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Abstract

In this paper, we apply the recently proposed x-vector neural
network architecture for the task of age estimation. This archi-
tecture maps a variable length utterance into a fixed dimensional
embedding which retains the relevant sequence level informa-
tion. This is achieved by a temporal pooling layer. From the
embedding, a series of layers is applied to make predictions.
The full network is trained end-to-end in a discriminative fash-
ion. This kind of network is starting to outperform the state-of-
the-art i-vector embeddings in tasks like speaker and language
recognition. Motivated by this, we investigated the optimum
way to train x-vectors for the age estimation task. Despite that
a regression objective is typical for this task, we found that op-
timizing a mixture of classification and regression losses pro-
vides better results. We trained our models on the NIST SRE08
dataset and evaluated on SRE10. The proposed approach im-
proved mean absolute error (MAE) by 12% w.r.t the i-vector
baseline.

Index Terms: Age identification, x-vector, i-vector

1. Introduction

Speech is a common physiological signal for face-to-face com-
munication and human-computer interaction. Nowadays, mo-
bile phones, smart homes, as well as other assistant devices have
accelerated the development of various speech applications. In
addition to the dominant linguistic information, the speech also
carries paralinguistic information such as speaker identity, emo-
tional estate, age, and ethnicity. Recently, research on automatic
extraction of such information has increased, since it can lead
to applications, like age-dependent advertisements, caller-agent
pairing and other customized service[1].

In this paper, we focus on the age estimation problem. Sev-
eral approaches have been proposed in the literature, either to
classify the age range (young, youth, adult and senior) [1, 2, 3],
or predict the actual age [4, 5]. As early as the 1950s, Mysak
proposed to use long-term and short-term features to predict
age [6]. In [2], Minematsu used MFCC features with delta co-
efficients with Gaussian mixture models (GMM) for binary age
classification. Schétz [7] studied the complex correlation be-
tween speech rate, sound pressure, fundamental frequency and
speaker’s age. Another work [3] proposed to combine support
vector machines (SVM) with GMM to combine short-term cep-
stral features and long-term features, and improve performance.
In recent years, Fedorova [4] started to use i-vectors [8] com-
bined with a separate neural network back-end for regression.
IBM researchers [5] proposed to apply support vector regres-
sion (SVR) on DNN i-vectors extracted using fMLLR features
leading to state-of-the-art performance. In [9], the authors stud-
ied how the length of the speech segments impacts the age es-

Table 1: x-vector network architecture

Layer Layer type Size Context
1 TDNN 400 0

2 TDNN 400 [-2,0,2]

3 TDNN 400 [-3,0,3]

4 TDNN 400 0

5 Stats-pooling (Mean+StdDev)  1500+1500 [0:5:T)*

6 Dense (embedding) + ReLU 400 sequence
7 Dense + ReLU 400 sequence
8 Dense softmax Age bins sequence
82 Affine 1 sequence

1: T frame-level outputs of layer 4 are Aggregated every s frames.
2: Separate linear transform layer is added for regression objective.

timator performance. They propose using LSTM networks to
improve performance with short segments. All previous work
either depends on handcrafted features, or uses combination of
multiple components.

Recently the x-vector neural network architecture has been
proposed [10] attaining great performance for speaker veri-
fication [11], speaker diarization [12] and language recogni-
tion [13]. The x-vector architecture converts a variable length
feature sequence into a fixed-dimension embedding which con-
tains the relevant information of the utterance. The x-vector
embedding is extracted via a temporal pooling layer which sum-
marize information along the time axis. After getting this em-
bedding, utterance level labels, like speaker identity, age, and
gender, can be used for discriminative network training. Thus,
end-to-end training becomes possible, jointly optimizing both
feature extraction and prediction. In this work, we applied the
x-vector approach trained with a weighted sum of classification
and regression objectives to estimate age given the speech fea-
tures. Combining two different objective functions led to Mean
Absolute Error (MAE) improvement w.r.t. using just the tradi-
tional regression objective. With respect to the i-vector baseline,
this system achieved 12% improvement.

The rest of the paper is organized as follows. Section 2
introduces the proposed x-vector age estimation system with
classification and regression objectives. Section 3 describes the
i-vector baseline system. Section 4, explains our experimental
setup using NIST SREO08-10; and the system hyper-parameters.
Section 5 presents our results. Finally, Section 6 presents the
conclusions.
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Figure 1: x-Vector neural network.

2. x-Vector age estimation
2.1. Network architecture

Recent works [14, 10] introduced a successful neural network
architecture to map sequences into speaker discriminant fixed-
length vectors. Authors denominated these embeddings as x-
vectors. Figure 1 depicts a generic x-vector neural network.
The network receives a sequence of feature frames, which are
processed by several layers. The result is summarized by a pool-
ing layer that computes mean and standard deviation over time.
We compute these statistics for every 3 frames over all possible
outputs of layer 4. Mean and standard deviation are concate-
nated together and propagated to the output through a series
of feed-forward layers. The output is a dense layer with soft-
max activation predicting the class posteriors—discrete age bins
in our application. Before the pooling layer, we used a time
delay neural network (TDNN) (a.k.a. 1D convolutions). The
sequence embedding is extracted from the first affine transform
after the pooling layer (before applying the non-linear activa-
tion). Table 1 summarizes the network architecture.

The results in [11] indicate that x-vector can outperform i-
vectors and be robust across datasets. However, x-vectors is a
data greedy approach and only is able to beat i-vectors when
we have a large amount of training data. For this reason, we
need to resort to data augmentation schemes—speed perturba-
tion, noise, reverberation— to make x-vectors work optimally.
We augment the training data with additive noise and reverber-
ation, where in reverberation , the audio convolves with room
impulse responses. We use simulated RIRs described in [15]
for reverberation and MUSAN dataset is used for additive noise
augmentation, which contains 900 noises, 42 hours from vari-
ous genres and 60 hours of speech from twelve languages [16].
The detail for 3-fold augmentation is described in [11]. x-Vector
embeddings have also been effective for language recognition,
being the most successful approach in NIST LRE17 evalua-
tion [17, 13].

2.2. Regression vs. classification

Age estimation is typically considered as a regression problem.
However, as ages are discrete values, we decided to explore the
idea of treating it as a classification problem with cross-entropy
objective. We use softmax layer at the end of network to give
the network freedom to model any distribution for separate age
classes. Each age class was modeled by an output node in the
network softmax layer. We limited the number of age classes,
where a new age class was added if the amount of frames for
that class is larger than § x % with 6 = 0.01 and N is the
total number of frames and M is the number of ages in training
data. The ages with a low number of samples were mapped to
the previous age class. The age values belonging to the same
age class is mapped to smallest age value in the group during
test time.

The classification objective has the drawback that all er-
rors are penalized the same, no matter the distance between
the true and predicted ages, which can degrades MAE as a
performance measure. For this reason, we also experimented
with a combined classification-regression that minimizes cross-
entropy and mean square error,

N
L==> log[P(y: = t:|Xi)] + A(zi — t:)> (1)
i=1

As shown in table 1, two separate regression and classification
layers are added after final layer with output dimension of num-
ber of age bins and 1 respectively. The linear affine classifica-
tion layer is followed by softmax layer. ¢; is true ages and y; and
z; are the output of softmax and regression layer respectively.

3. i-Vector baseline
3.1. i-Vector extraction

The i-vector paradigm [8] is the state-of-the-art method to con-
vert a variable length feature sequence into a single fixed-
dimensional vector. This vector termed as i-vector, becomes a
new feature for pattern classification algorithms like SVM [18]
and PLDA [19, 20].

i-Vectors is an extension of the GMM-UBM approach [21],
where each speech segment is modeled by a Gaussian mix-
ture model (GMM). The super-vector mean M of the segment
GMM is assumed to be

M=m+Tw 2)

where m is the UBM means super-vector, T is a low-rank ma-
trix and w is a standard normal distributed vector. M defines
the total variability space, i.e. the directions in which we can
move the UBM to adapt it to a specific segment.

Using this model, we can compute the posterior distribution
of w given the utterance features. The mean of the Gaussian
posterior is the i-vector embedding.

3.2. Back-end

The role of the back-end is to predict the age label of the ut-
terance given the input i-vector. The results in [4] showed that
choice of the back-end between a DNN and an SVR has little
effect on the performance of age estimation from i-vectors. In
this work, we used a two hidden layer DNN back-end for both
i-vector, and fusion of i-vector and x-vector. DNN was config-
ured for regression with a linear output layer and was optimized
to minimize the mean square error between the true and pre-
dicted ages.
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Figure 2: Histogram showing number of utterances for train
and test for both male and female.

4. Experimental setup
4.1. NIST SRE08-10 dataset

We experimented on 2008-2010 NIST speaker recognition eval-
uation (SREO08-10) datasets with a configuration similar to the
one in [5]. The x-vector and back-end neural networks were
trained on telephone speech from SRE(08, which consists of
11205 utterances from 1227 (769 female and 458 male) speak-
ers. We used conversations in English and non-English lan-
guages. The performance was evaluated on NIST SRE10 tele-
phone condition, which consists of 5331 utterances correspond-
ing to 492 (256 female and 236 male). No speaker overlap exists
between the train and test sets. Figure 2 shows the histograms
of number of utterances w.r.t. age bins for training and test sets.

4.2. x-Vector system configuration

The x-Vector setup is described in detail in this section. The
features were 23-dim MFCC short-time mean normalized over
sliding the window of 3 seconds. An energy-based SAD
(speech activity detection) was used to remove non-speech
frames. The DNN configuration is outlined in table 1. The
time-delay deep network layer (TDNN) with the rectified linear
unit (ReLU) non-linearity was used. Batch normalization was
also used after the non-linearity. The first 4 layers had small
temporal context centered at the current frame ¢, e.g. layer with
[—3, 0, +3] concatenates frames from ¢ — 3, ¢ to ¢+ 3 and builds
the layer on them. The statistics pooling layer aggregates infor-
mation across time over all 7" frame-level outputs at layer 4. The
computed mean and standard deviation are concatenated and
propagated through next layers and the output softmax layer.
The training examples consisted of mini-batches of speech ut-
terances with the corresponding age label. To make the network
robust to variable-length test utterances, we trained the DNN
model using variable length chunks randomly sampled from the
full-length utterances. The effect of fixed versus variable length
training chunk length is investigated in details in Section 5.2.
Since x-vector is data greedy approach, we also used data aug-
mentation, consisting in adding noise and reverberation to in-
crease the amount of training data, which improved the mean
absolute error from 5.9 to 4.9.

Table 2: MAE, regression vs. classification objectives for x-
vector training on SREOS and testing on SRE10

Classification weight  Regression weight MAE

1 0 5.1
0 1 11.9
1 0.001 4.9

4.3. i-Vector system configuration

The i-vector system also used MFCC features with short-time
centering. The UBM and i-vector extractors were trained on
NIST SRE04-06 English telephone speech containing 1936 fe-
male speakers and 679 male speakers. We used a 2048 com-
ponent GMM-UBM model with full covariance matrices. Total
variability subspace dimension was set to 400. It is worth men-
tioning that there is no speaker overlap between the data used
to train the i-vector extractor and data used to train and test the
age estimation backend/x-Vector system.

The input dimension for the DNN back-end was 400 for
i-vectors and 800 for the fusion experiments—concatenation i-
vector and x-vector. We also experimented applying LDA to
the input embeddings, the LDA dimension was set to 50. The
LDA transform was learned with respect to the age labels.

We split the SRE08 data into train and validation sets with-
out speaker overlap to training the back-end. All the speakers
with more than 6 utterances were used to train the back-end.
All the other speakers were used for validation. To be consis-
tent with the x-vector experiments, all ages with few training
samples were mapped to the previous age class.

Each hidden layer had 256 neurons with sigmoid non-
linearity. The output layer had one linear neuron to predict
the age value. The network was trained to minimize mean-
squared-error objective. The mini-batch size was set to 32. We
used stochastic gradient descent (SGD) optimizer with an initial
learning rate of 0.001 and a momentum of 0.9. We decreased
the learning rate by a factor of 2 when the validation loss does
not improve for two successive epochs. Minimum learning rate
was set to 1e-05. Training is stopped if validation does not im-
prove for three consecutive epochs. The model with best vali-
dation loss was used for testing.

4.4. Performance measure

To asses the goodness of our age estimators, we report perfor-
mance in terms of mean absolute error and Pearson’s correlation
coefficient. Mean absolute error (MAE) is defined,

N
1
MAE = N2|yi—ti| 3)

i=1

where y; and ¢; are the true and predicted age values respec-
tively.
Pearson’s correlation coefficient is defined as,

1 o~ (yi—p i —p
_ i My i — Mt
mvnn () () e

i=1

where j1, and o, are the mean and standard deviation for the
predicted ages; and u; and o, for the true ages. Higher correla-
tion coefficients are better.



Table 3: Effect of x-vector training/test segment length for age
estimation on SRE10.

MAE Test segment length(s)

Train segment length(s) 10 15 20 full
2 13.03 1092 6.04 6.1

5 13.37 10.97 4.92 4.92

10 19.46 152 4.99 497

4—-30 11.62 988 5.16 53

Table 4: i-Vector vs x-vector vs fusion. LDA indicates that we
reduce embedding dimension before applying the back-end.

Male Female Overall
MAE p MAE p MAE

i-Vector
w/o LDA 654 077 512 089 577 0.84
with LDA 665 076 515 090 582 0.84

x-Vector end-to-end
Train on 5s chunks 578 0.74 423 087 492 0.1
Train on 10s chunks  5.55 0.74 454 085 497 0.80

Fusion i-vec+x-vec (x-vec train on 5s)

w/o LDA 778 075 575 090 6.67 0.82
with LDA 630 0.80 450 092 530 0.87
Fusion i-vec+x-vec (x-vec train on 10s)
w/o LDA 601 0.83 498 092 544 0.88
with LDA 584 083 468 092 520 0.88
5. Results

5.1. Regression vs. classification

Table 2, shows results for x-vector systems trained with dif-
ferent weights of the regression and classification objectives.
While in principle classification is clearly superior to regres-
sion, combining both we improved by 4% relative. Note that
though the regression weight is much lower than the classifica-
tion weight, that doesn’t mean that regression is less important.
The dynamic range of the mean square error objective is larger
than the one of the cross-entropy objective, so the low value of
the regression weight compensates for that.

5.2. Train/test duration analysis

For the same application of age estimation, we need to be able
to estimate the user age as fast as possible. For example, in
call centers, we want to pair the customer with an agent that is
expert dealing with people in a given age range. Therefore, we
experimented with what is the best way to train the x-vector net-
work to work well with short speech durations. When training
the network, we randomly select speech chunks from the full-
length training recordings. Those chunks can have a fixed du-
ration or we can also sample chunk with random durations. Ta-
ble 3 shows results for different x-vector training/test durations.
For short test durations, variable length chunks performed sig-
nificantly better—about 10% relative to 10-second tests. Mean-
while, for long durations, fixed length training was around 7%
better than variable length. This is different to what is reported
on previous x-vector works for speaker verification [11], where
variable length training was consistently better.

5.3. System fusion: i-vector + x-vector

Table 4 present results comparing x-vectors end-to-end evalua-
tion with the i-vector baseline. It also presents fusion between
x-vector and i-vector, where both embeddings were concate-
nated a feed into the 2 layer DNN back-end. We consider the
case where we don’t apply any post-processing to the i-vector
or i-vector+x-vector; and the case where we reduce their dimen-
sion to 50 using age discriminant LDA. The table also compares
x-vectors trained with 5 seconds and 10 seconds chunks. Re-
sults are reported in terms of MAE and correlation coefficient
(defined above).

The x-vector system significantly outperformed i-vector by
14% relative. Fusion of i-vector and x-vector improves by 9%
w.r.t the i-vector system. However, it is still worse than the
single end-to-end x-vector. This x-vector result is similar to
the best result reported in the literature (to our knowledge) [5],
which required a more complicated pipeline including fMLLR
features and DNN i-vectors.

LDA dimensionality reduction was not beneficial for the
case of using i-vectors as input to the back-end, but it improved
when concatenating x-vector and i-vector. This means that the
DNN back-end was not able to handle high dimension inputs,
probably because of the limited data in the SREO8 dataset.

Comparing x-vector models trained on 5 and 10-second
speech chunks, we observe that, though the 5-second model
was slightly better for end-to-end x-vector, the 10-second model
fused better with the i-vector, with and without LDA.

6. Conclusions

In this paper, we proposed to use x-vector neural network ar-
chitecture for age estimation from speech. This architecture
consists of a series of time delay layers (TDNN) followed by a
temporal pooling layer which summarizes the feature sequence
into a single fixed dimension embedding. The embedding is
fed into a series of feed-forward layers to predict the age value.
This is adequate to predict sequence level properties of an ut-
terance, such as speaker identity, language or age. We trained
the network with an objective that is the weighted sum of cross-
entropy and mean square error, which gave a certain advantage
over the typical regression objective used for this task.

We used NIST SRE08 dataset to train our model and NIST
SREI10 for evaluation. We obtained mean absolute error of 4.9,
which is 14% better than our i-vector baseline. This result is
competitive with the best result published on this task.
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