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ABSTRACT

These are some notes on how to backprop through a special type of

matrix function that’s based on applying a scalar function to the sin-

gular values of a matrix and reconstructing. This type of problem

arises when estimating fMLLR transforms with spherical or unit co-

variance matrices. This document is not about finding derivatives

w.r.t. the SVD operation itself.

Index Terms— SVD, derivatives

1. INTRODUCTION

We are interested in the matrix-valued function F (A), operating on

real-valued square matrices, that applies a scalar function f(λ) to

the singular values of that matrix. We’ll assume that the scalar f(λ)
is defined, and differentiable, for λ ≥ 0. To establish notation, if A

may be singular-value decomposed as:

A = UΛV
T

(1)

(with, of course, U and V orthogonal and Λ diagonal and nonnega-

tive), then

F (A) = UF (Λ)VT
(2)

where F (Λ) is computed by applying the scalar function f(·) to

the diagonal elements of Λ. TODO: we’d like to establish under

exactly what conditions this function is well-defined... I believe it’s

necessary that either f(0) = 0, or for all the singular values of A be

positive.

2. DERIVING THE DERIVATIVE COMPUTATION

This section contains the derivation of our method to compute the

derivatives. If you just want a how-to, please skip to the Summary

(next section).

We want to backprop through F (A). Suppose we are trying to

find the derivative of a scalar function g that depends on F (A). Let

us use the notation X̄ for the derivative of g w.r.t. a matrix X, and

we’ll use a notation where the i, j’th element of X̄ is the derivative

of g w.r.t. the i, j’th element of X (i.e., there is no transpose).

Suppose we are interested in the derivatives around a particular

value of A, then we’ll first do the SVD

A = UΛV
T

(3)

and, defining

D = F (Λ), (4)

where F (·) above reduces to applying f(·) on the diagaonal ele-

ments, we compute the output B = F (A) as:

B = UDV
T

(5)

Our method of computing the derivatives here is to treat U and V as

constants (like a change of variables) but to treat Λ as a matrix that

is not necessarily diagonal. Getting the derivative D̄ fairly straight-

forward. The nontrivial part is finding the derivatives for Equation 4,

including the case where Λ has small nonzero elements off the diag-

onal.

When we change a diagonal element of Λ it will only affect

the corresponding diagonal element of D. When we change an off-

diagonal element λi,j of Λ by a small amount, it only has the poten-

tial to affect the four elements λi,j , λj,i, λi,i and λj,j ; and, as we

will see below, it actually only affects the off-diagonal ones.

First, to state the obvious: for the diagonal elements,

∂di,i

∂λi,i

= f
′(λi,i). (6)

2.1. Derivatives of off-diagonal elements (different singular val-

ues)

To analyze the derivatives for the off-diagonal elements, we can con-

sider the case of a 2 by 2 matrix, since if we are changing one off-

diagonal element we could always reorder the dimensions to make

those two dimensions adjacent, and the other dimensions are irrele-

vant.

Let’s consider the matrix

M =

(

a δ
0 b

)

, (7)

with δ assumed to be small, a ≥ 0, b ≥ 0 and a 6= b.

To apply the function F (M), we need to diagonalize M by mul-

tiplying by orthogonal matrices on the left and right; we can treat

these orthogonal matrices as elements of the SVD of M. Since M

is already close to being diagonal, we will multiply it by expressions

of the form

(

1 ǫ

−ǫ 1

)

, you can verify that (ignoring ǫ2), matrices

of this form are orthogonal.

We’ll try to solve the equation

U
T
MV = diagonal (8)

which will immediately give us the SVD of M. We’ll let UT =
(

1 ǫ1
−ǫ1 1

)

and V =

(

1 ǫ2
−ǫ2 1

)

. Multiplying out UT
MV

and ignoring products of “small” terms δ with ǫ, we get:
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(

1 ǫ1
−ǫ1 1

)(

a δ

0 b

)(

1 ǫ2
−ǫ2 1

)

≃
(

a δ + ǫ2a+ ǫ1b

−ǫ1a− ǫ2b b

)

(9)

(TODO: obviously need to make this more rigorous, with o(δ2) and

so on). Because we want to diagonalize M, we want to equate (9)

with

(

a 0
0 b

)

. That implies that we need to solve the following

two equations:

−ǫ1a− ǫ2b = 0 (10)

δ + ǫ2a+ ǫ1b = 0 (11)

From (10), we have ǫ1 = − b
a
ǫ2; substituting that into (11), we get

ǫ2 =
−δa

a2 − b2
(12)

and then:

ǫ1 =
δb

a2 − b2
. (13)

We can write, again being a bit sloppy,

M ≃ U

(

a 0
0 b

)

V
T

=

(

1 −ǫ1
ǫ1 1

)(

a 0
0 b

)(

1 −ǫ2
ǫ2 1

)

(14)

After applying f(·) to the singular values, we can get N = F (M)
as:

N = F (M)

≃ U

(

f(a) 0
0 f(b)

)

V
T

=

(

1 −ǫ1
ǫ1 1

)(

f(a) 0
0 f(b)

)(

1 −ǫ2
ǫ2 1

)

≃
(

f(a) −ǫ2f(a)− ǫ1f(b)
ǫ1f(a) + ǫ2f(b) f(b)

)

, (15)

where in (15) we are again ignoring terms that are products of ep-

silons. Notice that, in the case where f is the identity function, (15)

reduces to

(

a δ

0 b

)

, which is expected because then N = M.

The top-right element in (15), divided by δ, is the derivative of

n1,2 w.r.t. m1,2:

∂n1,2

∂m1,2

=
−ǫ2f(a)− ǫ1f(b)

δ
(16)

=
af(a)− bf(b)

a2 − b2
. (17)

Doing the same procedure for the lower-right element in (15), we

get:

∂n2,1

∂m1,2

=
ǫ1f(a) + ǫ2f(b)

δ
(18)

=
bf(a)− af(b)

a2 − b2
. (19)

It is reassuring to notice that if f(·) is the identity function, then (17)

reduces to 1 and (19) to 0.

2.2. Derivatives of off-diagonal elements (identical nonzero sin-

gular values)

The expressions in (17) and (19) are not defined where a = b. Here

we figure out the value in this case by finding the limiting value of

those expressions as a and b approach each other. This is a rather

sloppy way to do it; we’ll explain below how we could derive it

more correctly using the SVD.

If a and b are very close, then let us write b = a+δ (note: this is

a different δ than before), and f(b) = f(a)+δf ′(a). Remembering

that a2−b2 factorizes as (a−b)(a+b), and again ignoring products

of deltas, we get that for b = a+ δ,

∂n1,2

∂m1,2

=
af(a)− (a+ δ)(f(a) + δf ′(a))

(a− (a+ δ))(a+ (a+ δ))
(20)

≃ −δ(f(a) + af ′(a))

−2δa
(21)

=
af ′(a) + f(a)

2a
(22)

and:

∂n2,1

∂m1,2

=
(a+ δ)f(a)− a(f(a) + δf ′(a))

(a− (a+ δ))(a+ (a+ δ))
(23)

≃ δ(f(a)− af ′(a))

−2δa
(24)

=
af ′(a)− f(a)

2a
(25)

2.2.1. Sketch of more correct derivation

This is a sketch of how we could derive the expressions above more

properly. Basically, matrices of the form

(

a δ
0 a

)

appear to have

singular value decompositions of the form:

(

a δ

0 a

)

=

( √
2

√
2√

2 −
√
2

)(

1 + δ
2

0
0 1− δ

2

)( √
2

√
2√

2 −
√
2

)

(26)

and we believe we can probably use this fact to obtain those same

expressions.

2.3. Derivatives of off-diagonal elements (pairs of zero singular

values)

The approach above doesn’t work when both identical singular val-

ues are zero. We need to remind the reader that unless f(0) = 0, this

type of function is not well defined (since the SVD of a zero matrix

can use arbitrary orthogonal matrices for U and V. So our approach

will only be valid for f(0) = 0. For sufficiently small matrices, the

function F (A) equals f ′(0)A+O(ǫ2), which (ignoring the smaller

term) is just multiplication by a scalar. So, using notation similar to

the above, if a = b = 0 (i.e. m1,1 = m2,2 = 0), then

∂n1,2

∂m1,2

= f
′(0) (27)

∂n1,2

∂m2,1

= 0. (28)
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3. SUMMARY

In this section we present the backprop for this function as a “how-

to”. The idea is that you should be able to read this section indepen-

dently of the derivation above.

3.1. Forward pass

We are given square real matrix-valued input A and a scalar function

f(·) defined and differentiable for positive real input. We compute

B = F (A) by doing the singular value decomposition:

A = UΛV
T

(29)

with U and V orthogonal and Λ diagonal with positive diagonal

elements, then compute:

D = F (Λ) (30)

where in this case F (·) just means applying the scalar function f(·)
to the diagonal elements; and we’ll output the following expression:

B = F (A) = UDV
T
. (31)

3.2. Backward pass

We are doing backprop the derivatives of g, and we are given B̄ =
∂g

∂B
. The notation we’ll use is that the i, j’th element of B̄ is the

derivative of g w.r.t. the i, j’th element of B (i.e. there is no trans-

pose). Our aim is to compute Ā, which is the derivative of g w.r.t.

A.

We compute the quantity:

D̄ = U
T
B̄V (32)

and the next step is to compute Λ̄ from D̄; this is the derivative of

g w.r.t. Λ, not making the assumption that Λ is constrained to be

diagonal.

For notation: let λi be the i’th diagonal element of Λ, and di be

the i’th diagonal element of D = F (Λ).
We compute Λ̄ as follows. First, for the diagonal elements, set:

λ̄i,i = f
′(λi)d̄i,i (33)

Then, for each i 6= j, we do as follows. If λi is not extremely close

to λj (e.g. they differ by more than 10−7 relatively), then set:

λ̄i,j = d̄i,j
λidi − λjdj

λ2

i − λ2

j

+d̄j,i
λjdi − λidj

λ2

i − λ2

j

, (34)

where the two terms in (34) correspond to Equations 17 and 19 re-

spectively. On the other hand, if λi and λj are extremely close but

nonzero, then with λ = 1

2
(λi + λj) and d = 1

2
(di + dj), let:

λ̄i,j = d̄i,j
λf ′(λ) + d

2λ

+d̄j,i
λf ′(λ)− d

2λ
(35)

The two terms in (35) correspond to (22) and (25) respectively.

If λi and λj are both zero, then let:

λ̄i,j = d̄i,jf
′(0) (36)

but note that this expression is only applicable if f(0) = 0. Other-

wise, such derivatives would be undefined and it might make sense

to report an error.

Once the derivative Λ̄ is obtained as described above, we can

compute our answer:

Ā = UΛ̄V
T
. (37)
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