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Abstract
Time Delay Neural Networks (TDNNs), also known as one-
dimensional Convolutional Neural Networks (1-d CNNs), are
an efficient and well-performing neural network architecture for
speech recognition. We introduce a factored form of TDNNs
(TDNN-F) which is structurally the same as a TDNN whose
layers have been compressed via SVD, but is trained from a ran-
dom start with one of the two factors of each matrix constrained
to be semi-orthogonal. This gives substantial improvements
over TDNNs and performs about as well as TDNN-LSTM hy-
brids.
Index Terms: speech recognition, acoustic modeling, deep
neural networks

1. Introduction
The most popular method to reduce the number of parameters
of already-trained neural networks is to use Singular Value De-
composition (SVD) to factorize each learned weight matrix as a
product of two much smaller factors, discarding the smaller sin-
gular values [1, 2, 3]. In those cases the network parameters are
fine-tuned after this. An obvious idea is to train neural networks
with this same structure– effectively, with linear bottlenecks–
from a random start; but when this has been tried in the past,
the stability of training has been a problem [3].

In this paper we show that we can obtain good results by
training such networks from a random start with one of the two
factors constrained to be semi-orthogonal1. The basic observa-
tion is that we do not lose any modeling power by forcing one
of the two factors in M = AB to be semi-orthogonal; this is
easy to show using the existence of the SVD.

We use low-rank factorized layers in TDNN acoustic mod-
els trained with lattice-free maximum mutual information (LF-
MMI) criterion [4]. Furthermore, we use an idea– skip
connections– that is inspired by the “dense LSTM” of [5].
This is somewhat related to the shortcut connections of resid-
ual learning [6] and highway connections [7, 8], but consists
of appending/concatenating the output of previous layers rather
than summing them.

The rest of this paper is organized as follows. Section 2
describes how we enforce the semi-orthonormal constraint on
some parameter matrices. Section 3 discusses our use of skip
connections. The experimental setup is explained in Section
4. Section 5 presents the experiments and results. Finally, the
conclusions are presented in Section 6.

1“Semi-orthogonal” is a generalization to non-square matrices of
‘orthogonal’, i.e. M is semi-orthogonal if MMT = I or MTM = I.

2. Training with semi-orthogonal constraint
2.1. Basic case

The way we enforce a parameter matrix to be semi-orthogonal
is: after every few (specifically, every 4) time-steps of SGD, we
apply an efficient update that brings it closer to being a semi-
orthogonal matrix.

Let us suppose the parameter matrix M that we are con-
straining has fewer rows than columns (otherwise, we would
do the same procedure on its transpose). Define P ≡ MMT .
The condition that we are trying to enforce is: P = I. De-
fine Q ≡ P − I. We can formulate this as minimizing a
function f = tr (QQT ), i.e. the sum of squared elements of
Q. The following will use a convention where the derivative
of a scalar w.r.t. a matrix is not transposed w.r.t. that matrix.
Then ∂f/∂Q = 2Q, ∂f/∂P = 2Q, and ∂f/∂M = 4QM.
Our update is what we would get if we did a single iteration
of SGD with a learning rate ν = 1/8. Specifically, we do
M←M− 4νQM, which expands to:

M←M− 1

2

(
MMT − I

)
M. (1)

The choice of ν = 1/8 is special: it gives the method quadratic
convergence. The analysis is beyond the scope of this paper but
it is easy to verify in the scalar case, or experimentally.

The update of (1) can diverge if M is too far from being
orthonormal to start with, but this does not happen in practice if
we use Glorot-style initialization [9] where the standard devia-
tion of the random initial elements of M is the inverse of square
root of number of columns.

It would also be possible to apply the constraint by explic-
itly adding this penalty term to the objective function.

2.2. Scaled case

Suppose we want M to be a scaled version of a semi-orthogonal
matrix, i.e. some specified constant α times a semi-orthogonal
matrix. (This is not directly used in our experiments but helps
to derive the “floating” case, below, which is used). By substi-
tuting 1

α
M into Equation (1) and simplifying, we get this:

M←M− 1

2α2

(
MMT − α2I

)
M (2)

2.3. Floating case

An option that we have found useful is to enforce M to be a
semi-orthogonal matrix times α, for any α. We refer to this as
a “floating” semi-orthogonal constraint. The reason why this
is useful is that it allows us to control how fast the parameters



of the various layers change in a more consistent way. We al-
ready use l2 parameter regularization to help control how fast
the parameters change. (Because we use batchnorm and be-
cause the ReLU nonlinearity is scale invariant, l2 does not have
a true regularization effect when applied to the hidden layers;
but it reduces the scale of the parameter matrix which makes
it learn faster). By allowing the scale of the semi-orthogonal-
constrained parameter matrices to “float”, we can meaningfully
apply l2 regularization to the constrained layers as well, which
allows for more consistent control of how fast the various types
of parameters change.

To apply the “floating” semi-orthogonal constraint, let P ≡
MMT , and we compute the scale α as follows:

α =
√

tr (PPT )/tr (P). (3)

We then apply the scaled update of Equation (2). This formula
for α is the one that ensures that the change in M is orthogonal
to M itself (viewing M is a vector of concatenated rows).

We also tried an alternative method where we set α to the
square root of the average diagonal element of P. This alterna-
tive method would be easier to formulate as an added term on
the objective function, but we found that it tended to decrease
the magnitude of M each time it was applied, so we favor the
method described above.

3. Factorized model topologies
3.1. Basic factorization

The most direct application of our idea is to take an existing
topology and factorize its matrices into products of two smaller
pieces. Suppose we have a typical TDNN topology with a hid-
den layer dimension of 700. A typical parameter matrix would
be of dimension 700 by 2100, where the number of columns
(2100) corresponds to 3 frame offsets of the previous layer
spliced together. You can view this as a different way to for-
mulate a 1-d CNN, i.e. a CNN with a 3x1 kernel and 700 filters.

The basic factorization idea would be to factorize the 700
by 2100 matrix into two successive matrices as M = AB, with
a smaller “interior” dimension of, say, 250: i.e. with A of size
700× 250 and B of size 250× 2100, with B constrained to be
semi-orthogonal. The number 250 in this example is what we
will call the linear bottleneck dimension, and 700 is the hidden
layer dimension.

This difference between a normal TDNN layer and a fac-
torized TDNN layer is shown in Figures 1 and 2.

3.2. Tuning the dimensions

In practice, after tuning this setup for optimal performance on
Switchboard-sized data (300 hours), we ended up using larger
matrix sizes, with a hidden-layer dimension2 of 1280 or 1536,
a linear bottleneck dimension of 256, and more hidden layers
than before (11, instead of 9 previously)– even when counting
each matrix-factorized-into-two as a single layer. The number
of parameters in our TDNN-F systems ends up being roughly
the same as the baseline.

2We have recently started using dimensions based on powers of 2
rather than 10

3.3. Factorizing the convolution

The setup described above uses a constrained3 3x1 convolu-
tion followed by 1x1 convolution (or equivalently, a TDNN
layer splicing 3 frames followed immediately by a feedforward
layer). We have found that better results can be obtained by
using a constrained 2x1 convolution followed by a 2x1 convo-
lution. We refer to this as “factorizing the convolution”.

3.4. 3-stage splicing

Something that we have found to be even better than the “fac-
torized convolution” above, is to have a layer with a constrained
2x1 convolution to dimension 256, followed by another con-
strained 2x1 convolution to dimension 256, followed by a 2x1
convolution back to the hidden-layer dimension (e.g. 1280).
The dimension now goes from, for example, 1280 → 256 →
256 → 1280, within one layer. The effective temporal context
of this setup is of course wider than the TDNN baseline, due to
the extra 2x1 convolution.

3.5. Dropout

A feature of some of the systems presented here is a particular
form of dropout. This improved these results slightly (around
0.2% or 0.3% absolute). The dropout masks are shared across
time, so if, for instance, a dimension is zeroed on a particu-
lar frame it will be zeroed on all frames of that sequence. In
addition, instead of using a zero-one dropout mask we use a
continuous dropout scale. Let α be a user-specified value that
determines the “strength” with which dropout is applied (this
is intended to be analogous to the dropout probability). Then
the random scale is chosen from the uniform distribution on the
interval [1 − 2α, 1 + 2α]. Similar to [10], we use a dropout
schedule where α rises from 0 at the start of training to 0.5
halfway through, and 0 at the end. This dropout is applied af-
ter the ReLU and batchnorm. Our dropout method, and other
variants of it that we tried, did not seem to help in regular (non-
factorized) TDNNs.

3.6. Factorizing the final layer

All the TDNN-F (i.e. factorized TDNN) experiments reported
here factorize the parameters of the final layer in addition to
those of the hidden layers, using a linear bottleneck of 256. We
found that even with very small datasets in which factorizing
the TDNN layers was not helpful, factorizing the final layer was
helpful.

3.7. Skip connections

A further feature that we have found to be helpful for this type
of model, inspired by the “dense LSTM” of [5], is skip con-
nections. In the following, by “layer” we mean a possibly-
factorized layer that may contain a product of matrices. The ba-
sic idea is that some layers receive as input, not just the output of
the previous layer but also selected other prior layers which are
appended to the previous one. In our currently favored topolo-
gies, approximately every other layer receives skip connections
in addition to the output of the previous layer– it receives up to
3 other (recent but non-consecutive) layers’ outputs appended
to the previous layer’s output.

In fact what we have said above is a simplification because
the skip connections connect the interiors of the layers. In the

3By “constrained” in this paper we mean, with a semi-orthogonal
constraint on the parameter matrix
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Figure 1: One standard feed-forward layer in our system.
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Figure 2: Factorized layer with semi-orthogonal constraint

factorized TDNN there are several choices of how to do this –
e.g. do we connect small dimension to large, or large to small,
or small to small, via the skip connections. What seemed to
work the best is the “small to large” option, where we provide as
additional input the linear bottleneck from the skip-connected
layers (of dimension 256, for example), and append this just
before projecting back up to the hidden dimension. In the “fac-
torized convolution” setup, for example, instead of the dimen-
sion of the second matrix being 1280 × (256 ∗ 2), it would be
1280× (256 ∗ 5), if the layer receives 3 skip connections.

The improvement from adding these skip connections is of
the order of 0.2% or 0.3% absolute, on average over various
Switchboard and Fisher +Switchboard experiments.

4. Experimental setup
All our experiments are conducted using the Kaldi speech
recognition toolkit [11] using neural nets trained with lattice-
free MMI [4]. We present experiments with models trained on
300 hours of Switchboard data; on Fisher+Switchboard data
combined together (2000 hours); and on Swahili and Tagalog
data from the MATERIAL program (80 hours each). All setups
use 3-fold speed perturbation [12]. We use i-vectors for adapta-
tion.

4.1. Switchboard and Fisher+Switchboard setups

We present experiments 2000 hours Fisher + Switchboard large
vocabulary continuous speech recognition (LVCSR) task and
300 hours Switchboard (SWBD) LVCSR task. The number
of decision tree leaves is 6078 for Switchboard and 6149 for

Table 1: WER for TDNN models on Switchboard LVCSR task.

Acoustic Model Size Eval2000 RT03 Time 4(s)SWBD Total
Baseline TDNN (625) 19M 9.5 14.3 17.5 90

+ l2 regularization 9.1 14.0 16.9 96
Baseline TDNN (1536) 80M 9.4 14.6 17.2 211

+ l2 regularization 9.0 13.9 16.6 210
Factorized TDNN (1536-256)

20M
9.7 14.4 17.4 154

+ l2 regularization 9.1 13.9 17.0 155
++ semi-orthogonal 9.2 13.7 16.0 147

Fisher+Switchboard. We report results on full HUB5’00 evalu-
ation set (also known as Eval2000) and its “switchboard” sub-
set, which are indicated in the table by ’Total’ and ’SWBD’.
We also report results on the RT03 test set (LDC2007S10). Re-
sults are shown with a 4-gram back-off language model unless
otherwise stated.

Results are shown with a 4-gram backoff language model
estimated from Switchboard and Fisher transcripts (even for the
acoustic models trained only on Switchboard).

4.2. MATERIAL setup

We include ASR experiments on data from two low-resource
languages: Swahili and Tagalog. These datasets are provided
as part of IARPA’s MATERIAL (Machine Translation for En-
glish Retrieval of Information in Any Language) program [13].
Each language has about 80 hours of training data, 20 hours of
dev data (this data is segmented and is from the same recording
conditions as the training data), and 10 hours of analysis data
(unsegemented and with domain mismatch). The unsegmented
analysis data is first segmented based on the output of the 1st-
pass decoding, and then we do a 2nd-pass decoding with the
new segments. The ASR system is the same for both passes.
The first-pass decoding uses a 3-gram backoff LM which we
rescore with an RNNLM [14, 15], with explicit modeling for
silence probabilities [16].

5. Experiments
Due to time constraints, we will not be showing a detailed inves-
tigation of all the modeling choices discussed in Section 3. Sec-
tion 5.1 will focus on just factorizing the matrices of a TDNN,
the basic factorization of Section 3.1. Then in Section 5.2 we
will show a comparison between our previous recipes based
on TDNNs [17], BLSTMs, and TDNN-LSTM hybrids with
dropout [18, 10], and our TDNN-F recipe with all the additional
features discussed above, including l2 regularization, “float-
ing” semi-orthogonal constraint (Sec. 2.3), 3-stage convolution
per layer (Sec. 3.4), dropout (Sec. 3.5) and skip connections
(Sec. 3.7).

5.1. Factorizing a TDNN system

Table 1 reports some experiments in which the only change we
make is to factorize the parameter matrix with an orthonormal
constraint on the first factor. This is with layer dimensions of
625 and 1536, and with and without l2 regularization. When we
factorize the 1536-dimension system with a linear bottleneck
dimension of 256, we show results with and without the semi-
orthogonal constraint on the first factor. Our baseline TDNN
results are surprisingly insensitive to the layer dimension. We
get the best results with the factorized layer including the semi-
orthogonal constraint.

4Time consumed by the model to train on around 1.5 million frames.



Table 2: Comparing model types: Switchboard (+ Fisher),
WERs and decoding real time factor (RTF)

Switchboard Params Eval2000 RT03 RTFSWBD Total
TDNN 19M 9.5 14.3 17.5 0.36

BLSTM 41M 9.2 13.7 16.0 1.77
TDNN-LSTM 40M 9.0 13.5 15.6 1.26

TDNN-F 23M 8.7 12.7 15.1 0.45

Fisher+Switchboard Params Eval2000 RT03 RTFSWBD Total
TDNN 19M 8.9 13.3 12.5 0.39

BLSTM 41M 8.4 12.0 11.2 1.78
TDNN-LSTM 40M 8.2 12.0 11.2 1.19

TDNN-F* 20M 8.8 12.4 11.5 0.43
*Older version without dropout, 3-stage splicing or ”floating” semi-
orthogonal constraint

Table 3: Comparing model types: MATERIAL results, WERs

Acoustic Model Params Swahili Tagalog
Dev Analysis Dev Analysis

TDNN-LSTM 11M 39.1 52.7 47.0 58.8
+ RNNLM 37.3 50.6 44.7 57.1
TDNN-F 17M 37.6 50.3 45.6 57.0

+ RNNLM 35.7 48.5 42.9 55.5

In our setup training converged fine without the constraint,
although the constraint did improve WERs.

5.2. Comparing model types

In this section we compare our previous architectures based on
TDNN, TDNN+LSTM and BLSTM, with our new TDNN-F ar-
chitecture with l2 regularization, 3-stage convolution, skip con-
nections and dropout.

Table 2 shows results on Switchboard and
Fisher+Switchbard, and Table 3 shows results on the
MATERIAL setup. In all cases our TDNN-F results are the
best, except for the Fisher+Switchboard setup. Due to time
constraints, the Fisher+Switchboard experiment used an older
topology missing the 3-stage splicing, dropout and ”floating”
semi-orthogonal constraint; likely the model we used there was
also too small. In any case, it is clear that TDNN-F models give
very competitive results.

We won’t specify the fine details of the TDNN-F model
specifications used, but we use linear bottlenecks of 256, 11
layers, 3-fold frame sub-sampling after the first few layers, and
hidden-layer dimensions varying from 1024 to 1536.

6. Conclusions
We have described an effective way to train networks with pa-
rameter matrices represented as the product of two or more
smaller matrices, with all but one of the factors constrained to
be semi-orthogonal. By applying this idea to our TDNN sys-
tems giving a factorized TDNN (TDNN-F), and applying sev-
eral other improvements such as skip connections and a dropout
mask that is shared across time, we get results with a TDNN-F
model that are often better than our previous TDNN-LSTM and
BLSTM results, while being much faster to decode.

Regardless of whether we continue to use this particular ar-
chitecture, we believe the trick of factorizing matrices with a
semi-orthogonal constraint is potentially valuable in many cir-
cumstances, and particularly for the final layer. We will con-
tinue to experiment with this factorization trick using other net-
work topologies.
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