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Abstract
This paper introduces a new method to extract speaker embed-
dings from a deep neural network (DNN) for text-independent
speaker verification. Usually, speaker embeddings are extracted
from a speaker-classification DNN that averages the hidden vec-
tors over the frames of a speaker; the hidden vectors produced
from all the frames are assumed to be equally important. We
relax this assumption and compute the speaker embedding as a
weighted average of a speaker’s frame-level hidden vectors, and
their weights are automatically determined by a self-attention
mechanism. The effect of multiple attention heads are also
investigated to capture different aspects of a speaker’s input
speech. Finally, a PLDA classifier is used to compare pairs of
embeddings. The proposed self-attentive speaker embedding
system is compared with a strong DNN embedding baseline on
NIST SRE 2016. We find that the self-attentive embeddings
achieve superior performance. Moreover, the improvement pro-
duced by the self-attentive speaker embeddings is consistent
with both short and long testing utterances.
Index Terms: speaker recognition, deep neural networks, self-
attention, x-vectors

1. Introduction
Speaker verification (SV) is the task of accepting or rejecting
the identity claim of a speaker based on some given speech.
There are two broad categories of SV systems: text-dependent
and text-independent SV systems. Text-dependent SV systems
require the content of input speech to be fixed, while text-
independent SV systems do not.

Over the years, the combination of i-vectors [1] and prob-
abilistic linear discriminant analysis (PLDA) [2] has been the
dominant approach for text-independent SV tasks [3, 4, 5].
Also, hybrid approaches that incorporate deep neural networks
(DNNs) trained for automatic speech recognition (ASR) into
the i-vector system have proved to be beneficial in some condi-
tions [6, 7, 8, 9, 10]. However, the ASR DNN adds significant
computational complexity to the i-vector system and also re-
quires transcribed data for training. Moreover, the success of
this approach has been primarily isolated to English-language
datasets [11]. On the other hand, recent work demonstrates that
more powerful SV systems can be built from directly training a
speaker discriminative DNN [12, 13, 14, 15, 16, 17]. Heigold
et al. introduced an end-to-end system for a text-dependent
SV task, that was jointly trained to map frame-level features to
speaker embeddings and to learn a similarity metric to compare
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embedding pairs [13]. The system was then adapted to the more
general task of text-independent SV in [15]. The work in [16]
divided the end-to-end system into two components: a DNN
to produce speaker embeddings and a separately trained PLDA
classifier to compare embedding pairs. Compared to the end-to-
end approach, this method requires less data to be effective and
has the added benefit of facilitating reuse of the methods devel-
oped over the years for processing and comparing i-vectors. We
continue to use this two-stage approach in this work.

Most DNN-based SV systems use a pooling mechanism
to map variable-length utterances to fixed-dimensional embed-
dings. In a feed-forward architecture, this is usually enabled
by a pooling layer that averages some frame-level DNN fea-
tures over the whole input utterance. In early systems, such as
the d-vector in [12], the DNN was trained at the frame-level,
and pooling is performed by averaging activation vectors of the
the last hidden layer over all frames of an input utterance. The
work in [15, 16, 17] proposed adding a statistics pooling layer
that aggregates DNN hidden vectors over the whole utterance
of a speaker, and computes its mean and standard deviation.
The statistics vectors were then concatenated together to form a
fixed-length representation of the input utterance at the segment
level. Speaker embeddings are derived from further processing
of these segment-level representations. However, in most prior
work, this pooling mechanism assigns equal weight to each
frame-level feature. Zhang et al, proposed using an attention
model to combine the frame-level features for a text-dependent
SV application [14]. The attention model takes phonetic poste-
rior features and phonetic bottleneck features as extra sources,
and learn the combination weights for frame-level features.

This paper proposes an extension of the x-vector architec-
ture described in [17]. In order to better utilize the speaker in-
formation in the input speech, we propose using frame-level
weights that are learned by a structured self-attention mecha-
nism and incorporated into a weighted statistics pooling layer.
In contrast to the work in [14], our task is text-independent and
there’s a language mismatch between the training and testing
data, so the phonetic information may not be helpful or even
available. The self-attention mechanism was originally pro-
posed for extracting sentence embeddings for natural language
processing tasks [18]. We adapt the self-attention mechanism
in [18] to text-independent SV based on the system in [17].

2. Speaker verification systems
We compare the proposed methods with two x-vector-based SV
baseline systems. All systems are built using the Kaldi speech
recognition toolkit [19].



2.1. The x-vector baseline system

The x-vector baselines are based on the systems described in
[17]. A speaker discriminative DNN is trained to produce
speaker embeddings called x-vectors, and a PLDA backend is
used to compare pairs of speaker embeddings.

The input acoustic features are 23-dimensional MFCCs
with a frame-length of 25ms that are mean-normalized over a
sliding window of up to 3 seconds. An energy-based VAD is
employed to filter out non-speech frames from the utterances.

The DNN used in the x-vector baseline system is depicted
in Figure 1. The first five layers l1 to l5 are constructed with a
time-delay architecture and they work at the frame level. Sup-
pose t is the current time step. Frames from (t − 2) to (t + 2)
are spliced together at the input layer. The next two layers splice
the output of the previous layer at time steps {t−2, t, t+2} and
{t− 3, t, t+ 3}, respectively. No temporal contexts are added
to the fourth and fifth layers. Thus, the total temporal context
after the third layer is 15 frames.

The statistics pooling layer aggregates over frame-level out-
put vectors of the DNN, and computes their mean and standard
deviation. This pooling mechanism enables the DNN to pro-
duce fixed-length representation from variable-length speech
segments. The mean and standard deviation are concatenated
together and forwarded to two additional hidden layers l6 and
l7, and finally a softmax output layer. The DNN is trained to
classify speakers in the training set. After training, the softmax
output layer and the last hidden layer are discarded, and speaker
embeddings are extracted from the affine component of l6. The
system uses PLDA backend for scoring, which is described in
section 2.3. All neural units are rectified linear units (ReLUs).

Figure 1: Structure of the DNN in the x-vector baseline system.

2.2. Self-attentive speaker embeddings

Self-attention mechanism can be effectively used to encode a
variable-length sequence into some fixed-length embeddings.
Inspired by the structured self-attention mechanism proposed
in [18] for sentence embedding, we adapt it to improve speaker
embeddings in the x-vector baseline system shown in Fig. 1.

In the current x-vector system, the statistics pooling layer
treats all the frame-level outputs from its previous hidden layer

equally. However, not all frames provide ‘equal’ speaker-
discriminative information to the upper layers. For instance,
non-speech frames that unfortunately pass the VAD and short
pauses are not useful, and some phonetic contents can be more
speaker-discriminative. In this paper, the statistics pooling layer
is replaced by a self-attention layer as shown in Figure 2 to de-
rive a weighted mean and a standard deviation vector from the
outputs of the previous hidden layer over each speech segment.
The weights are learned with the self-attention mechanism to
maximize speaker classification performance for the whole sys-
tem.

Figure 2: Structure of the self-attention layer.

Suppose a speech segment of duration T produces a se-
quence of T output vectors H = {h1,h2, · · · ,hT }, where ht

is the hidden representation of input frame xt captured by the
hidden layer below the self-attention layer. Let the dimension
of ht be dh. Thus, the size of H is dh × T . The self-attention
mechanism takes the whole hidden representation H as input,
and outputs an annotation matrix A as follows:

A = softmax(g(HTW1)W2) (1)

where W1 is a matrix of size dh × da; W2 is a matrix of size
da × dr , and dr is a hyperparameter that represents the number
of attention heads; g(·) is some activation function and ReLU
is chosen here. The softmax(·) is performed column-wise.

Each column vector of A is an annotation vector that repre-
sents the weights for different ht. Finally the weighted means
E is obtained by

E = HA. (2)

When the number of attention heads dr = 1, E is simply a
weighted mean vector computed from H, and it is expected to
reflect an aspect of discriminative speaker characteristics in the
given speech segment. Apparently, speakers can be discrimi-
nated along multiple aspects, especially when a speech segment
is long. By increasing dr , we can easily have multiple atten-
tion heads to learn different aspects from a speaker’s speech.
To encourage diversity in the annotation vectors so that each at-
tention head can extract dissimilar information from the same
speech segment, a penalty term P is introduced when dr > 1:

P = ‖(ATA− I)‖2F (3)

where I is the identity matrix and ‖·‖F represents the Frobe-
nius norm of a matrix. P is similar to L2 regularization and is
minimized together with the original cost of the whole system.

2.3. PLDA backend

We use the same type of PLDA backend as [16, 17] for com-
paring pairs of embeddings. The embeddings are centered, and
projected using LDA, which reduces the dimension from 512



Table 1: Results on SRE16 with various systems.

Cantonese Tagalog pool

EER(%) DCF16 EER(%) DCF16 EER(%) DCF16

mean only
baseline 7.33 0.516 19.42 0.813 14.06 0.666
attn-1 6.13 0.500 17.05 0.783 12.18 0.642
attn-2 6.15 0.472 16.43 0.791 12.05 0.633
attn-5 5.81 0.451 16.44 0.790 11.88 0.623

mean+stddev
baseline 5.39 0.425 15.20 0.766 11.02 0.596
attn-1 5.16 0.386 14.49 0.728 10.74 0.558
attn-2 4.84 0.385 14.41 0.736 10.30 0.561
attn-5 4.61 0.380 14.15 0.730 10.21 0.556

ivector [16] 8.3 0.549 17.6 0.842 13.6 0.711

to 150. After dimensionality reduction, the representations are
length-normalized and modeled by PLDA. The scores are nor-
malized using adaptive s-norm [20].

3. Experimental setup

3.1. Model configuration

In the x-vector baseline system, the inputs size is 115 including
context, and there are 512 nodes in each of the first four frame-
level hidden layers l1 to l4, while the last frame-level layer l5
has dh = 1500 hidden nodes. Each of the two segment-level
layers l6 and l7 has 512 nodes. For the self-attention layer, da
is set to 500.

3.2. Training data

The training data consists primarily of English telephone speech
(with a smaller amount of non-English and microphone speech),
taken from Switchboard datasets, past NIST speaker recogni-
tion evaluations (SRE) and Mixer 6. The Switchboard portion
consists of Switchboard 2 Phase 1, 2, 3 and Switchboard Cel-
lular, and it contains about 28k recordings from 2.6k speakers.
The SRE portion consists of NIST SREs data from 2004 to 2010
along with Mixer 6 for a total of about 63k recordings from 4.4k
speakers. The four data augmentation techniques described in
[17], namely, babble, music, noise, and reverb[21] are applied
to increase the amount of training data and to improve the ro-
bustness of the system. The clean data, together with the aug-
mented data are used to train the speaker embedding DNN sys-
tem, and only the clean and augmented SRE subset is used to
train the PLDA classifier.

3.3. Evaluation

System performance is assessed on NIST 2016 speaker recog-
nition evaluations (SRE16) [22]. SRE16 consists of Cantonese
and Tagalog telephone speech. The length of enrollment seg-
ments is about 60 seconds, and the length of test segments varies
from 10 to 60 seconds. The performance is reported in terms of
equal error rate (EER) as well as the official evaluation met-
ric DCF16 for SRE16 [22], which is computed from a normal-
ized detection cost function (DCF) averaged from two operation
points with PTarget = 0.01 and PTarget = 0.005, respec-
tively.

4. Results
In the following results, ‘baseline’ refers to the x-vector base-
line described in Section 2.1. The label ‘attn-k’ denotes the
self-attentive embedding systems described in Section 2.2 with
k attention heads.

4.1. Overall results

The SRE16 results are summarized in Table 1. In producing
the mean-only results, the various systems only utilize 1st-order
statistics to generate speaker embeddings. That is, ‘baseline’
computes simple unweighted mean from all the frames of an
input utterance, whereas ‘attn-k’ computes the weighted mean
using a self-attention layer. On the other hand, both the 1st- and
2nd-order statistics are used in the mean+stddev results.
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Figure 3: DET curve for mean-only systems when SRE16 results
are pooled across Cantonese and Tagalog.

In general, self-attention systems outperform the baseline
systems that derive speaker embeddings from simple averag-
ing pooling layer, and more attention heads achieve greater im-
provement. For example, when only mean vectors are used, the
single-head attention system is 16% better in EER and 3% better
in DCF16 on Cantonese, and 12% better in EER and 4% better
in DCF16 on Tagalog. On the other hand, the 5-head system
outperform the baseline by 21% in EER and 13% in DCF16 on
Cantonese, and 15% better in EER and 3% better in DCF16 on
Tagalog. When the performances are pooled across the two lan-
guages, the best self-attentive system outperforms the baseline
by 16% in EER and 6% in DCF16. Figure 3 shows the detec-



tion error tradeoff (DET) curves for mean only systems when
the performance is pooled across Cantonese and Tagalog.

With the incorporation of standard deviation information,
the performance of the self-attentive embedding systems is
more stable and they continue to outperform the respective
baselines. We see that the single-head attention system achieves
5% improvement in EER on both Cantonese and Tagalog. The
best multi-head system with 5 heads is 14% better in EER and
10% better in DCF16 on Cantonese, and 7% better in EER and
5% better in DCF16 on Tagalog. Figure 4 reports the DET curve
for systems using both mean and standard deviation.
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Figure 4: DET curve for mean+stddev systems when SRE16
results are pooled across Cantonese and Tagalog.

We also compare the performance of the self-attentive
speaker embedding systems with a traditional i-vector system
reported in Snyder et al. [16]. Pooled across languages, the best
5-head self-attentive embedding system performs better than the
i-vector system 25% in EER and 22% in DCF16.

4.2. Results on test utterances of different durations

We also investigate the interplay between performance and ut-
terance duration. Test utterances are divided into 3 groups ac-
cording to their speech durations. Table 2 and Table 3 report
the mean+stddev performance of various systems on the three
different duration groups. We can see that with few exceptions,
(a) self-attentive embeddings bring improvement across all the
different duration groups; (b) as expected the SV performance
is better with longer utterances; (c) in general, the self-attentive
systems perform better with more heads. For instance, on Can-
tonese, the single-head system achieves 2% improvement in
EER for utterances in the first two groups and 9% in the last
group; the improvement in DCF16 is fairly consistent among
all duration groups and it is about 10% for the single-head sys-
tem. Larger gains are made by multi-head systems. The 5-head
self-attentive system achieves 13-16% improvement in EER and
about 11% in DCF16 for utterances in all the duration groups.
On Tagalog, the largest improvement is obtained by the single-
head system: it is around 5% better in EER and 2-6% better in
DCF16 for all duration groups.

Notice that in our current experiments, in order to provide
enough training examples per speaker and to increase diversity
in the training examples, we have chunked the training utter-
ances into segments of 200–400 frames. After DNN training,
the speaker embeddings are extracted from the entire recoding.
Therefore, there may be a mismatch between training and test-

Table 2: EER(%) on SRE16

baseline attn-1 attn-2 attn-5
Cantonese

10s-20s 6.95 6.84 6.22 5.91
20s-40s 5.37 5.29 4.73 4.52
40s-60s 4.39 3.98 3.91 3.83
Tagalog
10s-20s 18.21 17.51 17.55 17.10
20s-40s 14.84 13.89 13.98 13.86
40s-60s 13.50 12.83 12.37 12.24

Table 3: DCF16 on SRE16

baseline attn-1 attn-2 attn-5
Cantonese

10s-20s 0.530 0.485 0.492 0.474
20s-40s 0.432 0.388 0.383 0.383
40s-60s 0.360 0.323 0.324 0.319
Tagalog
10s-20s 0.837 0.820 0.829 0.828
20s-40s 0.775 0.739 0.738 0.735
40s-60s 0.700 0.656 0.675 0.666

ing duration. If more data are available so that we do not need
to chunk the data, even better performance may be achieved.

5. Conclusion
We propose a new method to extract speaker embeddings for
text-independent speaker verification by introducing a self-
attention mechanism into DNN embeddings. The new speaker
embeddings are evaluated on SRE16, which is a challenging
task since there is a language mismatch between the predomi-
nately English training data and the Cantonese or Tagalog eval-
uation data. We find that the proposed self-attentive speaker em-
bedding outperforms a traditional i-vector system and a strong
DNN embedding baseline when tested on utterances of differ-
ent lengths. By increasing the number of attention heads, con-
sistent improvement is further obtained. We believe the training
strategy with chunks of speech segments may not be optimal
for self-attention mechanism. In the future work, we will mod-
ify the training strategy and try on larger training corpus. We
will also investigate different penalty terms for multi-head at-
tention.
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