IMPROVING LF-MMI USING UNCONSTRAINED SUPERVISIONS FOR ASR
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ABSTRACT

We present our work on improving the numerator graph for
discriminative training using the lattice-free maximum mu-
tual information (MMI) criterion. Specifically, we propose a
scheme for creating unconstrained numerator graphs by re-
moving time constraints from the baseline numerator graphs.
This leads to much smaller graphs and therefore faster prepa-
ration of training supervisions. By testing the proposed un-
constrained supervisions using factorized time-delay neural
network (TDNN) models, we observe 0.5% to 2.6% relative
improvement over the state-of-the-art word error rates on var-
ious large-vocabulary speech recognition databases.

Index Terms— lattice-free MMI, ASR, supervision, nu-
merator graph.

1. INTRODUCTION

Maximum mutual information (MMI) is a commonly used
objective function in automatic speech recognition (ASR) for
sequence-discriminative training of acoustic models (AM).
Unlike the maximum likelihood (ML) objective function
which only maximizes the likelihood of the reference word
sequence (usually represented by a composite hidden Markov
model), MMI aims to maximize that likelihood while also
minimizing the likelihood of all wrong word sequences. The
composite hidden Markov model (HMM) graph is usually
called the numerator graph in the context of MMI. The set of
all word sequences is ideally represented by a denominator
HMM graph which encodes all possible sequences of words.
However, usually approximations are used instead of a full
denominator graph as it can make the computations slow. Tra-
ditionally n-best lists (i.e., a list of top wrong word sequences)
and later, lattices were used to approximate the denominator
graph [1][2]. The denominator lattices are generated using a
previously trained model such as a cross-entropy model (e.g.,
CD-HMM-DNN [3]) or a Gaussian-mixture-model (GMM)
based model. A denominator lattice compactly encodes a
small set of likely alternative word sequences for a training
utterance. Using a full denominator graph was investigated in
[4] with HMM-GMM models.

Recently, the lattice-free MMI (LF-MMI) approach was
proposed in [5], which uses a full denominator graph with
deep neural network (DNN) based models. LF-MMI is ba-
sically the same as lattice-based MMI but uses a special nu-
merator graph (which exploits alignment information) and a
common denominator graph (instead of utterance-specific lat-
tices). The derivatives for the LF-MMI objective function are
computed by doing two forward-backward passes: one on the
numerator graph and one on the denominator graph. To make
the denominator forward-backwards efficient and fast, three
main techniques are used in LF-MMI: (a) all utterances are
split to fixed 1.5-second chunks (using the alignment informa-
tion) and training is done on minibatches of these chunks. (b)
the denominator graph is created using a pruned phone-level
(instead of word-level) language model trained on the align-
ments from a previous HMM-GMM model. (c) the denom-
inator computations are done on graphics processing units
(GPU) instead of CPUs.

The numerator graph used in LF-MMI (which encodes the
supervision information) is a special acyclic graph (i.e., a lat-
tice), which can exploit the alignment information from a pre-
vious HMM-GMM model as time constraints on the phones.
More specifically, the numerator graph is a finite state accep-
tor (FSA) where each phone can occur a certain number of
frames sooner or later than its occurrence time in the corre-
sponding alignment. Similar ideas were used in the context
of CTC to reduce decoding latency [6].

In this study we propose unconstrained supervisions for
LFE-MMI. Specifically, we relax the supervision time con-
straints in each chunk, so that the numerator graph is not
acyclic anymore (it will have self-loops). This provides more
freedom in each chunk. We try this approach using the re-
cently proposed state-of-the-art TDNN-F models [7] and
show improvements on certain databases. We also show 2x
speed-up in preparing supervisions for DNN training using
this approach.

Two prior studies [8, 9] performed HMM-DNN training
without using alignments from a GMM system (i.e., GMM-
free training), showing improvements over baseline models.
However, note that in our proposed method, we still use the
alignments obtained from a previously trained system in order
to be able to split the training utterances into equal-duration



Fig. 1. Part of a time-enforcer FSA. {a?, o}, ..., 7'} is the
set of pdf-ID’s that are allowed at time-index ¢. This FSA is
created on-the-fly.

(e.g., 1.5 second) chunks. The difference with our previous
work on LF-MMI is that we now do not enforce time con-
straints within those chunks. The flat-start version of LF-
MMI where no alignment information is used at all (i.e., the
utterances are not split and there are no time constraints) was
investigated in [10].

The rest of this paper is as follows. The baseline method
for acquiring the time-constrained supervisions is explained
in Section 2. In Section 3, we describe the proposed uncon-
strained supervisions. The experimental setup is explained in
Section 4 and results are presented in Section 5. Finally the
conclusions will appear in Section 6.

2. CONSTRAINED SUPERVISION

Since MMI training is well-known (for example see [11],
[12]), we will not present equations for it and we will focus
on the supervision creation process. In LF-MMI, the super-
visions for a training utterance are created as follows: First,
a lattice alignment of the utterance (containing alternative
paths) is generated using a previously trained HMM-GMM
model. Timing information of the phones are extracted from
this lattice, in the form of a frame-by-frame mask which in-
dicates what phones are allowed to appear on which frames
with a tunable tolerance parameter (e.g., a tolerance of 5
frames). A time-enforcer FSA is created using this mask,
where there is a transition from state ¢ to ¢ + 1 with a par-
ticular pdf-ID (i.e., senone ID) on it, if that pdf-ID is from
a phone that is allowed on the tth frame. For illustration,
part of a time-enforcer FSA is shown in Fig. 1. Then a
composite HMM graph is created from the transcription (e.g.,
the kind of composite graph that is used in HMM-GMM
training). This graph is converted to an FSA with pdf-ID as
arc labels. Next, this composite HMM is composed with the
time-enforcer FSA. This step will remove all the self-loops
in the composite HMM, expanding them according to the
timing information. Therefore, the resulting numerator FSA
can be topologically sorted so that each state can be identified
with a time-index. This allows splitting the supervision into

chunks. Finally, this FSA (which is for the whole utterance)
is split into fixed-size chunks. A sample numerator graph for
a small 48-frame chunk is shown in Fig. 2. Since we use
a frame-subsampling factor of 3, all paths in this FSA have
a length of 16 arcs. Also note that to save space, we have
used a tolerance of 3 for generating this FSA (we use 5 in
experiments). We can see the expansion of self-loops, e.g.,
the run of states with pdf-ID 1737. This will be more clear
when we compare with the unconstrained version of this FSA
in Section 3.

Before the numerator graphs are used in training, there is
one more step which is related to graph weights. As explained
in [5], all numerator graphs are composed with the denomina-
tor graph to normalize the weights. This ensures that the MMI
objective function values are never greater than zero. Addi-
tionally, the numerator graphs can benefit from the phone-
level language model weights in the denominator graph.

Note that if we directly use the composite HMM (with-
out composing with the time-enforcer FSA or splitting up) as
supervision, this will lead to flat-start (i.e., from scratch) LF-
MMI training [10][13].

3. PROPOSED UNCONSTRAINED SUPERVISION

In this study, we propose to relax the time constraints in each
chunk. This is done as follows. All the steps in the baseline
approach (as explained in Section 2) are performed, except
for the fact that we use transition-ID’s (i.e., non-tied HMM
states) as the arc labels (instead of pdf-ID). To remove the
time constraints from a chunk FSA, we first remove all arcs
which their transition-ID indicates them as a self-loop (i.e.,
any arc that is an expanded version of the original self-loops
in the composite HMM). Exceptions are the arcs that orig-
inate from the first state of the FSA. The reason for allow-
ing them on the first frame, if they were already there, is be-
cause we want to allow phones to be cut in half on chunk
boundaries. We do not have to do anything special on the last
frame. Next, we add the self-loops to the FSA (according to
the phone HMM topology and the transition-ID’s on the arcs).
Finally, all the transition-ID’s are mapped to pdf-ID’s. A sam-
ple unconstrained numerator FSA (corresponding to the same
FSA in Fig. 2) is shown in Fig. 3. It can be seen that this
numerator graph is considerably smaller than the constrained
version shown in Fig. 2. This leads to substantial speed-ups in
the final step of generating training examples, which is com-
posing the numerator graphs with the denominator graph to
normalize the transition weights (as explained in Section 2).
By comparing Figs. 2 and 3, we can see how much different
self-loops have been expanded.

To summarize, the unconstrained numerator graph de-
scribed above allows all the phone sequences that the align-
ment allows up to a tolerance, without containing any timing
information (i.e., without enforcing any state-level align-
ment). However, this approach cannot be considered com-



Fig. 2. Constrained numerator graph for a 48-frame chunk using tolerance = 3.

Fig. 3. Unconstrained numerator graph for a 48-frame chunk.

pletely unconstrained since we are still splitting the whole
utterance to small chunks, i.e., we are globally enforcing con-
straints but locally inside the chunks there is no constraint.
Note that we can’t skip the lattice generation and the time-
enforcer composition steps because otherwise we will not be
able to split the utterances into chunks.

To compare this approach with flat-start LF-MMI, we can
roughly consider them equivalent if the training data was al-
ready segmented to very short segments (e.g., 1.5 seconds).

4. EXPERIMENTAL SETUP

We use the open-source speech recognition toolkit Kaldi to
run the experiments. The experiments presented in this pa-
per are reproducible using this toolkit. We do most of our
experiments on the 300-hour Switchboard database [14]. We
evaluate on the Hub5 ’00 set (also known as eval2000) and the
RTO3 test set. We also present results on TEDLIUM v2 [15],
Wall Street Journal (WSJ) [16], AMI [17] and Librispeech
[18].

4.1. Factorized TDNN

For the neural network, we use a factorized TDNN model. A
factorized TDNN has a similar structure as a vanilla TDNN,
except the weight matrices (of the layers) are factorized (using
SVD) into two factors, with one of them constrained to be
semi-orthonormal [7].

Constrained | Unconstrained
Chunk size
(seconds) 1.5 1.5 3.0
eval2000 13.1 12.8 129
RTO03 154 150 15.1

Table 1. Impact of chunk size. Word error rates (in %) are
shown for 2 test sets on the 300-hour Switchboard task.

In the experiments, we use exactly the same network
and hyper-parameters for comparing constrained and uncon-
strained supervisions.

5. RESULTS

5.1. Impact of chunk length

Since regular LF-MMI supervisions are constrained, the fi-
nal word error rates are not affected by chunk size. However,
chunk size can impact the training process for the proposed
unconstrained supervisions. Table 1 shows the results of us-
ing unconstrained supervisions on the 300-hour Switchboard
task for two different chunk sizes. We see a slight degrada-
tion when using a larger chunk size (i.e., 3 seconds). That is
expected, because of the extra freedom (and therefore uncer-
tainty) in each chunk.

5.2. Noisy data

Table 2 shows the effect of using unconstrained supervisions
on AMI - single distant microphone (SDM) case — which
is a noisy database. We can see the relative improvements
(in the first 2 rows) are small. Also, the last two rows show
a case where we use a HMM-GMM model trained on the in-
dividual headset microphones (IHM) training data to get the
lattice alignments for LF-MMI supervisions. Clearly, these
alignments are better; however, it seems that in this case, re-
moval of alignment information from the numerator graphs
has degraded the word error rate; perhaps because they pro-
vide a good starting point.



Constrained Unconstrained

dev 371 36.8
AMI-SDM eval 40.7 40.5

. dev 35.9 36.2
AMI-SDMIHM-ali- o 39 7 40.0

Table 2. Effect of unconstrained supervisions on word error
rates (in %) for noisy data (AMI). IHM-ali means the align-
ments for creating supervisions are based on IHM data.

Constrained Unconstrained

Supervision  Switchboard 278 135
prep time AMI-SDM 885 254
Training time Switchboard 99 110
AMI-SDM 116 81
Overall Switchboard  15.1 hr 16.5 hr
training time  AMI-SDM 5.8 hr 4.4 hr

Table 3. Comparing supervision preparation and DNN train-
ing speed with constrained and unconstrained graphs. The
timings shown are for processing 10,000 chunks (each chunk
having 150 frames) in seconds, except for the last two rows
which show the overall training time (using 8§ GPUs).

5.3. Impact on speed

As explained in Section 2, using constrained supervisions
leads to much smaller graphs which reduces disk usage
and speeds up composition with the denominator graph (for
weight normalization). As a result, we can prepare the super-
visions in less time. Timing information is shown in Table
3 for Switchboard and AMI. We see 2x speed-up in prepar-
ing supervisions for Switchboard and almost 4x speed-up
for AMI-SDM. The reason for achieving larger speed-ups
on AMI, is that the aligned lattices are much bigger com-
pared to Switchboard due to noise. In other words, there are
many more alternative paths in the numerator graph resulting
in bigger constrained graphs, which in turn lead to slower
composition with the denominator graph.

The unconstrained graphs also have an effect on training
speed. That is because in the constrained case, each state is
active at exactly one time-index and we can take advantage of
this to do forward-backward in O(NN) where N is the num-
ber of arcs in the constrained graph. By comparison, in the
unconstrained case we need to do a full forward-backward,
which may or may not be slower depending on the size of the
constrained graph. For example, as shown in Table 3, training
is almost 10% faster using the constrained setup for Switch-
board, while for AMI (which is a noisy database) the uncon-
strained graphs lead to almost 30% speed-up in training.

5.4. Results on various databases

Finally, Table 4 summarizes the results of using unconstrained
supervisions on various databases. We can see improvements

Test-set  Constr. Unconstr. Rel.

dev 37.1 36.8 0.8%

AMISDM 407 405  05%
. eval2000 13.1 12.8 2.3%
Switchboard B3 154 150  2.6%
dev 7.4 7.3 1.4%

TEDLIUM test 7.7 7.6 1.3%
dev 33 33 0%

o dev-other 8.8 8.7 1.1%
Librispeech test 38 38 0%
test-other 9.0 8.8 2.2%

dev93 4.3 4.4 2.1%

wsJ eval92 2.5 2.5 0%
Mini-librispeech dev 8.5 8.6 -1.1%

Table 4. Summary of results on various databases. Last col-
umn shows the relative improvement in word error rates.

in word error rate in most cases, with relative improvements
ranging from 0.5% (on AMI-SDM) to 2.6% (on Switch-
board). Although the improvements are small, they are
consistent. On WSJ and mini-librispeech (which is a sub-
set of Librispeech with 5.3 hours of training data'), there is
either no improvement or some small degradation. Part of
the reason could be that for small data, the constraints from
the GMM system help because the DNN can overfit to the
training data too much and learn bad alignments. We also
see improvements on Librispeech — which is a large database
(1000 hours) — especially on the harder test sets (“dev-other”
and “test-other”). This is particularly useful, because the
gains from supervision preparation speed-up are more signif-
icant on larger databases.

6. CONCLUSIONS AND FUTURE WORK

In this study, we investigated the effect of removing time con-
straints from the MMI supervisions (specifically from the nu-
merator graphs of the chunks) for large vocabulary speech
recognition. This should not be confused with flat-start LF-
MMI, where there is no constraint at all; here we still use the
alignments from a previously trained model to split the utter-
ances into small chunks; the difference however is that there
are no constraints inside the chunks. Through experiments
on various databases, we showed that the proposed uncon-
strained supervisions slightly improve the word error rate in
most cases, and more importantly they are faster to prepare.
In particular, we observed 2x and 4x speed-up in preparing su-
pervisions for the Switchboard and AMI tasks, respectively.
We also observed slight degradations in word error rate on
smaller databases, which could be due to over-fitting.

A potential future work is to investigate creating super-
visions using a simple alignment (which contains a single

't is accessible from http://openslr.org/31/.



path only) instead of a lattice alignment. This can further
speed up supervision preparation; however, preliminary ex-
periments have shown some degradation in word error rate.
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