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ABSTRACT
We introduce a speed-up for weighted finite state transducer (WFST)
based decoders, which is based on the idea that one decoding pass
using a wider beam can be replaced by two decoding passes with
smaller beams, decoding forward and backward in time. We apply
this in a decoder that works with a variable beam width, which is
widened in areas where the two decoding passes disagree. Exper-
imental results are shown on the Wall Street Journal corpus (WSJ)
using the Kaldi toolkit, and show a substantial speedup (a factor or
2 or 3) at the “more accurate” operating points. As part of this work
we also introduce a new fast algorithm for weight pushing in WF-
STs, and summarize an algorithm for the time reversal of backoff
language models.

Index Terms— speech decoding, beam width, search errors

1. INTRODUCTION

Due to the huge search spaces in speech decoding, it is necessary to
use heuristic pruning techniques. The most used technique is beam
search [1] - a breadth-first style search, comparing partial paths of
the same length (time-synchronous). At each time only those paths
are kept and further expanded, whose path score is better than the
current best score extended by a beam width. The beam width is
a trade-off between speed and accuracy. Usually, a constant beam
width is applied to the whole test set.

The idea of this paper is to speed up decoding by using the
(dis)agreement of two decoding passes - decoding forward and back-
ward in time. The second decoding pass uses information gathered
from the forward pass to increase the decoding beam in places where
the two passes disagree. The speed-up is achieved by using a narrow
beam during the forward pass, and in the backward pass in places
where no disagreement is detected.

In order to implement this we need to be able to construct a de-
coding graph that operates “backwards” in time. In order to have
good pruning behavior, this cannot just be the reverse of the “for-
wards” decoding graph, but must be constructed separately from re-
versed inputs. The hardest input to reverse was the ARPA-format
language model, and we will describe in this paper how we create an
equivalent but “time-reversed” language model for a given input.

We test our method on a Wall Street Journal decoding task. We
find that our method gives a substantial speedup of two to three times
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or even more, at the “more accurate” operating points of decoding
where search errors are small. However, in our setup, the speed-
ups are diminishing for operating points faster than ≈ 0.6 real-time
using our method. The issue seems to be that if the beams are too
narrow, the two decoding passes disagree substantially and too much
effort is expended in decoding areas that disagree.

2. RELATION TO PRIOR WORK

Using multiple decoding passes has been used for a long time
(e.g. [2]). Usually inexpensive and approximate models are used in
a first pass to generate an intermediate representation (e.g. N-best
lists and word lattices) which is then re-scored using more complex
models. [3] introduced the idea of performing the second pass back-
wards in time. From a Viterbi beam search in the forward pass they
obtain the active words for each time frame and the corresponding
word end scores. The former are used to limit the word expansion in
backward search and the latter serve as a good estimate of the path
cost of the remaining speech. Thus the second pass usually takes
only a fraction of the time of the first pass, so that more complex
algorithms or models can be used, or the forward pass can be sped
up using approximate models [4]. A more recent re-discovery of
the same idea is [5],[6] that use a word trellis and stack decoding
(A-star) in the backward pass.

More similar to our idea is [7] (see also [8]), who use two sym-
metric forward and backward passes and combine the outputs based
on confidence measures (Rover technique). Our technique has the
advantage that it performs more careful search in areas where the two
passes disagree, and so has a better chance to find the true lowest-
cost path. Also, unlike the other citations, our algorithm uses the
WFST approach [9] to speech recognition. We note that the baseline
for our system is a basic WFST-based decoder. Other speed-ups,
such as acoustic look-ahead [10] and various types of fast Gaussian
score computation are also applicable, but we expect those types of
methods to be complementary with the method we describe here.

3. DECODING GRAPHS FOR BACKWARDS DECODING

The experiments in this paper were conducted with the Kaldi
toolkit [11]. The standard recipe for decoding graph creation is [9]:

HCLG = min(det(H ◦ C ◦ L ◦G)), (1)

where H , C, L and G represent the HMM structure, phonetic
context-dependency, lexicon and grammar respectively, and ◦ is
WFST composition (note: view HCLG as a single symbol). We
use a “fully expanded” HCLG, i.e. the arcs correspond to HMM



transitions, the input labels are the identifiers of context-dependent
HMM states, and the output labels represent words. For decoding
forwards and backwards in time, we want to have two decoding
graphs HCLGfwd and HCLGbwd, which will assign the exact same
overall cost for the same utterance. Because our method treats dis-
agreement between the best paths found by the two methods as a
search error, we want the backward decoding graph to be equivalent
to the reverse of the forward one.

If we simply apply FST reversal to HCLGfwd to make HCLGbwd

the search speed will be very slow, because the resulting FST will
not be deterministic. Instead we construct the time-reversed ver-
sions of H , C, L and G, and construct the “backwards” graph in the
normal way. These time reversed versions are not simply the WFST
reverses of the forward ones, but must be separately constructed.

3.1. Reversing G, L, C and H

3.1.1. Reversing G

For the language model (LM), the task is to construct an LM accep-
tor Gbwd, that assigns exactly the same scores as G (to the reversed
utterances). For our experiments, we used ARPA-format backoff
LMs and we consider only how to reverse that type of LM. FST re-
versal is not sufficient because of the need to ensure that the reversed
LM is deterministic and sufficiently “stochastic” (i.e. the transitions
from each LM state should sum approximately to 1). A trivial so-
lution is to train a new LM on the reversed training texts (e.g. [8]);
however, we did not pursue this approach because i) it would not
lead to exactly the same LM scores, and ii) it would make our ap-
proach inconvenient to use in cases where the original LM text was
not available. We devised an approach to reverse the ARPA-format
LM, which we summarize here. We may describe it in more detail
in a future publication; regardless, the code for all the methods we
describe here is available as part of the Kaldi toolkit. The sketch of
our approach is as follows:

1. Modify the ARPA-format LM in such a way as to make the
“backoff costs” zero while preserving sentence-level equiv-
alence of scores, by pushing the costs onto higher-order N-
gram scores. Our algorithm zeroes the backoff costs from
lowest to highest order.

2. Convert the ARPA-format LM to a ‘maxent’-like form of the
ARPA, in which a probability is always multiplied in even if
a higher-order one exists (this is done by subtracting lower-
order from higher-order log-probabilities).

3. Reverse the ‘maxent’ form of the LM by replacing “A B” with
“B A” and swapping the begin and end-of-sentence symbols.

4. Add (with zero log-probabilities) “missing” backoff states.
5. Convert from ‘maxent’ format back to standard ARPA format

(but still with zero backoff costs).
6. Convert this ‘un-normalized’ ARPA into the WFST format.
7. Do our special form of weight pushing (See Section 4).

We have verified that our “reversed” WFST-format LM assigns the
same score to a reversed sentence that our original WFST-format LM
assigned to the original sentence.

3.1.2. Reversing L, C and H

The construction of the reversed pronunciation lexicon transducer
Lbwd (phones to words) is simple: the individual phone sequences
(pronunciations) are reversed, and the disambiguation symbols are
introduced after that. The context-dependency transucer Cbwd is
constructed in the normal way, and is identical to Cfwd. The HMM
structure transducer Hbwd, is constructed in the same way as Hfwd,

except with two differences. Firstly, the phonetic context windows
corresponding to the input symbols of C are backwards in time, and
must be reversed. Secondly, the HMMs that are constructed after us-
ing the decision tree to look up the relevant PDFs, must be reversed
and then “weight-pushed” to make the time-reversed probabilities
sum to one.

4. MODIFIED WEIGHT PUSHING

Weight pushing is a special case of reweighting [9], which is an oper-
ation on WFSTs that alters the weights of individual transitions (and
final-probabilities), while leaving unaffected the weights on success-
ful paths (i.e. from initial to final states). Weight pushing aims to al-
ter a WFST so that the transitions and final-probability of each state
“sums to one” in the semiring. It is only possible to do this if the
“total weight” of the entire WFST is 1̄. Otherwise, there is a left-
over weight that must be handled. In practice this may be discarded,
or put on the initial or final state(s) of the WFST. In the case of
language models, we want to do the pushing in the “log semiring”,
meaning we want each language model state to sum to one in a prob-
ability sense. Real backoff language models represented as WFSTs
([9]) will not exactly sum to one because the backoff structure leads
to duplicate paths for some word sequences. In fact, such language
models cannot be pushed at all in the general case, because the to-
tal weight of the entire WFST may not be finite. For our language
model reversal we need a suitable pushing operation that will always
succeed.

Our solution is to require a modified pushing operation such that
each state “sums to” the same quantity. We were able to find an itera-
tive algorithm that does this very efficiently in practice; it is based on
the power method for finding the top eigenvalue of a matrix. Both for
the math and the implementation, we find it more convenient to use
the probability semiring, i.e. we represent the transition-probabilities
as actual probabilities, not negative logs. Let the transitions be writ-
ten as a sparse matrix P, where pij is the sum of all the probabilities
of transitions between state i and state j. As a special case, if j is the
initial state, then pij is the final-probability of state i. In our method
we find the dominant eigenvector v of the matrix P, by starting from
a random positive vector and iterating with the power method: each
time we let v ← Pv and then renormalize the length of v. It is
convenient to renormalize v so that vI is 1, where I is the initial
state of the WFST1. This generally converges within several tens of
iterations. At the end we have a vector v with vI = 1, and a scalar
λ > 0, such that

λv = Pv. (2)
Suppose we compute a modified transition matrix P′, by letting

p′ij = pijvj/vi. (3)

Then it is easy to show each row of P′ sums to λ: writing one ele-
ment of Eq. 2 as

λvi =
∑
j

pijvj , (4)

it easily follows that λ =
∑

j p
′
ij . We need to perform a similar

transformation on the transition-probabilities and final-probabilities
of the WFST; the details are quite obvious, and the equivalence with
the original WFST is easy to show. Our algorithm is in practice
an order of magnitude faster than the more generic algorithm for
conventional weight-pushing of [12], when applied to cyclic WFSTs.

1Note: in order to correctly deal with the case of linear WFSTs, which
have different eigenvalues with the same magnitude but different complex
phase, we modify the iteration to v← Pv + 0.1v.
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Fig. 1. Histogram of score differences: current best path and final
best path (decode beam 13.0, WSJ Nov’92 test set at WER 10.8%).

5. TRACKED DECODING

Our decoding approach is to do a first pass (which happens to be a
forward pass) with a narrow beam, and then to do a second pass in
the opposite direction, also with a narrow beam, but using knowl-
edge obtained during the first pass. The first pass outputs a lattice
with state-level alignments [13]. Note that this does not contain ev-
erything visited in the first pass, but only those word-sequences that
are within a specified beam of the best word-sequence. We want to
treat the paths in the lattice in a special way in the second decoding.
That is,

1. We want to avoid pruning out paths that appeared in the first-
pass lattice.

2. On frames where we would otherwise have pruned out those
paths, we want to increase the pruning beam.

Part of our motivation is that for most frames of speech data, a very
narrow beam is sufficient. Fig. 1 plots a histogram of the score dif-
ference between the current best token, and the token that will be ul-
timately successful. Most of the time this difference is much smaller
than the typical beam of between 10 and 15. We aim to use the ini-
tial forward pass to identify the problematic frames on the backward
pass.

5.1. Tracking tokens with an arc-lattice

We need to be able to identify which tokens in our second-pass de-
coder correspond to paths in the first-pass lattice. One possible way
to do this would be to designate a set of pdf-ids (context-dependent
HMM states) on each frame that are “special” because they appear
in the first pass lattices. But we did not pursue this because it could
lead to too many irrelevant tokens being kept in the beam. Instead,
we chose to identify those paths through the second-pass decod-
ing graph that correspond to paths in the first-pass lattice. We im-
plemented this as a separate process, outside the decoder code. It
takes the standard lattice output by the first pass, and process it into
something we call an arc-lattice, whose symbols identify arcs in our
second-pass decoding graph HCLG2nd. We explain the arc-lattice
generation process below (Section 5.3).

The second-pass decoder, which we will refer to as our track-
ing decoder, is a lattice-generating decoder that takes an extra input,
namely the arc-lattices for each utterance. Let a token be a record of
a particular state in HCLG that is active on a particular frame. Our
tracking decoder gives tokens an extra, boolean property that iden-
tifies whether they are tracked or not. A tracked token is one that
corresponds to a state in the arc-lattice. Tracked tokens are never
pruned. Tracked tokens are also used to determine the pruning beam
used on each frame.

5.2. Beam-width policy

For the second-pass decoding with our tracking decoder, we use the
tracked tokens to determine the beam width to use for each frame.
Here we describe the policy we use to set the beam width. The
decoder has three configurable values that specify how it sets the
frame-specific beam: the beam, the max-beam and the extra-beam.
On a particular frame, let the cost difference between the lowest-cost
token and the highest-cost tracked token be D. Then the beam width
on that frame is given by

max(beam,min(max-beam, D + extra-beam)).

Unless otherwise specified we let extra-beam be zero and max-beam
be large (e.g. 100, although this may be too large); we try various
values of the beam for our experiments here.

Regardless of the beam-width, we never prune away the tracked
tokens. Note that even if we kept the beam equal to beam, our
method is doing more than simply choosing the best path from two
(forward and backward) passes, because it is possible in this decoder
for paths found by the first-pass search to “recombine” with paths
that were found by the second-pass search.

5.3. Generation of the arc-lattice

As mentioned above, the arc-lattice is a special kind of lattice that
allows us to identify arcs in HCLG2nd that were present in the first-
pass lattice. This arc-lattice is an acceptor FST, i.e. it has only one
symbol on each arc. These symbols correspond to arcs in HCLG2nd.
We first construct a mapping between the integers, and the individual
arcs in HCLG2nd; this involves creating tables for an integer map-
ping, because the product of (#states) × (maximum #arcs) may be
greater than the 32-bit integer range.

We now describe how we create the arc-lattice. First, let us point
out that the standard Kaldi lattices [13] are WFSTs whose input sym-
bols correspond to integers called transition-ids and whose output
symbols correspond to words. The transition-ids may be mapped
to pdf-ids, which correspond to context-dependent HMM-states (the
transition-ids contain more information, but it is not needed here).
We first map the transition-ids to pdf-ids, and also map the input
symbols of HCLG2nd from transition-ids to pdf-ids. This is nec-
essary because the order of self-loops versus “forward transitions”
on the forward versus backward graphs differ, which makes the se-
quences of transition-ids differ even for paths that are “really” the
same; this issue does not arise with pdf-ids. We then change the out-
put symbols of HCLG2nd (which were previously words) to sym-
bols identifying the arc in HCLG2nd. Let the resulting FST be called
HCLGarc; it has the same structure as HCLG2nd but different la-
bels on the arcs. After doing the symbols mappings described above,
we reverse the lattice (to switch the time order) and compose it with
HCLGarc. We apply lattice-determinization [13] to retain only the
best path for each sequence of pdf-ids. We then “project it on the
output”, which means we keep only the output labels, correspond-
ing to arcs in HCLG2nd, and lattice-determinize again (this time on
the output labels). Since the Kaldi lattices contained the alignments
(sequence of pdf-ids), also the resulting arc-lattices contain timing
information (sequences of HCLG2nd-arcs, e.g. repeated self-loops).

During deocding, a token is tracked if it was reached by a se-
quence of HCLG2nd-arcs in the arc-lattice that correspond to a path
in the first pass lattice. If another token with lower cost reaches the
same state at the same time, the tokens recombine, i.e. it replaces the
token, but inherits the status of being tracked.



6. EXPERIMENTAL RESULTS

We tested the proposed decoding method on the WSJ Nov’92
open vocabulary test set (333 utterances) using a standard triphone
HMM+GMM system (Kaldi [11] recipe ’tri2a’, trained on ’si84’
portion of WSJ). The experiments were conducted with the ex-
tended 146k vocabulary pruned trigram language model ’bd tgpr’
trained on all WSJ training texts. Lattices [13] were generated with
a lattice beam of 4.0, and the realtime factor was measured on a
single core of an Intel(R) CPU i5-2500 (3.3GHz, 8GB RAM).

Search errors can be evaluated by aligning the recognition out-
put to a decoding with a very wide beam. We confirm the intuition
that forward and backward search errors are independent by aligning
forward and backward decoding outputs - Tables 1 and 2 show that
most of the search errors were eliminated.

Table 1. Analysis of search errors on WSJ Nov’92 test set by align-
ing forward and backward search errors against decoding with a
wide beam (29.0) Error co-occurrence does not necessarily mean
the same error. With two-pass (pingpong) decoding, all indepen-
dent search errors were corrected, and even a good portion of the
co-occurring errors.

beamwidth forwd. backwd. co-occur pingpong
11.0 144 230 32 14
13.0 84 108 14 6

Table 2. Alignment of search errors of forward (f), backwards
(b) and ping-pong decoding (p) to decoding with very wide beam
(w).(’I’ insert, ’S’ substitute, ’-’ delete)
f:BRIAN J.KILLING CHAIRMAN OF BELL - ATLANTA X. INVESTMENT

. . S . . . . . S .
b:BRIAN J. DAILY CHAIRMAN OF BELL AND LAND SIX INVESTMENT

. . . . . . I S S .
p:BRIAN J. DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT

. . . . . . . . . .

w:BRIAN J. DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT

Fig. 2 shows, that for the lowest word error rates, the two-pass
(ping-pong) decoding runs about 2-3 times faster than the individual
forward/backward passes. The WER curve is not always smooth - it
reminds that fixing a search error must not mean fixing a word error.
We can compare the normal two-pass decoding with variable beam
to decoding without generating extra tokens by disabling the variable
beam (maxbeam = beam). This corresponds to just combining the
lattices of the forward and backward pass. Fig. 2 shows that the vari-
able beam (’2beam’ vs. ’noextra’) gives a substantial improvement
on top of that.

We profiled the two-pass decoding in fig. 3. One question is why
the two-pass decoding is not better than the one-pass decoding for
higher error rates (> 11.5% in fig. 2). Going below a certain beam
width, the error rates in the single passes grow rapidly (fig. 2) and
also the divergence between the best paths from forward and back-
ward decoding is increasing, so that the algorithm has to increase the
variable beam a lot to track the first pass tokens. Thus, for low beam
widths the most time consuming is the generation of extra tokens
(fig. 3) which effectively means decoding with a higher beam.

7. CONCLUSIONS

We proposed how to integrate information from two decoding
passes, forward and then backward in time. In the second (back-
ward) pass, we modify the pruning behavior of the decoder to treat

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10  10.5  11  11.5  12  12.5  13  13.5  14  14.5

re
a
lt
im

e
 f
a
c
to

r

WER versus reference

"rt_wer_forward4"
"rt_wer_backward4"

"rt_wer_pingpong4_2beam_var"
"rt_wer_pingpong4_noextra"

Fig. 2. Shown are curves for word error rate (WER) vs. realtime
factor on WSJ Nov’92 test set. For single pass decodings, the beam
varies between 10-18, for the two-pass (’pingpong’) decoding the
beam varies between 7-13. We used extrabeam = 0 and found
maxbeam = 2 · beam as a good tuning. The lattice-beam is 4.0,
but for beam < 10.0 we decrease it stepwise to 0.5. We compare
to decoding without generating extra tokens in the variable beam
(‘noextra’) by setting maxbeam = beam, which shows the addi-
tional benefit of the variable beam over just combining lattices of
forward and backward passes.
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Fig. 3. Profiling two-pass decoding. Shown is the percentage of
time spent in different parts of the algorithm at 3 operating points
(beam 8.5 as optimal, others as not optimal). The first pass is the
lattice generating forward search and the second pass consists of
a normal backward decoding (colum 2), generating the arc-lattice
(col. 3), additionally tracking tokens from the first pass (col. 5) and
generating extra tokens with the increased variable beam (col. 4).
Acoustic scores were not cached between passes.

specially tokens that were part of successful paths in the forward
pass, and to increase the decoding beam for parts of the utterance
where the forward and backward pass disagree. In order to do this
we need to construct reverse decoding networks that assign exactly
the same scores as the forward decoding. This required the devel-
opment of a method to time-reverse ARPA format language models
and a new algorithm for weight pushing. Our decoding method
results in a roughly two to three-fold speed-up at lower WERs.

The proposed method could be applied in the fast generation
of lattices for audio indexing and to generate lattices that contain
certain desired paths (e.g. for discriminative training).
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