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ABSTRACT

This paper introduces a new corpus of read English speech, suitable

for training and evaluating speech recognition systems. The Lib-

riSpeech corpus is derived from audiobooks that are part of the Lib-

riVox project, and contains 1000 hours of speech sampled at 16 kHz.

We have made the corpus freely available for download, along with

separately prepared language-model training data and pre-built lan-

guage models. We show that acoustic models trained on LibriSpeech

give lower error rate on the Wall Street Journal (WSJ) test sets than

models trained on WSJ itself. We are also releasing Kaldi scripts

that make it easy to build these systems.

Index Terms— Speech Recognition, Corpus, LibriVox

1. INTRODUCTION

The rapid increase in the amount of multimedia content on the In-

ternet in recent years makes it feasible to automatically collect data

for the purpose of training statistical models. This is particularly true

when the source data is already organized into well curated, machine

readable collections. The LibriVox project1, a volunteer effort, is

currently responsible for the creation of approximately 8000 public

domain audio books, the majority of which are in English. Most of

the recordings are based on texts from Project Gutenberg2, also in

the public domain.

Although the use of audio books for building synthetic voices [1,

2] has previously been investigated, we are not aware of any freely

available read speech corpus in English that is suitable for training

and testing speech recognition systems, and which is as large scale as

the one we present here. The volunteer-supported speech-gathering

effort Voxforge3 , on which the acoustic models we used for align-

ment were trained, contains a certain amount of LibriVox audio, but

the dataset is much smaller than the one we present here, with around

100 hours of English speech, and suffers from major gender and per-

speaker duration imbalances.

This paper presents the LibriSpeech corpus, which is a read

speech data set based on LibriVox’s audio books. The corpus

is freely available4 under the very permissive CC BY 4.0 li-

cense [3] and there are example scripts in the open source Kaldi

ASR toolkit [4] that demonstrate how high quality acoustic models

can be trained on this data.

Section 2 presents the long audio alignment procedure that we

used in the creation of this corpus. Section 3 describes the structure

of the corpus. In Section 4 we describe the process we used to build

1https://librivox.org/
2http://www.gutenberg.org
3http://www.voxforge.org
4http://www.openslr.org/12/

the language models, which we make available with this corpus. Fi-

nally in Section 5 we present experimental results on models trained

on this data set, using both the LibriSpeech dev and test sets and

Wall Street Journal (WSJ) [5] test sets.

2. AUDIO ALIGNMENT

Most acoustic model training procedures expect that the training data

come in the form of relatively short utterances, usually up to few

tens of seconds in length, each with corresponding text. Therefore

we need to align the audio recordings with the corresponding texts,

and split them into short segments. We also aim to exclude seg-

ments of audio that might not correspond exactly with the aligned

text. Our procedure is similar to that described in [6], and consists

of two stages. (Note: we have since become aware of a different,

phone-based approach [7]).

2.1. Text preprocessing, lexicon and LM creation

Each book’s text is normalized by converting it into upper-case, re-

moving the punctuation, and expanding common abbreviations and

non-standard words [8]. Then the SRILM toolkit [9] is used to train

a Witten-Bell [10] smoothed bigram language model on the text of

that book. We base our lexicon on CMUdict, from which we remove

the numeric stress markers; the pronunciations for out-of-vocabulary

(OOV) words are generated with the Sequitur G2P toolkit [11]. In

order to avoid possible problems with recognizing excessively long

audio recordings, the audio chapters are split into segments of up

to 30 minutes in length. The audio is then recognized using the

gmm-decode-faster decoder from the Kaldi toolkit, trained on the

VoxForge dataset. For this first decoding pass we use a triphone

model discriminatively trained with Boosted MMI [12], based on

MFCC [13] features processed with frame-splicing over 7 frames,

followed by LDA, followed by a global semi-tied covariance (STC)

transform [14].

2.2. First alignment stage

We use the Smith-Waterman alignment algorithm [15] to find the

best single region of alignment between the recognized audio and the

chapter text. This is like doing Levenshtein alignment [16], except

we do not require it to consume the whole reference or hypothesis

from the beginning to end, and it also has tunable rather than fixed

weights for the different kinds of errors. From this we take the largest

single region of similarity (which in most cases would be the entire

chapter) and discard the rest, if any. Within that region of similarity,

we mark a transcript word as being part of an “island of confidence”

if it is part of an exact match with the reference whose length is 12

phones or more. We now split the audio into shorter segments, of

35 seconds or less, using a dynamic programming algorithm. We
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Fig. 1. Example grammar (G) acceptor for the second stage of the alignment algorithm

a)

Reference: A family of ten children will be always called a fine family ...

Hypothesis: sil A FAMILY OF TEN CHILDREN WILL #del ALWAYS #ins0016 b iy #ins0017 CALLED A FINE FAMILY sil

Explanation: Transposition of “be” and “always”.

b)

Reference: ... upon her arm and ... I rushed towards her ...

Hypothesis: sil UPON HER ARM #ins0020 s #ins0021 sil AND ... I RUSHED sil #ins0054 ay r ah sh t #ins0055 TOWARDS HER

Explanation: Reader pronounces “arms” instead of “arm” and repeats “I rushed”.

c)

Reference: Morning dawned before I arrived at the village of Chamounix ...

Hypothesis: sil MORNING DAWNED BEFORE I ARRIVED AT THE VILLAGE OF sil #ins0018 sh ah m ow n iy #ins0021

Explanation: G2P error– the auto-generated dictionary entry is “CHAMOUNIX CH AE M UW N IH K S”, which is wrong.

Fig. 2. Examples of typical text-audio discrepancies detected in second stage decoding. a) Chapter 1 of “Northanger Abbey” by J. Austen,

read by Kara Shallenberg; b) Chapter 23 of “Frankenstein” by M. Shelley, read by Hugh McGuire; c) Chapter 15 of “Frankenstein” by M.

Shelley, read by Gord Mackenzie

only allow it to split on silence intervals whose length is at least 0.5

second and which are inside an island of confidence. This allows

us to generate, with reasonable confidence, a candidate text for each

split piece of audio.

2.3. Second alignment stage

The goal of the second stage is to filter out segments where the can-

didate text obtained by the first stage has a high likelihood of be-

ing inaccurate. Possible sources of text-audio mismatch include in-

accuracies in Project Gutenberg texts, reader-introduced insertions,

deletions, substitutions and transpositions, and involuntary disfluen-

cies [1, 17]. Other significant sources of mismatch that we noticed

are inaccurate text normalization and grapheme-to-phoneme errors

in the automatically generated pronunciations.

In this second stage of alignment, we use a custom-generated

decoding graph for each segment. The decoding graph, diagrammed

in Figure 1, is formed from a combination of the linear sequence

of words in the transcript with a generic phone-level bigram lan-

guage model. Our aim is to use the phone-level bigram to allow ar-

bitrary insertions between words in the transcript, or replacement of

words in the transcript; we will reject any utterance whose decoding

shows any deviation from the transcript. We also experimented with

a single-phone filler model to model errors, but found the phone-

level bigram was more effective at finding segments with inaccurate

transcripts.

The most obvious way to generate the decoding graph would

be to include multiple copies of the phone-level bigram graph, but

this would lead to very large decoding graphs. Instead we use a

single copy of the bigram part of the decoding graph (Figure 1), but

we modify the decoder so that after entering the bigram part of the

model from word-position x in the transcript, we may only return at

position x (corresponding to an insertion between words) or position

x+1 (corresponding to a substitution or deletion of a word). This

is like a pushdown transducer that can only store one item in the

pushdown store.

In this second decoding stage, we use a speaker-adapted

model [18, 19] with fMLLR transforms estimated at the speaker

level, based on the transcript generated by the first decoding pass.

In most cases this algorithm succeeds in detecting text-audio

mismatches, especially for native speakers. There are also instances

of false rejections. A common problem is, for example, the “assimi-

lation” of a short, 1-2 phone word into a neighboring silence period,

which leads to an erroneous detection of deletion from the audio.

However, since the original amount of audio in the audiobooks is so

large, we can afford to lose a certain percentage of it. Figure 2 shows

examples of the kinds of errors that we typically find by applying this

method.

The whole alignment process took approximately 65 hours on

two Amazon EC2 cc2.8xlarge instances, to produce an initial set of

aligned audio of size approximately 1200 hours.

2.4. Data segmentation

The second stage of alignment, which we described above, gives

us a subset of the audio segments of length up to 35 seconds, that

have a good likelihood of having accurate transcripts. Next we break

these long segments up into smaller segments. We used two different

methods for this. For training data, our rule was to split on any si-

lence interval longer than 0.3 seconds. For test data, we only allowed

splits if those intervals coincided with a sentence break in the refer-

ence text. The idea was that data split at sentence breaks is likely to

be easier to recognize from a language modeling point of view.



3. DATA SELECTION AND CORPUS STRUCTURE

3.1. Data selection

To select the audio recordings for inclusion into the corpus we use

LibriVox’s API5 to collect information about the readers, the audio

book projects in which they participated, and the chapters of books

that they read. The URLs for audio files and reference texts were

obtained by matching the information from LibriVox’s API with the

metadata records from the Internet Archive6 and Project Gutenberg’s

RDF/XML files7. For a small fraction of audiobooks no exact match

for the title was found in Project Gutenberg, so to improve coverage

we allowed a fuzzy matching of titles.

In order to guarantee that there was no speaker overlap between

the training, development and test sets, we wanted to ensure that

each recording is unambiguously attributable to a single speaker. To

that end we exclude such LibriVox genres as, for example, “Dra-

matic Reading”, which include predominantly multi-reader audio

chapters. As an extra precaution, in the final post-processing step

of the alignment processing the recordings are processed with the

LIUM speaker diarization toolkit [20] to automatically detect multi-

speaker chapters. A custom GUI application was written, that makes

use of the text-audio alignment information and the speaker diariza-

tion information, to allow for quick inspection and filtering out of

the remaining multi-speaker recordings. This application also made

it possible to quickly produce gender information for the speakers

and to discard a small number of recordings that had excessive au-

dio quality problems.

We ensured a gender balance at the speaker level and in terms of

the amount of data available for each gender.

3.2. Corpus partitions

The size of the corpus makes it impractical, or at least inconvenient

for some users, to distribute it as a single large archive. Thus the

training portion of the corpus is split into three subsets, with approx-

imate size 100, 360 and 500 hours respectively. A simple automatic

procedure was used to select the audio in the first two sets to be, on

average, of higher recording quality and with accents closer to US

English. An acoustic model was trained on WSJ’s si-84 data subset

and was used to recognize the audio in the corpus, using a bigram

LM estimated on the text of the respective books. We computed the

Word Error Rate (WER) of this automatic transcript relative to our

reference transcripts obtained from the book texts.

The speakers in the corpus were ranked according to the WER of

the WSJ model’s transcripts, and were divided roughly in the middle,

with the lower-WER speakers designated as “clean” and the higher-

WER speakers designated as “other”. From the “clean” pool, 20

male and 20 female speakers were drawn at random and assigned to a

development set. The same was repeated to form a test set. For each

dev or test set speaker, approximately eight minutes of speech are

used, for total of approximately 5 hours and 20 minutes each. Note

that, as mentioned in Section 2.4, we use a different segmentation

procedure for development and test data, than for training data.

The rest of the audio in the “clean” pool was randomly split into

two training sets with approximate size 100 and 360 hours respec-

tively. For each speaker in these training sets the amount of speech

was limited to 25 minutes, in order to avoid major imbalances in

per-speaker audio duration.

5https://librivox.org/api/info
6http://blog.archive.org/2011/03/31/how-archive-org-items-are-

structured/
7http://www.gutenberg.org/wiki/Gutenberg:Offline Catalogs

subset hours
per-spk

minutes

female

spkrs

male

spkrs

total

spkrs

dev-clean 5.4 8 20 20 40

test-clean 5.4 8 20 20 40

dev-other 5.3 10 16 17 33

test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251

train-clean-360 363.6 25 439 482 921

train-other-500 496.7 30 564 602 1166

Table 1. Data subsets in LibriSpeech

The “other” pool was similarly split into test and development

sets, and a single training set of approximately 500 hours. For this

pool, however we did not choose the development and test sets at

random; instead we deliberately chose more challenging data. The

WER we computed using the WSJ models was used to rank the

speakers in order of increasing difficulty, and the speakers for the

test and development set were randomly chosen from the third quar-

tile of this sorted list. Table 1 provides a summary of all subsets in

the corpus.

4. LANGUAGE MODELS

To make it easy to reproduce the results we report here, we have re-

leased language model training data and pre-built language models

online8, along with the text data that we used to build the language

models. The language model training material is carefully selected

to avoid any overlap with the texts which appear in the test and de-

velopment sets.

The source material for these language models is Project Guten-

berg books. All books, in their entirety, on which the test and de-

velopment sets are based were filtered out, as well as any book

whose title has cosine similarity, over letter 3-grams, greater than

0.7 with any of the titles of these books. After filtering on titles,

the text of approximately 22 000 candidate books was downloaded

from Project Gutenberg. An inverted index of all 5-grams, with stop

words deleted, is built for the books in the test and development

sets. All candidate books are then checked against this index and

each book for which more than one percent of the 5-grams which

appear in it, appear in any of the books in the test and development

sets, is removed from the candidate set. The method is effective for

finding shared text such as, for example, popular fairy tales which

are present in more than one fairy tales collection, long citations of

poems in other works, and so on. We used other heuristics to also

filter out texts such as numeric tables, sequences from the Human

Genome Project, and other types of documents that were deemed

inappropriate for language model training.

After the above steps, approximately 14 500 public domain

books, containing around 803 million tokens in total and 900 000

unique words, remained.

To select a lexicon, the words in the corpus were ranked by fre-

quency, and the 200 000 most frequent words were selected. Around

one third of these words are present in the CMU pronunciation dic-

tionary, accounting for around 97.5% of all tokens in the evaluation

sets; we generated pronunciations for the remaining words using the

Sequitur G2P toolkit [11]. Modified Kneser-Ney smoothed 3- and

4-grams [21, 22] are trained. The perplexity for the 3-gram model

is 170, and the out of vocabulary token rate is approximately 0.4%

8http://www.openslr.org/11/



on average. For the 4-gram language model the perplexity is around

150.

5. EXPERIMENTS

In this section we present decoding results using models trained

using various amounts of LibriSpeech data, and on WSJ data, on

both LibriSpeech and WSJ test sets. The recordings available from

LibriVox are not completely ideal for training acoustic models for

other domains, because the audio is MP3-compressed and because

the site’s guidelines for upload recommend noise removal9 and vol-

ume normalization10. These practices are not consistently enforced,

however, so there is a significant fraction of noisy and non-processed

audio available, combined with audio that has been subjected to au-

tomatic noise removal.

In order to assess the performance of the acoustic models on

non-compressed audio we use the Wall Street Journal read speech

corpus [5], as a baseline. We employ language models, trained on the

text material the WSJ corpus provides, in conjunction with acoustic

models trained on the LibriSpeech data to decode WSJ’s test sets,

and compare the results with those for state-of-the-art models trained

on WSJ’s own si-284 set (which contains 82 hours of speech data).

The WSJ results we present in Table 2 are for the “open-vocabulary”

(60K) test condition, using not the standard 60K word dictionary

supplied with WSJ but an extended version that we built to cover

more of the words that appear in the WSJ language models. For the

language model we used a pruned version of the standard trigram

language model that is distributed with the WSJ corpus. The acoustic

models, referred to as SAT in the tables, are speaker-adapted GMM

models [18, 19], and those referred to as DNN, are based on deep

neural networks with p-norm non-linearities [23], trained and tested

on top of fMLLR features. The models estimated on LibriSpeech’s

training data are named after the amount of audio they were built

on. The models marked with 460h are trained on the union of the

“train-clean-100” and “train-clean-360” subsets, and those marked

with 960h are trained on all of LibriSpeech’s training sets.

eval’92 dev’93 eval’93
Acoustic model

LS

SAT 100h 5.72 10.10 9.14

SAT 460h 5.49 8.96 7.69

SAT 960h 5.33 8.87 8.32

DNN 100h 4.08 7.31 6.73

DNN 460h 3.90 6.75 5.95

DNN 960h 3.63 6.52 5.66

WSJ
SAT si-284 6.26 9.39 9.19

DNN si-284 3.92 6.97 5.74

Table 2. WERs on WSJ’s test sets under the “open vocabulary”

(60K) test condition

Similarly LibriSpeech’s language models are used with WSJ

acoustic models to decode LibriSpeech’s test sets. For these tests the

results in Table 3 were obtained by rescoring with the full 4-gram

language model from Section 4.

In order to be able to rescore lattices using large language mod-

els in a memory efficient manner, we implemented a new rescoring

tool, which is now part of the Kaldi toolkit. Table 4 shows the word

9http://wiki.librivox.org/index.php/Noise Cleaning
10http://wiki.librivox.org/index.php/Questions and Answers

dev-

clean

test-

clean

dev-

other

test-

otherAcoustic model

LS

SAT 100h 8.19 9.32 29.31 31.52

SAT 460h 7.26 8.34 26.27 28.11

SAT 960h 7.08 8.04 21.14 22.65

DNN 100h 5.93 6.59 20.42 22.52

DNN 460h 5.27 5.78 17.67 19.12

DNN 960h 4.90 5.51 12.98 13.97

WSJ
SAT si-284 10.87 12.44 39.44 41.26

DNN si-284 7.80 8.49 27.39 30.01

Table 3. WERs on LibriSpeech’s test sets; all results are obtained

by rescoring with a 4-gram language model.

error rates for language models of different size. The first pass de-

coding is performed using the 3-gram model pruned with threshold

3 × 10
−7 using SRILM’s pruning method; the other numbers are

obtained through lattice rescoring.

dev-

clean

test-

clean

dev-

other

test-

otherLanguage model

3-gram prn. thresh. 3e-7 7.54 8.02 18.51 19.41

3-gram prn. thresh. 1e-7 6.57 7.21 16.72 17.66

3-gram full 5.14 5.74 13.89 14.77

4-gram full 4.90 5.51 12.98 13.97

Table 4. LM rescoring results for the 960 hour DNN model

6. CONCLUSIONS

We have automatically aligned and segmented English read speech

from audiobooks with the corresponding book text, and filtered out

segments with noisy transcripts, in order to produce a corpus of En-

glish read speech suitable for training speech recognition systems.

We have demonstrated that models trained with our corpus do better

on the standard Wall Street Journal (WSJ) test sets than models built

on WSJ itself – the larger size of our corpus (1000 hours, versus the

82 hours of WSJ’s si-284 data) outweighs the audio mismatch. We

are releasing this corpus online11 and have introduced scripts into

the Kaldi speech recognition toolkit so that others can easily repli-

cate these results.
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