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Abstract
In recent years, different studies have proposed new methods for
DNN-based feature extraction and joint acoustic model train-
ing and feature learning from raw waveform for large vocabu-
lary speech recognition. However, conventional pre-processed
methods such as MFCC and PLP are still preferred in the state-
of-the-art speech recognition systems as they are perceived to
be more robust. Besides, the raw waveform methods – most
of which are based on the time-domain signal – do not signifi-
cantly outperform the conventional methods. In this paper, we
propose a frequency-domain feature-learning layer which can
allow acoustic model training directly from the waveform. The
main distinctions from previous works are a new normalization
block and a short-range constraint on the filter weights. The
proposed setup achieves consistent performance improvements
compared to the baseline MFCC and log-Mel features as well
as other proposed time and frequency domain setups on differ-
ent LVCSR tasks. Finally, based on the learned filters in our
feature-learning layer, we propose a new set of analytic filters
using polynomial approximation, which outperforms log-Mel
filters significantly while being equally fast.
Index Terms: filter bank learning, acoustic modeling

1. Introduction
Feature extraction is a crucial part of automatic speech recog-
nition (ASR) systems. The most commonly used conventional
methods for feature extraction are MFCC [1], PLP [2], and log-
Mel filter-bank. These are hand-crafted based on physiological
models of the human auditory system and are not guaranteed to
be optimal for the current DNN-based ASR models. In contrast,
data-driven feature extraction methods aim to use the training
data to learn a feature extractor. Alternatively, raw waveform
acoustic modeling techniques employ deep neural networks to
enable joint acoustic modeling and feature extraction.

During recent years, other parts of ASR systems such as
acoustic modeling and language modeling have greatly evolved
with the advent of deep neural networks. However, data-driven
feature extraction methods have not significantly outperformed
conventional features on LVCSR tasks. As a result, most state-
of-the-art ASR systems still use conventional methods such as
MFCC for feature extraction. Part of the reason might be that
the data-driven representations can overfit to the training data
used for feature learning and thus may not generalize well to
mismatched acoustic conditions.

In the work presented here, we simplify our previous ap-
proach [3] (i.e. time-domain feature learning) by operating in
the frequency domain. That is, we include a Fourier transform

layer in the network and let the network learn the filter-banks in
the frequency domain. Frequency-domain feature learning has
been previously used in [4] and [5], however, we propose a new
normalization layer which helps with stabilization and better
convergence of the filters. Additionally, we employ a different
weight constraint approach which further improves the results.
We use the proposed frequency-domain layer in the state-of-
the-art LF-MMI setup and show significant word error rate im-
provements on various well-known large vocabulary databases.
Finally, based on the learned filters in our frequency-domain
layer, we propose an analytic set of filters which enable faster
training of the acoustic model while delivering the same results
as the proposed setup.

Time-domain feature learning is explained in Section 2. In
Section 3, our proposed frequency-domain approach, as well
as previous works on frequency-domain feature learning, is de-
scribed. The experiments and results are presented in Section 4,
and some conclusions appear in Section 5.

2. Time domain feature learning

Most of the data-driven feature learning approaches in recent
years have attempted to do feature learning directly from the
time-domain waveform. [6] trained a DNN acoustic model on
waveforms and showed that auditory-like filters can be learned
using fully connected deep neural networks. Other works usu-
ally use time convolution layers, which share weights across
time shifts [7, 8, 9].

The first layer in a time-domain feature learning setup is
usually a time-convolution layer, which is like a finite impulse-
response filter-bank followed by a nonlinearity. This layer is ex-
pected to approximate the standard filter-banks, which is often
implemented as filters followed by rectification and averaging
over a small window. The output of this layer can be referred to
as time-frequency representation. Next, the rectification or ab-
solute function is applied to the output of the convolution filters
and the log compression is used on the absolute value of the fil-
ter outputs to reduce the feature dynamic range. To the best of
our knowledge, most of the reported results show performance
degradation when using time-domain feature learning and [9]
and [3] are the works where raw waveform setup slightly out-
performs the conventional features. [3] proposed a new nonlin-
earity to aggregate filter outputs leading to results competitive
with the state of the art baseline systems.



3. Frequency domain feature learning
3.1. Previous works

In contrast to time-domain feature learning where the inputs
to the CNN and filter bank layers are raw speech samples, in
the frequency-domain feature learning the samples are passed
through a Fourier-transform layer first [5, 4, 10].

In this study, we adopt a similar frequency-domain ap-
proach but with a few major differences. Specifically, we use
an extra normalization block and we constrain the weights in
the filter-bank layer to a short-range. The details of our setup
will be explained in the following subsections.

3.2. Proposed feature extraction block

The overall process of feature learning in our setup is shown
in Figure 1. The input features of the neural network are
non-overlapping 10ms segments of the raw waveform signal.
Each segment is represented by a vector of amplitude values
(e.g. for 8kHz speech, the features will be 80-dimensional).
Unlike acoustic modeling from time-domain [3], there is no
need for input normalization in the frequency-domain setup.
As shown in Figure 1, the input features are first passed
through a pre-processing layer which performs pre-emphasis
and DC-removal. Then they go through the Fourier transform
layer which is implemented using sine/cosine transforms. L2-
normalization is also applied on the output of Fourier transform.
The next step is the normalization block which is explained in
Section 3.3. After normalization, there is the main filter-bank
layer. Implementation-wise, the filter-bank layer is an NxM
weight matrix (i.e. a linear transform), where each row rep-
resents an M-point filter. The weights in this matrix are con-
strained according to Equation 1 which is applied after updat-
ing the parameters of the filter bank for each mini-batch during
training.
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Figure 1: Frequency-domain feature extraction setup

W
′
ij = max(α1,min(Wij , α2)) α1 < α2 (1)

We tried different values for α1 and α2 and found out that
0 and 1 give the best results. Table 1 compares the different
constraints we tried. We also compared this method with the
proposed method in [5], where the parameters are constrained

to be positive by using exponentiation as exp(Wij) but found
that our approach was more effective.

The filter-bank layer is followed by log compression which
is a common practice in DNN acoustic modeling, where the log
compression helps to reduce the dynamic range of the filter-
banks. We investigated two common log methods: (1) clipped
log (i.e. log(max(δ, x))) and (2) stabilized log (i.e log(x+ δ))
and found out that clipped log was more effective which is what
we use in this setup. Finally, the log-filter-bank features are
passed to a CNN layer. We use a 2-dim convolution layer with
32 filters with size 3X3, with time stride 2 instead of pooling
with factor 2 in this setup.

Table 1: Effect of different filter-bank constraint methods

Method WER

Proposed weight constraint (α1, α2)

(−∞,∞) 15.9
(−∞, 1) 16.0
(0,∞) 14.5
(0, 1) 14.3

exponential weights[5] 15.3

3.3. Normalization block

As suggested in [5], applying normalization before filter learn-
ing is beneficial. Distribution of the inputs can change dur-
ing training and the first layer of the network is more sensi-
tive to these changes which can slow down training or make it
unstable. Therefore, we normalize the input power spectrum
which helps to stabilize training and to better train narrow-band
filter-banks. As shown in Figure 1, the inputs to the filter learn-
ing stage are normalized. This is shown in more details in Fig-
ure 2. Specifically, we first transform the power spectrum fea-
tures to log-space, where batch normalization is applied, nor-
malizing the features over a mini-batch. We use batch nor-
malization proposed in [11] which allows to use much larger
learning rates. After batch normalization, the outputs are nor-
malized globally using mean and variance parameters, that are
jointly learned with other parameters during training. Finally,
the parameters are transformed back into normal space using
the exponential function.

We examine the effect of each component in the normaliza-
tion block in Table 2. It can be seen that doing the normalization
in log-space is crucial. Besides, batch-normalization has a sig-
nificant effect on the final word error rate too.
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Figure 2: Normalization block



Table 2: Effect of different components in normalization block

log-domain batch-norm global norm WER
X X X 14.3
X X 7 14.6
7 X X 17.2
X 7 X 15.0

3.4. Analytic filter approximation

In this section, we propose a new set of analytic filters for
narrow-band data. The new filters are approximated using the
filters learned in the filter-bank layer on the 8kHz Switchboard,
which is trained (separately) using 40, 100 and 200 filters.

The filter shapes learned in the filter-bank layer are close
to cosine type filters, therefore we use the cosine function for
estimating the analytic filters. The formula used for filter es-
timation is shown in Equation 2, where each filter is specified
using a center frequency fc and a bandwidth w. As can be seen,
the filters estimated using this formula have the same energy.{

π
2w

cos(π(x−fc)
w

) fc − w
2
≤ x ≤ fc + w

2

0 else
(2)

The center frequencies fc are estimated using a 4th order
polynomial which is in turn approximated using least-square
error minimization on the center frequencies for the 40, 100
and 200 learned filters. The approximated polynomial is shown
in Equation 3. Nyquist and f are in Hz and M is the number
of filters.

fc(i) = a1f
4 + a2f

3 + a3f
2 + a4f + a5 (3)

f =
i×Nyquist

M

(a1, a2, a3, a4) = (1.6e−11,−7.4e−8, 2.2e−4, 0.23, 0)

To measure the bandwidths for the learned filters, we
considered two approaches: noise-equivalent bandwidth esti-
mation, in which the bandwidth for filter u is computed as∑
i u

2
i /(maxj uj)

2δf , where δf = Nyquist
N

andN is the num-
ber of FFT bins; and percentile-based bandwidth estimation,
where the bandwidth is the difference in frequency between the
25% and 75% percentiles of the mass of the distribution for
filter u. It can be shown mathematically that the proposed fil-
ters have a bandwidth of w according to the noise-equivalent
formula. We estimate the bandwidths for the analytic filters
as a piece-wise linear function of the center frequencies. This
piece-wise linear function is in turn approximated using the
bandwidths of the learned filters (on the 8kHz Switchboard).
The plot of the filter bandwidth versus center frequency for the
learned and approximated filters are shown in Figure 3. As can
be seen, the filters learned in the filter-bank layer have higher
bandwidth (and thus larger overlap) compared to the Mel fil-
ters. Also, the optimal filter bandwidth seems to stay constant
as the number of filters is increased, which is not how triangu-
lar Mel filter-banks are usually set up. The bandwidth of the
Mel filters are set by aligning the endpoint of the triangle and it
is not determined using proper optimization. The proposed ap-
proximated filters are wider and overlap with more neighboring
filters.

4. Results
In this section, we compare our proposed frequency-domain
setup with the time-domain setup proposed in [3] trained on the
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Figure 3: Filter bandwidth vs. center frequency for different
filter-banks.

300hrs Switchboard task. We evaluate on the full Hub5 ’00 set
(also called “eval2000”). 1 We also compare with two conven-
tional baselines: MFCC and log-Mel filter-bank features. The
MFCC baseline system uses spliced 40-dim MFCC feature vec-
tors followed by an LDA layer. Note that the results for 40-dim
and 80-dim MFCC features were the same (not shown). Mel
features are generated by passing the power spectrum through a
set of Mel-filters and log-Mel filter-bank features are generated
by applying a log compression on the Mel features. The log-
Mel features – as well as all other feature learning layers we are
comparing here – are followed by a CNN layer. The rest of the
network structure is the same in all experiments (i.e. after the
LDA or the CNN layer). Specifically, we use blocks of TDNN
layers [13] followed by batch-normalization [11] and rectified
linear units.

The results are shown in Table 3. The time-domain fea-
ture extraction setup used in the 3rd row of this table is similar
to [3]. We also show the results of training separate filters on
real and imaginary parts of the Fourier transform as done in
the Complex Linear Projection (CLP) method proposed in [10].
Specifically, we train two separate filter-banksWR andWI on
the real and imaginary parts of Fourier transform of the sig-
nal and the real and complex parts of the output are computed
asWRXR −WIXI andWRXI +WIXR and L2-norm fol-
lowed by log nonlinearity is used to compute the log-filter-bank
features. We can see that our proposed frequency-domain setup
outperforms other frequency-domain and time-domain setups
and conventional methods. We used 40, 100, and 200 filters in
the filter-bank layer in our setup and all cases led to the same
result shown in the table (i.e. 14.3).

4.1. Filter analysis

Figure 4 shows the filter-bank weights learned for the proposed
frequency-domain setup with and without normalization. It can
be seen that normalization helps in learning less noisy filters.

The filters learned in the filer-bank layer are usually inter-
preted as band-pass impulse response. One of the main issues
in time-domain filter learning is that the filters are not usually
narrow-banded and regularization is necessary. We use L1 reg-
ularization on the Fourier transform of the filters learned in the
time-domain setup which is helpful in learning narrow-band

1We perform all the experiments using the Kaldi speech recognition
toolkit[12].
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Figure 4: Magnitude response of learned filter ordered in center
frequency.

filters. As can be seen in Figure 4, this issue is alleviated in
frequency-domain filter learning and the filter banks learned in
this domain are narrow-banded and none of the filters shows
multiple pass-bands. We apply L2-regularization on filter bank
weights in the frequency-domain and CLP setups.

Table 3: Frequency-domain vs. Time-domain

Method WER
eval2000 rt03

40-dim MFCC 14.9 17.8
log-Mel fbank∗ 15.1 18.5
Time-domain setup [3]∗ 14.4 17.4
Time-domain setup [9]∗ 15.2 18.2
Proposed Frequency-domain setup∗ 14.3 17.0
CLP∗ 14.9 17.6
* CNN layer added after log filter-banks.

4.2. Analytic filters

To evaluate the proposed analytic filters (in Section 3.4), we set
the filters in the filter-bank layer (in the DNN) using the pro-
posed analytic set of filters and train the DNN while the filters
are fixed (we still use the normalization block). The results are
presented in Table 4. We can see the proposed analytic filters
have outperformed the proposed frequency-domain filters based
on which they are approximated. This might be because they are
fixed during the training.

Table 4: Frequency-domain setup vs. proposed analytic filters

Method WER
eval2000 rt03

40-dim MFCC 14.9 17.8
Proposed Frequency-domain setup 14.3 17.0
Proposed analytic filters 14.2 16.8

4.3. Performance on various LVCSR tasks

Finally we evaluate our proposed frequency-domain setup on
various databases, namely Tedlium [14], and AMI IHM and
SDM [15], Wall Street Journal [16] and Librispeech [17]. The

results are shown in Table 5. The amount of training data for
filter learning varies from 80-1000 hours across these tasks.
The baselines are the state of the art TDNN models trained on
conventional 40-dim MFCC features. We use 100 filters in in
8kHz tasks and 200 filters for the 16kHz tasks. The results on
Librispeech are obtained by rescoring with 4−gram language
model. We use the same CNN layer as described in Section 3.2
in all the experiments. An average relative improvement of 1%
to 7% is observed over the conventional state-of-the-art MFCC
based models.

Table 5: Performance of the proposed frequency-domain setup
on various databases.

Database Test set Baseline Proposed setup

Switchboard eval2000 14.9 14.3
rt03 17.8 17.0

Wall Street Journal eval92 2.6 2.4
dev93 4.7 4.6

TED-LIUM test 8.8 8.5
dev 8.3 8.0

AMI-IHM eval 20 19.9
dev 20 19.5

AMI-SDM eval 39.6 38.9
eval 35.8 34.9

Librispeech dev-other 10.6 9.7
test-other 10.9 10.2

5. Conclusions and future work
In this study, we presented our work on joint feature learn-
ing and acoustic modeling in the state-of-the-art lattice-free
MMI framework. Specifically, we introduced a new frequency-
domain feature learning layer which improves the WER for
the baseline MFCC setup from 14.9% to 14.3% on the 300hrs
Switchboard task by employing a new normalization block and
a short- range weight constraint. Furthermore, we did compar-
ison among different well-known data driven feature learning
approaches. We also evaluated our proposed frequency-domain
setup on various narrow-band and wide-band LVCSR databases
and achieved consistent improvements ranging from 1% to 7%
relative reduction in WER.

Inspired by the learned features, we proposed a new set
of analytic filters for narrow-band data. We used a 4th order
polynomial to approximate the center frequencies based on the
learned filters in the proposed frequency-domain setup. We also
estimated the bandwidths for the analytic filters using a piece-
wise linear function of the center frequencies. The important
observation is that the optimal filter bandwidth stays constant
as the number of filters is increased; this is not how triangular
Mel filter-banks are set up. Using the proposed analytic filters
led to a WER of 14.2 on the 300hrs Switchboard task which
is an improvement over the proposed setup itself. As an added
benefit, these analytic filters are considerably faster at runtime,
as they are pre-computed and fixed.
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