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Abstract
Long Short-Term Memory networks (LSTMs) are a com-

ponent of many state-of-the-art DNN-based speech recognition
systems. Dropout is a popular method to improve generaliza-
tion in DNN training. In this paper we describe extensive ex-
periments in which we investigated the best way to combine
dropout with LSTMs– specifically, projected LSTMs (LSTMP).
We investigated various locations in the LSTM to place the
dropout (and various combinations of locations), and a vari-
ety of dropout schedules. Our optimized recipe gives consis-
tent improvements in WER across a range of datasets, including
Switchboard, TED-LIUM and AMI.
Index Terms: speech recognition, LSTM, DNN, dropout,
lattice-free MMI

1. Introduction
The Long Short-Term Memory (LSTM) network [1, 2] is used
in many state-of-the-art ASR systems [3], often in the popular
’projected’ variant [4].

Dropout [5] is a mechanism to improve generalization of
neural nets. It consists of multiplying neural net activations
by random zero-one masks during training (random masks are
not used in test time, but are approximated by a fixed scale).
The dropout probability p determines what proportion of the
mask values are one; the original paper suggested that p = 0.5
works well for a range of tasks. However, the experience of
the speech community is that dropout implemented in this way
doesn’t usually work for speech recognition tasks, and at the
very least requires careful selection of the dropout probability
and the use of a time-varying schedule (as is typical for negative
results, it is hard to supply a citation for this).

This paper describes the outcome of extensive experiments
in which we investigated the best way to use dropout with
LSTMs. The issues we investigated are:

• Per-element (conventional) versus per-frame dropout

• Dropout-probability schedules
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• Various locations for dropout (e.g. different LSTM gates
or combinations thereof).

The experiments reported in this paper were performed with
systems based on lattice-free MMI (LF-MMI) [6]. These sys-
tems use a frame shift of 30ms, as opposed to the 10ms of typ-
ical systems. We have no reason to believe that there would
be any special interaction between dropout and the use of LF-
MMI; we focus on the LF-MMI models because they are several
times faster to train and give better performance than standard
cross-entropy (CE)-trained systems.

In Section 2 we describe prior work. In Section 3 we
discuss various details of the proposed method. Experimental
setup is described in Section 4 and the results are presented in
Section 5. Finally we present our conclusions in Section 6.

2. Prior work
2.1. Prior work on dropout for ASR

A few publications have used dropout for large-scale Automatic
Speech Recognition (ASR) tasks. In [7], dropout is applied to
a network based on Maxout nonlinearities. The dropout proba-
bility started at 0.5 and linearly decreased to 0.0 after 8 epochs,
after which no dropout was used. In [8], dropout was applied
to LSTMs at the point where the input comes from the previ-
ous layer (this is equivalent to our ”Location 2” below). In that
case, no dropout schedules were used. Improvements in frame
accuracy were shown on a Google-internal dataset of Icelandic
speech, but no WER results.

2.2. Projected LSTMs

Projected LSTMs (LSTMPs) [4] are an important component of
our baseline system, and to provide context for our explanation
of dropout we will repeat the equations for them; here xt is the
input to the layer and yt is the corresponding output.

it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi) (1)
ft = σ(Wfxxt +Wfrrt−1 +Wfcct−1 + bf ) (2)

ct = ft � ct−1 + it � tanh(Wcxxt +Wcrrt−1 + bc) (3)
ot = σ(Woxxt +Worrt−1 +Wocct + bo) (4)

mt = ot � tanh(ct) (5)
pt =Wpmmt (6)
rt =Wrmmt (7)
yt = (pt, rt) (8)



where� stands for element-wise multiplication; σ (the sigmoid
function) and tanh are also applied element-wise. In all exper-
iments reported here, pt and rt are one quarter of the cell di-
mension: for example, the cell dimension might be 1024, so pt
and rt would have dimension 256 and the output yt would have
dimension 512.

3. Methods proposed
In this section we introduce some terminology to describe the
various forms of dropout that we experimented with.

3.1. Per-frame versus per-element dropout

One of the modifications to dropout that we tried is per-frame
dropout. Unlike per-element dropout in which each element of
the dropout mask is chosen independently, in per-frame dropout
the entire vector is set to either zero or one. However, this is
done separately for each individual part of the network, e.g. if
dropout is used for multiple layers or gates then each would
have an independently chosen dropout mask.

3.2. Dropout schedules

We experimented with various dropout schedules, and settled
on schedules in which the dropout probability p is zero for a
time at the start of training and at the end, and rises to a peak
somewhere closer to the start of training. Bear in mind that
in the Kaldi nnet3-based recipes we use here, the number of
epochs is determined in advance (early stopping is not used).
Therefore we are able to specify dropout schedules that are ex-
pressed relative to the total number of epochs we will use. We
express the dropout schedule as a piecewise linear function on
the interval [0, 1], where f(0) gives the dropout proportion at
the start of training and f(1) gives the dropout proportion after
seeing all the data. As an example of our notation, the sched-
ule ’0@0,0.2@0.4,0@1’ means a function f(x) that is linearly
interpolated between the points f(0) = 0, f(0.4) = 0.2, and
f(1) = 0. We write this as ’0, 0.2@0.4, 1’ as a shorthand, be-
cause the first point is always for x = 0 and the last is always
for x = 1.

After experimenting with various schedules, we generally
recommend schedules of the form ’0,0@0.2,p@0.5,0’, where
p is a constant (e.g. 0.3, 0.5 or 0.7) that is different in differ-
ent models. Because these schedules end at zero, there is no
need to do the normal trick of rescaling the parameters before
using the models for inference. The optimal p for BLSTMPs is
0.15∼0.10, we use 0.10 here.

3.3. LSTMP with dropout

Some of the locations in the LSTMP layer where we tried
putting dropout are as follows (see Figure 1 for illustration):

• Location 1 (dropout before the projection): replace equa-
tion (5) with:
mt = (ot � tanh(ct))�m(mt)

drop

• Location 2 (dropout on the output of the layer): replace
equation (8) with:
yt = (pt, rt)�m(yt)

drop

• Location 3 (dropout on each half of the projection out-
put): replace equation (6), (7) with:
pt = (Wpmmt)�m(pt)

drop

rt = (Wrmmt)�m(rt)
drop

LSTMP block

input recurrent

input

recurrent

recurrent

recurrent

input

inputInput gate

output gate

forget gate

Location 1

Location 4

Location 4

Location 4

recurrent projection

output

Location 2

Location 3Location 3

Location 5

recurrent

output

Figure 1: Dropout location of LSTMP based RNNs architec-
ture with peepholes[2] and LSTM projection[4]. Single memory
block is shown for clarity and simplicity.

• Location 4 (dropout on i, f and o): replace equation (1),
(2), (4) with:
it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi)�m(it)

drop

ft = σ(Wfxxt +Wfrrt−1 +Wfcct−1 + bf )�m(ft)
drop

ot = σ(Woxxt +Worrt−1 +Wocct + bo)�m(ot)
drop

• Location 5 (dropout in the recurrence only): replace
equation (7) with:
rt = (Wrmmt)�m(rt)

drop

As alternatives to Location 4, we also tried dropout on all
possible subsets of the i, f , o gates (experiments not shown),
and found that dropping out all 3 was the best. We didn’t try
dropping out the output of either of the tanh gates, because it
would have the same effect as dropping out the sigmoid gate
that each one is multiplied by. In the rest of the paper, when we
talk about per-frame dropout, we refer to the per-frame dropout
location 4.

4. Experimental Setup
In this paper, HMM-DNN hybrid neural network acoustic mod-
els are used. The nnet3 toolkit in Kaldi speech recognition
toolkit [9] is used to perform neural network training. The dis-
tributed neural network training algorithm is described in [10].
LF-MMI [6] is the training criterion.

40-dimensional Mel-frequency cepstral coefficients
(MFCCs) without cepstral truncation are used as the input into
the neural network [10][11]. These 40-dimensional features are
spliced across ±n (n may be 1 or 2) frames of context, then
appended with a 100-dimensional i-vectors [12] to perform
instantaneous adaptation of the neural network [13]. These
i-vectors contain information about the mean offset of the
speaker’s data, so cepstral normalization is not necessary.
In all cases we use the speed-perturbation method described
in [14] to augment the data 3-fold. Our AMI setup is similar
to that described in [15]; one notable feature is that alignments



Table 1: Model configuration for TDNN-LSTMPs in SWBD,
Tedlium and AMI

Switchboard/Tedlium AMI
Layer Context Layer-type Context Layer-type

1 [-2,-1,0,1,2] TDNN [-1,0,1] TDNN
2 [-1,0,1] TDNN [-1,0,1] TDNN
3 [-1,0,1] TDNN [-1,0,1] TDNN
4 [0] LSTMP [0] LSTMP
5 [-3,0,3] TDNN [-3,0,3] TDNN
6 [-3,0,3] TDNN [-3,0,3] TDNN
7 [0] LSTMP [-3,0,3] TDNN
8 [-3,0,3] TDNN [0] LSTMP
9 [-3,0,3] TDNN [-3,0,3] TDNN
10 [0] LSTMP [-3,0,3] TDNN
11 - - [-3,0,3] TDNN
12 - - [0] LSTMP

Table 2: Dropout results on AMI IHM, dropout schedule is
’0,0@0.20,p@0.5,0@0.75,0’

Model Dropout Dropout per-frame WER (%)
prob. p location dropout dev eval

Baseline 21.0 21.2

BLSTMP

0.3

location1 No 21.1 20.7
Yes 20.8 20.8

location2 No 21.1 21.3
Yes 20.7 20.8

location3 No 21.2 20.9
Yes 20.6 20.7

location4 No 20.8 20.8
Yes 20.6 20.2

location5 No 21.0 21.1
Yes 20.9 20.8

0.7

location1 No 21.0 20.8
Yes 20.5 20.4

location2 No 20.8 20.7
Yes 20.6 20.3

location3 No 20.8 20.9
Yes 20.8 20.8

location4 No 21.1 21.1
Yes 21.2 20.8

location5 No 21.2 21.0
Yes 21.0 20.7

obtained using the individual headset microphone (IHM) data
are used to train the single distant microphone (SDM) system.

4.1. TDNN LSTMPs

A common trend in ASR modeling is to combine different types
of layers [16] [17]. We have recently found that a combi-
nation of TDNN and LSTM layers can outperform BLSTMs.
See Figure 2 for the illustration of a TDNN-LSTMP configura-
tion. Adding per-frame dropout to the LSTMP units in TDNN-
LSTMPs reduces the WER significantly. (Fast LSTMPs are ef-
ficient implementation of the LSTMPs in Kaldi, in which the 5
nonlinearities and 3 diagonal projections are segregated into a
single operation).

4.2. Neural network configuration

We report results on two different model structures: BLSTMPs
and TDNN-LSTMPs. Regarding the projection in the LSTM
layers, the dimensions of pt and the recurrence rt are always
one quarter the cell dimension, so for instance if the cell-dim is
1024, the recurrence would be of dimension 256 and the output
yt would be of dimension 512.

Table 3: Dropout results on AMI SDM, dropout schedule is
’0,0@0.20,p@0.5,0@0.75,0’

Model Dropout Dropout per-frame WER (%)
prob. p location dropout dev eval

Baseline 39.8 42.9

BLSTMP

0.3

location1 No 39.4 42.6
Yes 38.4 42.0

location2 No 39.2 42.3
Yes 38.6 42.1

location3 No 38.9 42.5
Yes 38.6 42.2

location4 No 38.7 42.2
Yes 38.2 41.5

location5 No 39.5 42.6
Yes 39.0 42.2

0.7

location1 No 38.9 42.3
Yes 38.5 41.8

location2 No 38.6 41.9
Yes 38.3 41.6

location3 No 38.9 42.6
Yes 38.5 42.0

location4 No 39.7 43.3
Yes 39.2 42.5

location5 No 38.9 42.4
Yes 38.5 42.1

Our BLSTMP configuration on Switchboard consists of
3 BLSTMP layers, each with 1024 cells per direction. Our
AMI BLSTMPs have 3 layers with 512 cells per direction (this
is probably not optimal in terms of WER; the configuration
was originally chosen for speed). In all cases our TDNN-
LSTMPs have TDNN layers with an output dimension of 1024
and LSTM layers with cell dimensions of 1024. The model de-
tails for our TDNN-(fast-)LSTMP systems of number of layers,
time-delays and splicing are shown in Table 1.

5. Results
For reasons of space we only show a subset of our experiments,
which were very extensive.

Tables 2 and 3 explore the various dropout locations,
dropout probabilities, and per-frame versus per-element dropout
masks, for BLSTMP models on AMI IHM and SDM respec-
tively. Generally the trend is that per-frame dropout is better
than per-element, and the best results are with location 4 and a
relatively small maximum dropout probability, of 0.3.

Table 4 focuses only on per-frame dropout and location 4
(this time using both our old LSTM implementation and our
new, ’fast’ LSTM implementation, which only supports loca-
tion 4 dropout). The experiments are again on AMI SDM and
IHM. The important things to notice are that dropout is always
helpful; and that, with dropout, the optimum WER seems to be
reached at a later epoch (i.e. it keeps improving for longer). We
use a smaller p value on the BLSTMP system, 0.1 vs. 0.3 for
the TDNN-LSTMP models, as other experiments (not shown)
indicated that this was better. The relative WER reduction from
dropout is ∼3.0% on SDM and ∼4.5% on IHM on average.

Table 5 shows the same experiment on Switchboard and
TED-LIUM, with the same conclusions. The relative WER re-
duction is ∼4.4% on Hub5’00 and ∼5.1% on the Train-Dev
on average (Train-dev is an approximately 3 hour subset of the
training data that we hold out). On TED-LIUM, the relative
improvement is 7.2% on average with the model trained with
by-frame dropout. Any differences between regular and “fast”
LSTM are quite minor and likely due to statistical noise and



Table 4: Per-frame dropout on AMI LVCSR, dropout schedule is ’0,0@0.20,p@0.5,0’

Model Fast Dropout Dropout Epoch SDM IHM
LSTMP Location prob. p dev eval dev eval

BLSTMP No None None 6 39.8 42.9 21.0 21.2
BLSTMP No Location4 0.1 6 38.3 41.6 20.6 20.4

TDNN-LSTMP No None None 4 37.4 40.8 20.6 20.4
TDNN-LSTMP No Location4 0.3 4 36.3 39.7 19.9 19.4
TDNN-LSTMP No None None 5 37.6 40.7 20.8 20.7
TDNN-LSTMP No Location4 0.3 5 35.6 39.6 19.6 19.4
TDNN-LSTMP Yes None None 4 37.2 40.4 20.6 20.4
TDNN-LSTMP Yes Location4 0.3 4 36.2 39.8 20.0 19.5
TDNN-LSTMP Yes None None 5 37.4 40.4 21.1 20.8
TDNN-LSTMP Yes Location4 0.3 5 36.1 39.6 19.8 19.6

Table 5: Per-frame dropout on SWBD and TED-LIUM, dropout schedule is ’0,0@0.20,p@0.5,0’

Model Fast Dropout Dropout Epoch SWBD TED-LIUM
LSTMP Location prob. p Hub5’00 Train Dev Dev Test

BLSTMP No None None 4 14.2 12.32
BLSTMP No Location4 0.1 4 13.6 12.13
BLSTMP No None None 5 14.2 12.73
BLSTMP No Location4 0.1 5 13.8 11.84

TDNN-LSTMP No None None 4 14.0 11.96 8.2 8.3
TDNN-LSTMP No Location4 0.3 4 13.5 11.54 8.1 8.1
TDNN-LSTMP No None None 5 14.2 12.13 8.5 8.7
TDNN-LSTMP No Location4 0.3 5 13.2 11.42 7.8 8.0
TDNN-LSTMP Yes None None 4 14.2 12.36 8.7 8.6
TDNN-LSTMP Yes Location4 0.3 4 13.7 11.65 8.2 7.9
TDNN-LSTMP Yes None None 5 14.5 12.55 8.8 9.2
TDNN-LSTMP Yes Location4 0.3 5 13.8 11.65 7.9 8.0
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Figure 2: Diagram of our TDNN-LSTMP configuration. The in-
put context is {-2,-1,0,1,2}, and the splicing indexes for layer2,
layer4 and layer5 are {-1,1}, {-3,0,3}, {-3,0,3}; LSTM time
delay is 3.

some very minor differences in how the diagonal matrices of
the LSTM are trained. The general conclusion that we draw is
that our recipe works consistently using both LSTM implemen-
tations and a range of datasets. Of course we cannot guarantee
that this would work in a setup that was very different from
ours. For instance, our LSTMs generally operate with a recur-
rence that spans 3 time steps instead of 1.

We have not shown our experiments where we tuned the
dropout schedule. We did find that it was important to leave the

dropout proportion at zero for a certain amount of time at the
beginning of training.

6. Conclusions
In this paper, we proposed per-frame dropout and investigated
the best way to combine dropout with LSTMs. Our findings
are:

• Per-frame, rather than per-element, dropout seemed to
work best for us.

• We got the best results from applying dropout to the
LSTM’s o, f and i gates, with separate (per-frame)
dropout masks for each.

• A dropout schedule that starts and ends at zero, and has
a maximum value of 0.3 or less, worked well for us.

• For TDNN-LSTM combinations, we favor dropout only
for LSTM layers (and not for TDNN layers).

With these configurations we observed relative WER reductions
of between 3% and 7% on a range of LVCSR datasets. Our
conclusions are a little different from [8], which recommends
dropout only for the forward (non-recurrent) connections, like
our Location 2; but we should point out that [8] did not report
any experimental comparisons with alternative ways of doing
dropout.
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