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ABSTRACT

The lattice-free MMI objective (LF-MMI) has been used in super-
vised training of state-of-the-art neural network acoustic models
for automatic speech recognition (ASR). With large amounts of
unsupervised data available, extending this approach to the semi-
supervised scenario is of significance. Finite-state transducer (FST)
based supervision used with LF-MMI provides a natural way to in-
corporate uncertainties when dealing with unsupervised data. In this
paper, we describe various extensions to standard LF-MMI training
to allow the use as supervision of lattices obtained via decoding of
unsupervised data. The lattices are rescored with a strong LM. We
investigate different methods for splitting the lattices and incorpo-
rating frame tolerances into the supervision FST. We report results
on different subsets of Fisher English, where we achieve WER re-
covery of 59-64% using lattice supervision, which is significantly
better than using just the best path transcription.

Index Terms— Semi-supervised training, Lattice-free MMI,
Sequence training, Automatic speech recognition

1. INTRODUCTION

Deep neural network (DNN) based acoustic models currently form
the standard for automatic speech recognition (ASR) systems. Of
late, sequence-level objectives like Connectionist Temporal Classi-
fication (CTC) [1] and Lattice-free Maximum Mutual Information
(LF-MMI) [2] are preferred over traditional frame-level objectives
like cross-entropy, especially for sequence tasks. Training neural
networks from random initialization using these is effective even
when using an additional pass of sequence discriminative training
using state Minimum Bayes Risk (sMBR) [3] as shown in [2]. How-
ever, these methods are known to be data hungry and are more effec-
tive with large datasets with >100 hours of data. The performance
is shown to degrade with smaller datasets [4].

While it is difficult to obtain large amounts of supervised data,
the amount of unsupervised audio available is larger by several or-
ders of magnitude. Unsupervised audio has been used successfully
in various semi-supervised training approaches that predate even the
modern DNN acoustic models [5]. The most common approach to
semi-supervised learning is self-training. The general recipe here is
to use a system trained on supervised data to generate transcripts for
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unsupervised data and select the transcripts based on various confi-
dence score based filtering schemes. Confidence scores can be at the
frame level [6], word level [7] or utterance level [6, 8, 9].

Discriminative training is sensitive to the accuracy of the tran-
scripts [10, 11, 12]. Frame-level filtering has been used with con-
ventional sequence discriminative training in [10, 13]. In [14], the
lattice-free MMI objective is used with utterance-level confidence
filtering and post-processing of 1-best hypothesis. However, un-
like that work, here we make use of a whole lattice as supervision
and show that it is significantly better. Lattice supervision has been
used in [15] with conventional sequence objectives like MMI [16]
as well as in [17, 18] for semi-supervised training with lattice en-
tropy minimization. Unlike any of the previous works, here we use
lattice-based supervision in lattice-free MMI framework along with
the standard tricks such as a 3-fold frame subsampling inside the
neural network, and incorporate language model (LM) costs into LF-
MMI supervision.

This paper is organized as follows. Section 2 gives an overview
of the lattice-free MMI training. Section 3 describes our different
methods of creating supervision for training on unsupervised data.
Section 4 describes our experiments and their results. Section 5
presents our conclusions and sets up future work.

2. LF-MMI TRAINING

For an overall description of the LF-MMI training, the reader is di-
rected to [2]. In this section, we give an overview of the training that
is relevant to the modifications we do for semi-supervised training.

The standard method of numerator graph creation as described
in [2] is applicable when there is a single transcript (word sequence)
for an utterance. In [2], a GMM system is used to dump lattices
of alternative pronunciations of the manually transcribed word se-
quences. In this work’s unsupervised scenario, we can use a seed
LF-MMI system to dump lattices of alternate pronunciations of the
best path transcripts obtained from decoding unsupervised utter-
ances. Using the same method as in [2], we process these lattices
into phone graphs that are compiled into utterance-specific FSTs
by composing the graphs with a context-dependency transducer (C)
[19, 20] and transducer representing the HMM topology (H). Figure
1 shows the phone topology we normally use for LF-MMI exper-
iments, which allows one symbol ”b” followed by zero or more
copies of ”a”.

The utterance-specific FSTs are then composed with a frame-by-
frame mask of what phones are allowed on specific frames, derived
from the times of phones in the lattices extended with a tolerance.
In [2], a tolerance of 40ms corresponding to ±2 frames (10ms per
frame) is used to allow the phones to appear within a 50ms window
around where it appeared in the lattice. For the unsupervised audio



Fig. 1. Phone topology used in LF-MMI
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here, since a 3x subsampled LF-MMI system is used to generate the
lattices the frame shift is 30ms. Here, we use a tolerance of ±1
subsampled frame, which corresponds to a tolerance of 60ms.

The numerator FSTs created above are unweighted. For efficient
minibatch training on GPUs, these are split into chunks of around
150 frames and weights are added from the denominator FST. For
details of this process of adding costs to the numerator FST, the
reader is directed to [2].

3. NUMERATOR GRAPH CREATION

In this section, we describe various methods for creating the numer-
ator graphs for unsupervised utterances. We assume we have a seed
neural network model trained with LF-MMI on only the supervised
data. This is used to decode the unsupervised audio to get lattices.

3.1. Best path word sequence

When we use the best path word sequence as the transcript for an
utterance from the unsupervised dataset, the approach is as described
previously in Section 2.

3.2. Lattices: Naı̈ve splitting

In this approach, we convert a lattice of word sequences obtained
from the decoding of an utterance into phone graphs that are com-
piled into utterance-specific FSTs. We call this “naı̈ve” approach
because when we split the supervision, we do not add appropriate
costs to the beginning and end of the splits. The lattice is option-
ally rescored with a strong 4-gram LM or RNN-LM, and is fur-
ther pruned with a beam beam. A beam of 0 is like using the best
path word sequence, but without the alternate pronunciations for the
words. We refer to this case as “best path phone sequence”.

When creating the phone graphs, the graph costs from the lattice
are added with an LM-scale lm-scale (e.g. 0.5). Note that this is
different from Section 3.1, where we did not add graph costs from
the lattice (equivalent to lm-scale = 0) and only added costs from
the denominator FST after splitting the numerator FST into chunks.
These phone graphs are compiled into utterance-specific FSTs the
same way as in Section 2 with the difference being that the phone
graphs are from multiple word sequences and include LM costs.
Also, in order to avoid double counting of LM costs (from the lattice
and denominator FST), we add the costs from the denominator FST
with a scale of 1− lm-scale.

When we split the numerator FSTs, we do not add any costs to
the beginning and end of the splits. So all the paths in the split have
the same initial and final costs (of 0). This is not correct when using
LM costs from the lattice (i.e. lm-scale > 0), especially when using
a large beam, and this motivates the approaches described below.

3.3. Lattices: No splitting

For efficiency of the neural network training, we need to create mini-
batches of fixed-size chunks. In the previous sections, we split all
utterances into chunks of 150 frames. In this section, we use an al-
ternate approach where we use the full utterance without splitting.
However, for training efficiency we ensure that all the utterances in
the unsupervised dataset are modified to be of around 20 distinct
lengths. We slightly alter the speed of the audio so that each ut-
terance’s length becomes the nearest of the distinct lengths. Alter-
natively, we can pad each utterance with silence to get one of the
distinct lengths. This approach of modifying lengths is used in the
work [21] for end-to-end LF-MMI training. When using full unsplit
utterances, we use the same approach as before for creating the nu-
merator FSTs, but now we do not need to worry about the costs at
the beginning and end of the splits.

3.4. Lattices: Smart splitting

In this section we describe a smarter approach to create numerator
FSTs, where we split the lattices directly to get fixed-length chunks
(150 frames of 10ms), while also adding appropriate initial and final
costs. This is unlike in Sections 3.1 and 3.2, where we convert the
lattice into utterance-specific FSTs, add tolerances and then split the
FSTs. For this, we first dump the lattices (with transition-ids as input
labels and words as output labels [22]) retaining the correct acoustic
costs on each arc. Then we run a forward-backward [23] on the
lattice to compute the alpha and beta scores for each state. Then we
split the lattice into fixed-length chunks. For each initial state of this
chunk, we add as the initial cost the alpha cost for that state. For each
final state of this chunk, we add as the final cost the beta cost for that
state. This ensures that the forward-backward cost for this chunk and
the frame posteriors are exactly the same as for the original lattice
before splitting. We project this to the input labels to get a finite state
acceptor (FSA) with transition-ids as labels. We compose this FSA
on the right with a special purpose FST to incorporate tolerances. i.e.
we allow the phones to occur a few frames behind or ahead of what
is defined in the lattice. This is described in the following section.

3.4.1. Adding tolerances

While we solve the issue of initial and final costs, the smart splitting
described above results in “half” phones i.e. for some paths, we
might have split in the middle of a phone. It is not possible to convert
this split lattice into a phone graph and compile it into an utterance-
specific FST. Instead, we directly convert this lattice into an FSA and
apply the tolerance. The tolerance application can be formulated
as a right composition with a special purpose FST that simulates
taking extra self-loops or taking fewer self-loops in the transition
model. For a tolerance of ±1 frame and a transition model from
Figure 1 with only one phone, this FST is as shown in Figure 2.
Here b is the forward transition-id and a is the self-loop transition-
id . Our “tolerance FST” can be trivially extended to multiple phones
by making copies of appropriate states and arcs for each phone.

The FST in Figure 2 shows three offset states for o ∈ {−1, 0, 1}.
The offset represents the number of extra self-loop transition-ids
added. o = +1 means there is one extra self-loop transition-id,
and there must be a deletion down the path in order to accept only
valid paths. Offset state 0 is the only final state. This ensures that the
input label path and the output label path are of the same length, and
the number of frames in the supervision remains the same. We also
ensure that there are no duplicate paths created after composition
with the lattice:



Fig. 2. FST to add a tolerance of ±1
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First, we allow a deletion or insertion of self-loop transition-ids
only at the end of the longest ba∗ sequence. e.g. the FST can a trans-
duce sub-sequence bana into ban and banaa, but not into ban−1a.
In order to remember which forward transition-id has been “seen”,
for each offset o, we add a set of states of , where f is the forward
transition-id. We call these forward states. These are the only states
with self-loops accepting a sequence of self-loop transition-ids like
a∗ before possibly inserting or deleting a’s.

Second, we do not allow paths that mix insertion and deletion.
This is done by adding for each state of , a pair of states ofs for
s ∈ {i, d} called insertion states and deletion states corresponding
to insertion and deletion respectively.

An insertion arc from forward state of takes us to an insertion
state (o + 1)fi. From here, we can continue inserting the same
transition-id to (o + 2)fi and so on or end the process of insertion
by taking an ε arc to an offset state o + 1. The deletion process is
analogous, but with decreasing offset.

To allow this FST to work with partial phones at the beginning of
a split lattice, we add a special start state S with an ε arc to the offset
state 0. We add a self-loop on the start state accepting all the self-
loop transition-ids corresponding to transitions of the partial phones.
We also add arcs from S to the deletion states corresponding to the
offset 0 that delete the self-loop transition-id.

4. EXPERIMENTS

4.1. Experimental setup

We report results on the Fisher English corpus [24]. We set aside
a randomly chosen subset of speakers (250 hours) from the corpus
as unsupervised data. We use the transcripts from the remaining
1250 hours to train the LMs for decoding unsupervised data. We
use different subsets of supervised data – 15 hours, 50 hours – to
compare the effect of various proportions of supervised and unsu-
pervised data. The results are reported on separately held-out dev
and test sets (about 5 hours each), which are part of the standard
Kaldi [20] recipe for Fisher English. We use WER Recovery Rate
(WRR) [25] as a metric to evaluate the WER improvements from
semi-supervised training:

WRR =
BaselineWER− SemisupWER

BaselineWER−OracleWER
. (1)

Our basic recipe is to first train a GMM system using only the su-
pervised data and use this to get supervision to train a seed LF-MMI

time-delay neural network (TDNN) [26] system. The training details
are in [2]. We use i-vector [27] for speaker adaptation of the neural
network. To exclude any effect of i-vector extractor, we train the
i-vector extractor using the combined supervised and unsupervised
datasets. Also, for comparison purposes, we use statistics from only
the supervised data to train the context-dependency decision tree.

The phone LM used for creating the denominator FST is esti-
mated using phone sequences from both supervised and unsuper-
vised data as in [28, 29]. We give a higher weight to the phone
sequences from supervised data (2.5 for the 15 hours supervised
dataset and 1.5 for the 50 hours one). We did not tune these fac-
tors.

4.1.1. Effect of frame weights

We use lattice posteriors of the senones (pdfs) in the best path of the
lattice as the frame-weights as done in [6]. The per-frame deriva-
tives of our objective are scaled by these weights. The results are
as shown in Table 1 for 15 hours supervised and 250 hours unsuper-
vised data (with lm-scale 0.5, beam 4.0 and tolerance±1 frame). Us-
ing best path posteriors as frame-weights is significantly better with
both naı̈ve and smart splitting of lattices. Therefore, all subsequent
results are reported using the best path posteriors as frame-weights.

Table 1. WER(%) results using different frame weights
Naı̈ve split Smart split

Weights dev test dev test
No weights 22.63 22.49 22.14 22.67
Best path post 22.37 22.14 22.02 21.89

4.1.2. Effect of supervision type

Table 2 shows results for various supervision types with 15 hours su-
pervised and 250 hours unsupervised data. The first row shows base-
line results with supervised training using only 15 hours data. The
last row shows supervised training results using oracle transcripts for
the unsupervised data portion. Using the best path word sequence as
supervision gives around 7% WER improvement over the baseline.
Using only the best path phone sequence from the lattice i.e. a beam
of 0.0 gives 6% improvement over the supervised baseline. This
suggests that it is especially important for unsupervised data super-
vision to have all the alternate pronunciations 1. Further experiments
conducted after the submission of this paper show that alternate pro-
nunciations help even when using lattice supervision. We will report
these results in a future paper. However, for this paper, we report
only lattice supervision results using determinized lattices i.e. for
each word sequence in the lattice we retain a unique HMM state
sequence and hence a unique phone sequence.

For lattice supervision results shown in Table 2, we use a beam
of 4.0 and lm-scale of 0.5. Lattice supervision is clearly better than
best path supervision, and the best results are with smart splitting,
although the differences from naı̈ve splitting and no splitting are not
very great. We do not recommend no splitting method as we cannot
do minibatch training effectively if the lengths of the utterances vary
a lot.

1This also includes alternate paths that vary only in the presence or ab-
sence of optional silence.



Table 2. WER(%) results using various supervision (15 hours super-
vised + 250 hours unsupervised data)

Supervision lm-scale beam tol dev test WRR
Baseline - - - 29.41 29.22 -
Best path words 0.0 8.0 1 22.55 22.75 58%
Best path phones 0.0 0.0 1 23.04 23.23 54%
Naı̈ve split 0.5 4.0 1 22.37 22.14 62%
No split + sil 0.5 4.0 1 22.04 22.25 63%
No split + speed 0.5 4.0 1 22.13 22.31 62%
Smart split 0.5 4.0 1 22.02 21.89 64%
Oracle - - - 17.92 17.95 -

4.1.3. Effect of tolerance

Table 3 shows results with various tolerances with lm-scale 0.5 and
beam 4.0. The results with naı̈ve splitting using tolerance ±1 frame
(60ms) and tolerance ±2 (120ms) frames are both significantly bet-
ter (∼1% absolute) than using a tolerance of 0. There is no signifi-
cant difference in WER between using tolerance ±1 and ±2 and we
henceforth use ±1 frame of tolerance.

Table 3. WER(%) results using supervision from lattice (15 hours
supervised + 250 hours unsupervised) for various tolerances

Naı̈ve split Smart split
lm-scale beam tol dev test dev test

0.5 4.0 0 23.48 23.53 23.64 23.85
0.5 4.0 1 22.37 22.14 22.02 21.89
0.5 4.0 2 22.31 22.52 21.82 22.03

4.1.4. Effect of LM scale and beam

Experiments with various LM scales and beams are shown in table 4.
As a result of these experiments, we recommend an lm-scale of 0.5
and a beam of 4.0.

Our intuition is that lm-scale has the largest effect when using a
wide beam because then there are more paths to weight. We see this
reflected in the beam 8.0 results with naı̈ve splitting. However, more
experiments are needed in the future with other beams and lm-scale
values to confirm this.

We also note that when using smart splitting of lattices, with an
lm-scale of 0.0, we are not really adding any initial and final costs
(they are scaled by 0.0). So using a higher lm-scale is more appro-
priate in this case.

Table 4. WER(%) results (15 hours supervised + 250 hours unsu-
pervised) for various beam sizes and LM scales

naı̈ve split Smart split
lm-scale beam tol dev test dev test

0.0 0.0 1 23.04 23.23 23.04 23.25
0.0 2.0 1 22.43 22.59 22.46 22.47
0.0 4.0 1 22.27 22.30 22.38 22.60
0.0 8.0 1 23.48 23.73
0.5 2.0 1 22.44 22.69 22.50 22.37
0.5 4.0 1 22.37 22.14 22.02 21.89
0.5 8.0 1 22.44 22.46 22.11 22.15

4.1.5. Summary of alternatives

Table 5 shows a more complete comparison of the main alternatives
we are exploring (best path; lattices with naı̈ve split; lattices with
smart split), with both the 15-hours-supervised and the 50-hours-
supervised setups, and with the recommended settings as mentioned
in the previous sections. The lattice-based methods are convincingly
better than using only the best path, which confirms our intuition
that it makes sense to preserve the uncertainty in the transcript into
the training phase. However it is less clear whether there is a robust
difference between the naı̈ve and smart splitting methods. More ex-
periments will be performed in future to clarify this.

Table 5. WER(%) results with 250 hours unsupervised data – 15
hours supervised vs 50 hours supervised data. WRR is the WER
recovery rate after averaging WERs from dev and test

15 hours sup 50 hours sup
System dev test WRR dev test WRR
Baseline 29.41 29.22 - 22.63 21.97 -
Best path phones 23.04 23.23 54% 20.00 19.82 52%
Naı̈ve split 22.37 22.14 62% 19.54 19.52 60%
Smart split 22.02 21.89 64% 19.60 19.61 59%
Oracle 17.92 17.95 - 17.55 17.92 -

5. CONCLUSIONS AND FUTURE WORK

In this work, we investigated using lattice-based supervision with
lattice-free MMI objective for semi-supervised training. We ex-
plored various ways of creating supervision from lattices obtained
from decoding of unsupervised data. We improved the supervi-
sion by incorporating LM costs and allowing phone tolerances. We
proposed a new FST-based approach of adding phone tolerances di-
rectly into the lattices. This smart approach ensures correct costs in
the supervision and is suitable for efficient chunk-based minibatch
training on GPU. Overall, we get a WER recovery rate of 59-64%
using our proposed method for creating LF-MMI supervision. Our
proposed method is substantially better than using only the best path
phones, which has a WER recovery rate of less than <55%.

Our proposed method of splitting lattices accounting for the cor-
rect costs allows us to effectively use strong LMs like RNNLMs,
which will be investigated in the future. We will also look to do
more experiments on large scale unsupervised datasets including on
other languages.
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