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Abstract

A common way to improve the performance of deep learning

is to train an ensemble of neural networks and combine them

during decoding. However, this is computationally expensive

in test time. In this paper, we propose an diversity-penalizing

ensemble training (DPET) procedure, which trains an ensemble

of DNNs, whose parameters were differently initialized, and pe-

nalizes differences between each individual DNN’s output and

their average output. This way each model learns to emulate

the average of the whole ensemble of models, and in test time

we can use one arbitrarily chosen member of the ensemble. Ex-

perimental results on a variety of speech recognition tasks show

that this technique is effective, and gives us most of the WER

improvement of the ensemble method while being no more ex-

pensive in test time than using a single model.

Index Terms: deep learning, ensemble learning, model com-

pression, speech recognition.

1. Introduction

A simple way to improve the performance of deep learning is to

train an ensemble of neural networks which are randomly ini-

tialized with different parameters on the same data, and then

average their predictions during decoding [1]. More power-

ful ensemble methods aim to produce an accurate yet diverse

ensemble of models, by encouraging diversity among models

in the ensemble during training, and combine them during de-

coding [2]. Since using an ensemble at test time is expensive,

people have applied model compression techniques to compress

the ensemble into a single model. Various model compression

techniques [3] [4] have shown that it is possible to compress the

knowledge in an ensemble into a single model which is much

cheaper to deploy. In this paper, rather than using ensemble

methods to produce a diverse ensemble of models and then ex-

plicitly compress them into one model, we enforce interaction

among the models during training to drive them towards their

average in the models’ output space, so that at the end, each

single model’s performace gets close to the ensemble’s perfor-

mance. In other words, we want to achieve model compres-

sion as part of the process of training the individual models.

Note that we already briefly mentioned an earlier version of this

method in [5]. In this paper we describe the idea in more detail

and provide experimental results to support its effectiveness.

The rest of the paper is organized as follows. In Section 2

we provide details of our training procedure. In Section 3.1 we

state that the proposed ensemble method can improve models’

generalization performance since it acts as a good regularizer.

In Section 3.2 we analyze the relationship between our method

and other ensemble methods. In Section 4 we discuss our ex-

perimental conditions; we present the results in Section 5.

2. Diversity-penalizing ensemble training

2.1. Objective function

We initialize each neural network in an ensemble of size N with

different random parameters, then we train each network us-

ing mini-batch SGD on the same sequence of training examples

(pre-randomized). On each training example, let pi denote the

posterior of the i’th model in the ensemble, and q denote the

zero-one training targets. For the i’th model, instead of mini-

mizing the cross entropy between pi and q:

CrossEnt(q,pi) (1)

as we usually do, our DPET method adds a penalty term to the

objective function, which is the KL divergence between the in-

dividual posterior pi and the averaged posterior:

p̄ =
1

N

N
∑

j=1

p
j

(2)

and we jointly optimize the sum of the objective functions for

each individual model in the ensemble:

F =
N
∑

i=1

(

CrossEnt(q,pi) + λD(p̄||pi)
)

(3)

The concept is that in addition to learning the original training

labels q we are dynamically training the models toward each

other, by penalizing the KL divergence between each individ-

ual model’s output and the average output. This is how DPET

penalizes diversity in the ensemble. In [4], a number of mod-

els are first trained independently, and then another model is

trained using an interpolation of the hard labels and the aver-

aged predictions of the previously mentioned models. In DPET

we combine these two stages into a single procedure.

2.2. Derivative computation

Here we show, with the new objective function F , the deriva-

tives could still be computed efficiently. Using n to specify a

certain dimension of a posterior, the objective F can be writen

as:

F =
N
∑

i=1

(

−
∑

n

qnlog(p
i
n) + λ

∑

n

p̄nlog
p̄n

pi
n

)

(4)



So, the derivative of F w.r.t the nth dimension of jth network’s

posterior is:

∂F

∂p
j
n

=

(

−
qn

p
j
n

)

+ (λ(1 + log(p̄n))) (5)

−





λ

N
log(pj

n) + λ
p̄n

p
j
n

+
λ

N

∑

i!=j

log(pi
n)



 (6)

=−
qn + λp̄n

p
j
n

+ λ(1 + log(p̄n))− λlog(pn)) (7)

We can ignoring the constant term, which will disappear after

backpropgating through softmax. And considering we are max-

imizing −F , we get the vector form derivative:

∂(−F )

∂pj
=

q+ λp̄

pj
+ λ(log(p)− log(p̄)) (8)

where

log(p) =
1

N

N
∑

j=1

log(pj) (9)

Computationally, with the standard cross entropy objective,

DPET is equivalent to replacing the target q with the modified

target:

q̃ = q+ λp̄+ p
j ◦ (λ(log(p)− log(p̄))) (10)

where ◦ means entry-wise product.

2.3. Schedule for λ

In our method, the λ parameter is empirically determined. We

found that increasing λ as training progresses always gave more

improvements than keeping λ constant. This makes sense be-

cause during early iterations of training, we should not put em-

phasis on letting individual models learn from each other, since

they perform too poorly to be worthwhile learning from. It

also makes sense from the regularization point of view, since

overffiting becomes a more serious issue at later stage of train-

ing, which our method aims to relieve. We also found that the

performance is not sensitive to the specific schedule of λ, e.g.

whether we increase it linearly or exponentially. For simplic-

ity we just adopted a linear λ schedule determined by the ini-

tial/final lambda values, λinit and λfinal, and tuned these two

values. It turns out that a small λinit like 0.1 or 0.01 and a

λfinal between 3 and 5 tends to perform well.

2.4. Ensemble size

Another parameter of our recipe is the ensemble size N . The

larger the ensemble size is, the more significant DPET’s effect

will be. This is a tradeoff between performance and computa-

tional costs. In practice, we find that setting the ensemble size

as 4 to 8 is usually enough, and making N larger than this does

not bring noticeable improvements. When we finish training,

unless stated otherwise, we arbitrarily choose one model from

the ensemble for decoding, so in test time we only need to eval-

uate one model.

3. Related work

3.1. Diversity-penalizing ensemble training as a good regu-

larizer

We argue that the proposed diversity-penalizing ensemble train-

ing method is a sensible regularizer during training, since it

says: ”We believe a priori that the predictions should be in-

dependent of the initialization”. The same principle is also used

by conventional ensemble methods where we just train differ-

ently initialized models separately and then average their out-

puts during decoding. In our method, individual models in the

ensemble were initialized with different random parameters and

were trained on the same data simultaneously. Thus, during

each training iteration, the only source of diversity in the mod-

els’ outputs on each training example is the difference in initial-

ization. By penalizing the diversity of models’ outputs, we are

hoping that, as training goes on, models in the ensemble will

behave more and more similarly, and the variance caused by

initialization can be reduced. Note that our method improves

generalization performance by reducing the variance brought

by the initialization of a model, not by reducing the variance

brought by training data as in bagging [6].

From another perspective, we can also say our regularizer

does implicit model averaging by driving individual models to-

wards their average in the models’ output (prediction) space. In

this sense, it has a similar motivation as dropout [7], which does

sub-model averaging by removing a random subset of the model

parameters during each training iteration. We don’t provide an

experimental comparision with dropout here, since previous ex-

periments with dropout on speech recognition tasks in our setup

did not show any improvements.

3.2. Relationship with other ensemble methods

Ensemble methods have been widely used to improve the gen-

eralization performance of a single model. In a practical en-

semble learning scenario, people either train an ensemble of

models on the same data separately and then combine them

during decoding like [8], or encourage some kind of diversity

among models in the ensemble during training. For example,

bagging [6] generates diversity by bootstrap sampling of train-

ing data, boosting-type [9] algorithms encourage diversity by

incrementally building an ensemble, training each new model

to emphasize the accuracy on subsets of the training examples

which previous models have mis-classified. Also there have

been efforts on explicitly encouraging diversity in the ensemble

during training. Among them the most notable one is Negative

Correlation Learning (NCL) [2] algorithm and related methods,

whose aim was to obtain highly correct models that disagree

as much as possible. They emphasize interaction among the

individual models in the ensemble to increase diversity among

them, by introducing unsupervised penalty terms in the objec-

tive function during training. Although positive experimental

results were shown, the difficulty of defining diversity, and the

basic assmuption that explicitly encouraging diversity in an en-

semble benefits learning, have been problematic [10]. Also it

has been pointed out that these methods suffer from over-fitting

the training data [11].

Similar to NCL, our proposed ensemble method also em-

phasizes interaction among individual models during training.

However the effect of the interaction has the opposite sign: we

penalize diversity among models in the ensemble, rather than

encouraging it (here, diversity refers to the diversity in models’

predictions/outputs). The reason is that our motivation is dif-

ferent: rather than aiming to produce an accurate yet diverse

ensemble of models and combine them during decoding, we

are aiming to deploy an interative ensemble training procedure

to achieve model compression/knowledge distillation [4] while

training, or more specifically, to gradually enforce each single

model to behave as powerful as the ensemble.



4. Experimental conditions

All experiments were done using the Kaldi open source speech

recognition toolkit [12]. We did some preliminary experiments

on IARPA Babel tasks to show the effectiveness of a vanilla

version DPET on limited resource ASR tasks and did more ex-

periments on TED-LIUM [13] task to show the generalization

performace of DPET on various conditions in detail. The ex-

periments on Babel limited resource ASR tasks using a similar

ensemble training approach were already briefly mentioned in

[5]. We build HMM-DNN Hybrid ASR systems on each lan-

guage: Tamil, Assamese, Bengali, and Zulu, which are trained

on an IARPA-provided limited language pack (LimitedLP) con-

taining 10 hours of transcribed speech and a dictionary that cov-

ered words in the transcripts, and the WER performance was

measured on IARPA-provided 10 hours of transcribed speech

as the development set1.

We used DNN with p-norm activation functions [14] with

p = 2 and natural-gradient SGD [15] for both the baseline and

DPET recipes (also for all TED-LIUM experiments). We sep-

arately tuned the networks’ number of hidden layers and total

number of parameters (per individual DNN) for both the base-

line and ensemble training recipes, and gave the best for each;

this results in more parameters per model for the ensemble sys-

tems. After tuning, all ensemble trained DNNs have 3 layers

and 5.3 million parameters, and all the baseline DNNs have 2

layers and 2.53 million parameters. All DPET runs on Babel

data involved 4 models in each ensemble, with λinit = 0.1 and

λfinal = 5.

For TED-LIUM experiments, all the Hybrid HMM-DNN

ASR systems are trained on the standard 118 hour training set,

and the performance is measured on the 1.6 hour Dev set and

the 2.6 hour Test set separately. We used the time-delay neu-

ral network architecture described in [16] with 40 dimensional

MFCC features and 100 dimensional i-vectors [17] computed

for each speaker as inputs, which allows for very rapid speaker

adaptation. For DNNs used in both baseline and DPET recipes,

we tuned and then fixed the number of layers (6 layers, which

gives the best results for both). However we did experiments on

settings with different number of parameters, by adjusting the

width of the hidden layers. By doing this we can thoroughly

inspect how DPET, as a regularizer, can relieve the over-fitting

problem and help to achieve good generalization performance

in settings with a large number of parameters. Also we mea-

sured the final models’ frame accuracy on a held-out validation

set, which is a 300 utterance subset of the TED-LIUM train-

ing set. At the end, in order to inspect how DPET affects the

performance gap between the ensemble and individual models,

we decode using the entire DPET trained ensemble (averag-

ing the log-pseudo-likelihoods), as well as the individual mod-

els constituting the ensemble. We do the same in the baseline

setting: we perform decoding using an ensemble of separately

trained DNNs (with different initial parameters), and the indi-

vidual models constituting the ensemble. For this experiment

DNNs are trained on the best number of parameters setting for

each recipe. All DPET runs on TED-LIUM data involved 4
models in each ensemble, with λinit = 0.1 and λfinal = 4.

1The exact corpus identifiers are

Assamese, IARPA-babel102b-v0.4;

Bengali, IARPA-babel103b-v0.3;

Tamil, IARPA-babel204b-v1.1b;

Zulu, IARPA-babel206b-v0.1e.

5. Experimental results

5.1. Results on BABEL limited resource speech recognition

tasks

We can see from Table 1 that across four BABEL languages,

DPET brings 0.9 − 1.6% absolute improvement (1.2 − 2.5%
relative) in WER. DPET seems to help a lot here, since for these

experiments we only have 10 hours training data for each lan-

guage, which means over-fitting might be a severe problem.

Language
WER (Babel Dev set)

Baseline DPET
Absolute

improvement

Tamil 76.6% 75.7% 0.9%

Assamese 64.5% 62.9% 1.6%

Bengali 65.9% 65.0% 0.9%

Zulu 68.7% 67.8% 0.9%

Table 1: ASR Performance (WER%) of DPET (with an ensem-

ble size of 4) on Babel.

5.2. Results on TED-LIUM experiments

Table 2 shows how DPET affects the ASR performance on

TED-LIUM Dev and Test sets as we change the number of pa-

rameters in the individual DNNs. (Note that we didn’t the tune

the optimal ensemble size or λinit and λfinal for each setting.)

We can see when the number of parameters is small, like 1.2

or 1.5 million, DPET seems to have little effect. This may be

because for small models, there is little over-training and regu-

larization is not needed. However, as the number of parameters

increases from 1.5 million to 2.3 million, the baseline perfor-

mances start to decrease, while DPET performances keep im-

proving, and are consistently better than the baseline. Compar-

ing the best model sizes from the baseline and DPET runs, we

conclude that DPET brings 0.5% absolute improvement (2.5%
relative) on the Dev set and 0.6% absolute improvement (3.3%
relative) on the Test set.

# Param.

(million)

WER (TED-LIUM Dev set)

Baseline DPET
Absolute

improvement

1.2 20.2% 20.0% 0.2%

1.5 19.9% 20.0 % -0.1

1.9 19.9% 19.7% 0.2%

2.3 20.3% 19.5% 0.8%

2.8 20.0% 19.4% 0.6%

# Param.

(million)

WER (TED-LIUM Test set)

Baseline DPET
Absolute

improvement

1.2 18.0% 17.7% 0.3%

1.5 17.9% 17.7% 0.2%

1.9 18.1% 17.6% 0.5%

2.3 18.2% 17.3% 0.9%

2.8 18.1% 17.4% 0.7%

Table 2: ASR performance (WER%) of DPET (with an ensem-

ble size of 4) on TED-LIUM Dev and Test sets, on settings with

different number of parematers.

For the same sets of experiments, Tabel 3 shows the base-

line and DPET models’ final frame accuracy on a held-out vali-



dation set. It further verifies DPET can help prevent over-fitting

when the number of parameters gets large.

# Param.

(million)

Frame accuracy

Baseline DPET
Absolute

improvement

1.2 59.28% 59.23% -0.05%

1.5 58.95% 60.53% 0.58%

1.9 59.43% 60.80% 1.37%

2.3 59.65% 60.42% 0.77%

2.8 59.75% 60.60% 0.85%

Table 3: Generalization performance of DPET (with an ensem-

ble size of 4), measured by an individual final model’s frame

accuracy on the validation set.

For the 1.9 million parameter setting, where the difference

in frame accuracy is most significant, we plot the validation

frame accuracy versus iterations in Figure 1, where we can see

that during later training iterations, the improvements brought

by DPET start to be noticeable.

0 10 20 30 40 50 60 70 80 90
0.3  

0.35 

0.4  

0.45 

0.5  

0.55 

0.6  

Iterations

V
al

id
at

io
n

 f
ra

m
e 

ac
cu

ra
cy

 

 

DPET
Baseline

Figure 1: Frame accuracy (on validation set) vs. iterations,

where # param. is 1.9 million.

Table 4 shows the performance of the ensemble and individ-

ual models constituting the ensemble, with and without DPET.

We can see that DPET gives us most of the WER improvement

of the ensemble method: among the four DPET trained individ-

ual models, three of them perform no worse than the baseline

ensemble, which is 17.4%. Also, we notice that DPET shrinks

the performance gap between the ensemble and the individual

models: The gap is 0.1%−0.3% for DPET and is 0.4%−0.5%
for the baseline.

Training

procedure

WER (on TED-LIUM Test set)

Individual models 4xEnsemble

Baseline 17.8% 17.9% 17.9% 17.9% 17.4%

DPET 17.3% 17.4% 17.5% 17.4% 17.2%

Table 4: ASR performance of the ensemble and four individ-

ual models constituing it, trained normally or with DPET, on

the tuned #parameters for each (1.5m for baseline and 2.3m for

DPET).

6. Conclusions

In this paper, we proposed a Diversity-Penalizing Ensemble

Training (DPET) technique for training deep neural networks.

By penalizing the diversity of the outputs of individual DNNs in

an ensemble, whose parameters were differently initialized, we

force each model to emulate the average of the whole ensemble

of models. And therefore, in test time we can use one arbi-

trarily chosen member of the ensemble, whose performance is

close to the ensemble. We argued that DPET works as a regular-

izer which reduces the variance caused by model initialization,

thereby improving the performance of individual models in the

ensemble. This is supported by the experimental results on var-

ious speech recognition tasks. The results have also shown that

this technique reduces the performance gap between the ensem-

ble and the individual models. The performance of an individual

model trained using this technique almost matches the perfor-

mance of a baseline ensemble, while being no more expensive

in test time than using a single model.

In future we plan to investigate more efficient ways to train

ensembles of this kind.
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