing a simpler adaptation typﬁ]
and then re-decoding and using this as supervision for more
advanced type of adaptation; however, the top two rows ef thi3l
table to not support this notion. The absolute best resudts a

obtained with Speaker Adapted Training (SAT), but as isrclega)
from Table Ill, this does not work well if we are only able

to adapt per utterance. The general picture is similar totwh&
we saw without CMLLR, i.e. in some conditions LVTLN is [6]

better and in some conditions ET is better. -

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a new form of adaptation which fusef$]
elements of VTLN, CMLLR and STC/MLLT. Our method is
a generic feature transformation with parameters learraed f
data, rather than using any explicit notion of frequencypwar
ing. The experimental results show that it generally penfor (10]
about the same as linear-transform based VTLN (LVTLN) or
conventional VTLN, and may have a slight advantage whéil
combined with features based on spliced frames plus LDA plus
STC/MLLT, which we find to be the best type of features. For
us, the most compelling advantage is that it is a relativeli?]
simple, attractive formulation in which the training castsiof
optimizing a simple objective function, as opposed to VTIoN i[13]
which many implementation details are not obvious and have
to be tuned (e.g. frequency cutoffs; variance normaliratio, ,
what to do with the determinant). The exponential transfizrm
also more easily applicable in principle to any kind of featu
which is an advantage if we want to significantly change e
features.

We have noted that both ET and the linear version of VTLN6]
are special cases of Constrained MLLR, and the traini
procedure is just a specially constrained form of Speaker
Adapted Training (SAT). In fact, when we compare thedés
methods with SAT, we get the best results from SAT as long

El
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as we are adapting per speaker rather than per utterante (¥ D. Povey and K. Yao, “A Basis Representation of Conatdi MLLR
is, as long as we are adapting on enough data). This does not Transforms for Robust AdaptationComputer Speech and Language

invalidate the usefulness of ET, because ET still allowsaus t
adapt on smaller amounts of data. However, we do question
whether VTLN or its subsitutes such as ET are really necgssar

as long as there is enough data to adapt on; and even if there

is very little data to adapt on, it is possible that other mdth
such as our previously published basis method for CMLLR
adaptation [19] could solve the same problem that VTLN is
solving.

Future work which we would like to do includes comparing
this method with [19]. Since both are specially constrained



