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Abstract
We present a condensed description of the joint effort of JHU-
CLSP, JHU-HLTCOE, MIT-LL., MIT CSAIL and LSE-EPITA
for NIST SRE18. All the developed systems consisted of x-
vector/i-vector embeddings with some flavor of PLDA back-
end. Very deep x-vector architectures–Extended and Factor-
ized TDNN, and ResNets– clearly outperformed shallower x-
vectors and i-vectors. The systems were tailored to the video
(VAST) or to the telephone (CMN2) condition. The VAST
data was challenging, yielding 4 times worse performance than
other video based datasets like Speakers in the Wild. We were
able to calibrate the VAST data with very few development tri-
als by using careful adaptation and score normalization meth-
ods. The VAST primary fusion yielded EER=10.18% and Cpri-
mary=0.431. By improving calibration in post-eval, we reached
Cprimary=0.369. In CMN2, we used unsupervised SPLDA
adaptation based on agglomerative clustering and score normal-
ization to correct the domain shift between English and Tunisian
Arabic models. The CMN2 primary fusion yielded EER=4.5%
and Cprimary=0.313. Extended TDNN x-vector was the best
single system obtaining EER=11.1% and Cprimary=0.452 in
VAST; and 4.95% and 0.354 in CMN2.

1. Introduction
The National Institute of Standards and Technology (NIST) reg-
ularly conducts speaker recognition evaluations (SRE) to assess
the state-of-the-art of the technology [1]. These evaluations fo-
cus on the speaker detection task, i.e., given one or more enroll-
ment recordings and a test recording, we need to decide whether
the enrollment speaker is also present in the test. Along the
years, NIST has been increasing the difficulty of the evaluation
conditions. First SRE campaigns were only centered on tele-
phone conversational speech [2, 3]. In SRE08-12, NIST intro-
duced far-field microphone interview speech [4, 5, 6]. SRE16
brought significant changes [7]. Although it focused again on
telephone speech; for the first time, the data was non-English
speech collected outside North America. This was a major dif-
ficulty since the training data was mainly English speech col-
lected in the US. Just a small amount of unlabeled adaptation
data was provided to correct distribution shift due to language
and channel mismatch. For SRE18 [8], NIST decided to main-
tain the non-English condition. This time, they selected Ara-

bic language collected in Tunisia through PSTN and VoIP net-
works. Furthermore, NIST added a new condition including
speech from amateur Internet videos (VAST) [9]. As conse-
quence, VAST spans a wide range of quality levels, including
noise, reverberation and other artifacts that complicate speaker
verification. These recordings usually contain multiple speakers
so diarization was required to isolate the speaker of interest.

In this paper, we analyze the JHU-MIT submission to NIST
SRE18. This is the joint effort of teams at Johns Hopkins
CLSP and HLTCOE, MIT Lincoln Laboratory, MIT CSAIL
and LSE-EPITA. All our systems consisted of a neural net-
work (a.k.a. x-vector) [10] or i-vector [11] embedding followed
by some form of PLDA [12] back-end. We explored several
types of x-vectors differing in network topology and pooling
methods. We tested TDNN [7, 10], E-TDNN [13], factorized
TDNN [14], and ResNet (2D convolutions) [15] topologies.
We also tested mean plus standard deviation; learnable dictio-
nary encoder (LDE) [16] and multi-head attention pooling. We
adapted the back-ends to the video condition or to the Arabic
telephone condition. Primary submissions were a fusion of Ex-
tended TDNN, Factorized TDNN and ResNet x-vectors; while
the best single system was JHU-HLTCOE E-TDNN x-vector.
These systems can be considered the current state-of-the-art in
text-independent speaker recognition technology.

The rest of the paper is organized as follows. Section 2 de-
scribes the training, development and evaluation data. Section 3
describes the acoustic features and VAD. Section 4 discusses
the x-vector variants. Section 5 describes the PLDA back-ends.
Section 6 describes the diarization. Section 7 summarizes the
calibration, fusion and submissions. Section 8 presents and an-
alyzes the results. Finally, Section 9 shows the conclusions.

2. Datasets
2.1. Evaluation data

NIST SRE18 consisted of two conditions. On the one hand, we
had telephone speech in Tunisian Arabic recorded in Tunisia
from the Call My Net 2 corpus (CMN2). Given that most train-
ing data available is English recorded in the US, this condition
is most challenging. On the other hand, we had speech from
internet videos extracted from the VAST corpus. These are am-
ateur videos so a wide range of acoustic conditions may be ex-
pected. Also, videos may contain multiple speakers, so diariza-
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tion is needed to isolate the target speaker. In the enrollment
side, ground truth diarization marks were provided.

2.2. Training data

The datasets used for training included Switchboard phase1-
3 and cellular1-2; NIST SRE04-10 as prepared by the
SRE16 Kaldi recipe1; NIST SRE12 telephone data (SRE12-
tel) and phone-calls recorded through far-field microphone
(SRE12-micphn); MIXER6 telephone (MX6-tel) and micro-
phone phone-calls (MX6-micphn); VoxCeleb 1 and 2 where
we concatenated the segments belonging to the same original
video into a unique segment (VoxCelebCat); and Speaker in
the Wild dev core (single speaker segments) (SITW-dev-core).
Using concatenated VoxCeleb helps to balance the weight of
each video in the x-vector training and avoids including within-
session variability in the within-class covariance of the PLDA.

We built 8 kHz and 16 kHz versions of our systems. For
the 8 kHz systems, the HLTCOE team trained x-vectors us-
ing Switchboard, SRE04-10 and VoxCelebCat; and the rest of
teams–denoted from now on as CLSP-MIT– used all the above
datasets. Datasets originally at 16 kHz were downsampled to
8 kHz. For the 16 kHz systems, the HLTCOE team used just
VoxCelebCat while the CLSP-MIT teams also used microphone
data form SITW-dev-core, MIXER6 and SRE12. In total, we
used around 13K speakers for 8kHz and 7.5K speakers for 16
kHz. This data was augmented with noise, babble and music
from the MUSAN corpus2; and reverberation from the Aachen
impulse response database (AIR)3. JHU-HLTCOE used MX6-
micphn instead of MUSAN to create babble noise and it also
used codecs on VoxCeleb to simulate GSM phone encoding4.

To train PLDA for the telephone condition, we took the
NIST SRE telephone utterances from the x-vector training lists
(∼4.5K speakers). For the video condition, we took just the 16
kHz utterances(∼7K speakers).

Other datasets were used for back-end adaptation and
score normalization. They are SITW-dev-core; SITW-dev-
test-diarized (Segments obtained from diarizing the SITW
dev multi-speaker recordings); SRE18-dev-unlabeled (Tunisian
Arabic data with telephone number labels but not speaker la-
bels); and SRE18-dev-VAST-diarized (Segments obtained from
diarizing the SRE18 development VAST data). SRE18-dev-
unlabeled was used for centering, PLDA adaptation and score
normalization for the telephone condition. SITW-dev-core plus
SITW-dev-test-diarized, denoted as SITW-dev-diar, were used
to center the SITW eval set; and SITW-dev-diar plus SRE18-
dev-VAST-diarized, denoted as SITW-SRE18-dev-diar, were
used to center SRE18 VAST and for score normalization of the
video condition.

2.3. Development data

The development datasets were used to train fusion and cali-
bration; and measure performance. For the CMN2 condition,
we used the development set provided by the organizers. For
the VAST condition, the development set provided by the or-
ganization was too small (only 270 trials) to provide reliable
performance estimation. Also, there were only around 2-3 false
alarm errors at the PT = 0.05 operating point, which was not
enough to train calibration. Thus, we decided to use the SITW

1https://github.com/kaldi-asr/kaldi/blob/master/egs/sre16/v2
2http://www.openslr.org/resources/17
3http://www.openslr.org/resources/28
4http://www.3gpp.org/ftp/Specs/archive/26 series/26.073/26073-

800.zip

eval core-multi condition, which also consists of speech from
video and also requires diarization on the test side.

3. Feature extraction
x-Vectors Systems based on time delay networks used 23
MFCC for 8KHz; and 30 (HLTCOE) or 40 MFCC (CLSP-MIT)
for 16 KHz. Systems based on ResNets used 23 and 40 log-
Mel filter-banks for 8 and 16 KHz respectively. i-vector sys-
tems added first and second derivatives to the MFCC. Features
were short-time centered before silence removal with a 3 sec-
onds sliding window. Most systems used Kaldi energy VAD.
Only 16 KHz systems based on F-TDNN x-vectors used a neu-
ral network VAD based on [17]. The system was trained on
NIST SRE10 corpus with added noise and reverberation.

4. x-Vector embeddings
Neural network embeddings (a.k.a. x-vectors) are obtained us-
ing a neural network trained to classify the speakers in the train-
ing set [7, 10]. x-Vector networks are divided into three parts.
First, an encoder network extracts frame level representations
from the acoustic features. This is followed by a global tempo-
ral pooling layer that produces a single vector per utterance. Fi-
nally, a feed forward classification network processes the pool-
ing vector to produce speaker class posteriors. Typically in the
evaluation phase, the x-vector is obtained from the first affine
transform after the pooling layer, while the last layers of the
network are discarded. Different x-vector systems are charac-
terized by different encoder architectures; pooling methods and
training objectives. Categorical cross-entropy is the usual x-
vector objective but we also tested angular softmax loss [18].
Angular softmax has stronger requirements for correct classi-
fication, which generates an angular classification margin be-
tween embeddings of different classes [16, 19].

4.1. Encoder Networks

4.1.1. TDNN
Time delay networks are the ones used in most x-vector pa-
pers [10] and was our baseline system. It was composed of two
time-delay layers (a.k.a 1D dilated convolutions) and two fully
connected layers. All layers had 512 channels except the last
one, which had 1500 channels. Time delay layers had kernel
sizes 5, 3 and 3; and dilation factors 1, 2 and 3 respectively.

4.1.2. E-TDNN
The Extended TDNN architecture (E-TDNN) [13] has slightly
wider temporal context w.r.t. the previous TDNN (due to and
extra time-delay layer), and interleaves dense layers in between
the convolutional layers (equivalent to the 1x1 convolutions
used in computer vision architectures). In summary, E-TDNN
had 1 time-delay layer with kernel 5 and 3 layers with kernel 3.
Dilation factors were 1, 2, 3 and 4 respectively. Each time-delay
layer was followed by a fully connected layer.

4.1.3. F-TDNN with skip connections
The factorized TDNN (F-TDNN) [14], reduces the number of
parameters of the network by factorizing the weight matrix of
each TDNN layer into the product of two low-rank matrices.
The first of those factors is constrained to be semi-orthogonal,
which helps to assure that we do not lose information when
projecting from the high dimension to the low-rank dimension.
The authors of [14] found that; instead of factorizing the TDNN
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layer into a convolution times a feed-forward layer; it is better
to factorize the layer into two convolutions with half the kernel
size. For example, instead of using context (-2, 0, 2) in the first
low-rank factor and no context in the second factor, it is better
to use context (-2,0) in the first factor and (0, +2) in the sec-
ond factor. We also introduced skip connections between the
low-rank interior layers of the F-TDNN. The prior layers were
concatenated to the input of the current layer, instead of added
like in ResNet [15].

In summary, our F-TDNN consisted of a TDNN layer of
kernel size 5 and 512 channels; 8 F-TDNN layers with 1024
channels and internal dimension 256; and a fully connected
layer with dimension 2048. The kernel sizes for F-TDNN layers
are (3,1,3,1,3,3,3,1), and the dilation factor is 3 for all of them
except the first one, which is 2. Layer 5 receives skip connec-
tions from layer 3; layer 7 from layers 2 and 4; and layer 9 from
layers 4, 6 and 8.

4.1.4. ResNet 2D
TDNN layers are replaced by a residual network with 2D convo-
lutions. We used a residual network with 34 layers (ResNet34)
as described in [15]. This was implemented in Pytorch while
the others were implemented in Kaldi.

4.2. Pooling Methods

The basic x-vector framework just compute the mean and stan-
dard deviation to obtain a single vector per utterance. Mean-
while, the learnable dictionary encoder (LDE) [20, 16] as-
sumes that frame level representations are GMM distributed in
C clusters and it learns a dictionary with the centers of those
clusters. The component posteriors are obtained as, wt,c =

exp(− 1
2
sc‖xt−µc‖2+bc)∑C

c=1 exp(− 1
2
sc‖xt−µc‖2+bc)

where sc is an isotropic precision;

and bc includes the log-weight and log-normalizing constant of
the Gaussian. Then, we compute a component dependent mean
ec and concatenate all ec to obtain a super-vector, which has
the same role as the super-vector mean in i-vectors. This super-
vector is projected to a lower dimension to obtain the final em-
bedding. This projection has the same role as the total variabil-
ity matrix in i-vectors.

We also tried multi-head attention, which is similar to LDE
but it normalizes the frame weights to sum up to one in the time
dimension, not in the GMM component dimension. It intends
to find the most important frames in the sequence.

5. Back-ends
The back-ends consisted of LDA dimension reduction to
200, centering, whitening, length normalization, PLDA and
score normalization. We tuned different back-ends for the
SITW/VAST condition and the CMN2 condition.

5.1. SITW/VAST

HLTCOE used full-rank PLDA while CLSP-MIT used simpli-
fied PLDA (150 eigenvoices). It was trained on data originally
at 16 kHz as described in Section 2.2. For HLTCOE, center-
ing was calculated given equal weight to the SITW-dev-diar
and SRE18-VAST-dev-diar sets. For CLSP-MIT, centering for
SITW dev/eval was calculated on SITW-dev-diar. Meanwhile,
the centering for VAST was MAP adapted from SITW-dev-diar
to SRE18-dev-VAST-diar with relevance factor r = 14. We
used diarization on the test recordings to obtain single speaker
segments. We scored the enrollment segment against all the di-

arization segments and selected the maximum score.
We observed better alignment between SITW and VAST

dev score distributions when using adaptive score normalization
(S-Norm) [12]. Thus, we expected to obtain better calibration
on the VAST eval using S-Norm, which was finally true. We
used adaptive S-Norm with SITW-SRE18-dev-diar as cohort.
HLTCOE used the 10% top cohort segments; CLSP-MIT used
500 top cohort segments for SITW eval and 120 for VAST.

5.2. CMN2

HLTCOE used the heavy-tail PLDA in [21]–no length normal-
ization was needed. CLSP-MIT used SPLDA or discriminative
PLDA (DPLDA). It was trained on SRE telephone data as de-
scribed in Section 2.2. On SRE18 CMN2, we used the center-
ing computed on the SRE18 unlabeled data. We adapted the
SPLDA to the SRE18 unlabeled data in two steps. First, we
adapted SPLDA using the telephone numbers in the meta-data
as speaker labels. Second, we used the adapted SPLDA to apply
agglomerative clustering (AHC) to the SRE18 unlabeled seg-
ments and obtain new speakers labels. Those labels were used
to adapt again the PLDA. The number of speakers for AHC was
tuned based on the SRE18 CMN2 dev Cprimary. The within-
class and between-class covariances of the adapted model were
a weighted sum of the out-of-domain Sout and in-domain Sin

covariances. Sadapt = αSin + (1 − α)Sout, with α = 0.3
for HLTCOE and α = 0.6 for CLSP-MIT. We used adaptive S-
Norm using SRE18 unlabeled as cohort. HLTCOE used the top
20% cohort segments and CLSP-MIT used 400 cohort segments
to compute the normalization parameters of each trial.

6. Diarization
For diarization of the video data, we used a similar setup to
the Kaldi x-vector callhome diarization recipe5, which is based
on [22]. We used E-TDNN (HLTCOE) or F-TDNN (CLSP-
MIT) x-vector to compute embeddings using a sliding window
with 1.5 seconds length and 0.75 seconds shift. We scored
all x-vectors in a given recording against each other and ap-
plied AHC on the score matrix. CLSP-MIT tuned the stop-
ping threshold for AHC to optimize performance on the SITW
eval sets. The HLTCOE team, in order to eliminate the AHC
threshold, assumed that there were never more than K = 3
speakers in an utterance, and perform clustering K times, with
k ∈ {1, 2, . . . ,K} clusters each time. Then, we use all the seg-
ments from those K clustering in the final PLDA scoring [13].

7. Fusion and Calibration
Fusion and calibration was performed using linear logistic re-
gression with the Bosaris toolkit [23]. To select the best fusion,
we implemented a greedy fusion scheme. First, we calibrated
all the systems and select the one with the lowest actual cost.
Then, we evaluated all the two-system fusions that include that
best system. Thus, we got the best two systems fusion. We fixed
those two systems and then add a third system, and so on. To
reduce the chances of over-fitting, we prioritized fusions with
only positive weights. For VAST, we trained fusion/calibration
on SITW eval-core multi. However, we observed a misalign-
ment between the non-target score distributions of SITW and
VAST dev. We tuned the weight of the VAST dev data in the
centering and score-normalization to realign those distributions

5https://github.com/kaldi-asr/kaldi/tree/
master/egs/callhome_diarization/v2
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Table 1: Results on SITW/VAST.
System SITW EVAL

CORE
SITW EVAL

CORE-MULTI SRE18 EVAL VAST

EER Min Cp EER Min Cp EER Min Cp Act Cp

Primary 1.53 0.097 1.82 0.105 10.18 0.358 0.431

E-TDNN-16k (COE) 1.99 0.138 2.26 0.135 11.11 0.402 0.452
TDNN-16k 3.4 0.185 3.86 0.191 12.06 0.468 0.578
F-TDNN-16k 1.89 0.124 2.33 0.135 12.06 0.388 0.474
ResNet-LDE-16k 2.16 0.136 2.63 0.145 10.79 0.412 0.516
TDNN-8k 3.58 0.197 3.93 0.206 12.93 0.431 0.596
F-TDNN-8k 2.6 0.15 2.94 0.161 12.57 0.383 0.519
ResNet-MHAtt-8k 2.69 0.154 2.99 0.165 11.97 0.407 0.51
i-vector-8k 8.22 0.384 8.67 0.386 20.32 0.543 0.75

F-TDNN-16k w/o S-Norm 1.61 0.12 2.01 0.133 11.49 0.426 0.645

Table 2: Results on CMN2.
Systems SRE18 DEV CMN2 SRE18 EVAL CMN2

EER Min Cp Act Cp EER Min Cp Act Cp

Primary 4.09 0.249 0.256 4.5 0.312 0.313
Primary post-eval 4.18 0.253 0.263 4.15 0.289 0.292

E-TDNN-8k-HTPLDA (COE) 4.55 0.298 0.312 4.95 0.352 0.354
TDNN-8k 5.76 0.384 0.392 6.68 0.446 0.447
F-TDNN-8k 5.19 0.345 0.357 5.14 0.357 0.359
ResNet-MHAtt-8k-SPLDA 5.46 0.326 0.34 5.64 0.392 0.395
ResNet-MHAtt-8k-DPLDA 5.64 0.319 0.337 6.81 0.499 0.524
i-vector-8k 10.37 0.664 0.685 11.85 0.723 0.725

expecting to obtain a better calibration on the VAST eval, which
actually worked. For CMN2, we just trained on the CMN2 dev.

The primary system for VAST fused F-TDNN 16kHz, F-
TDNN 8kHz, E-TDNN 16kHz and RestNet 8kHz with multi-
head attention; all using GPLDA. For CMN2, the primary
system fused E-TDNN 8kHz with HTPLDA, RestNet 8kHz
with multi-head attention and DPLDA and TDNN 8KHz with
SPLDA. As contrastive, we submitted the best single system
and the best fusions of 1, 2, 3,... systems; which we don’t dis-
cuss here because of the limited space.

8. Results and discussion
8.1. Evaluation results

Unless indicated otherwise in the tables, the systems used
CLSP-MIT training setup, generative GPLDA and adaptive S-
Norm. ResNet systems used angular softmax objective while
others used cross-entropy. Table 1 presents the results for
SITW/VAST. Performance was measured by EER and mini-
mum/actual Cprimary (Cp), which is the normalized detection
cost function (DCF) with target prior PT = 0.05. We omit
actual cost for SITW due to space constraints and because it is
nicely calibrated and it would be redundant to minimum cost.
We also omit the VAST dev because it is too small to produce
reliable results. For SITW eval, which was our dev set for VAST
condition, we draw several conclusions. Diarization performed
well since core-multi and core results were close. Best x-vector
systems were around 3 times better than i-vectors. Best sys-
tems were E/F-TDNN x-vector systems, closely followed by
the ResNet with LDE pooling. These deeper architectures per-
formed around 40% better than the shallower TDNN. As ex-
pected, 16kHz systems performed better than 8kHz systems
but the latter are still competitive in terms of Cprimary. The
primary fusion obtained a 25% gain w.r.t. best single system.
Some of these conclusions don’t apply to the VAST eval, evi-
dencing a significant mismatch between SITW and VAST. E/F-
TDNN and ResNets were still better than TDNN and i-vector
but the relative difference was smaller–17% and 30% in min.
Cp respectively. Also, x-vectors at 16kHz and 8kHz obtained
comparable minimum Cp, though systems at 16kHz were better
calibrated. Fusion gain was also smaller–8% and 5% relative

for min. and act. Cp. VAST calibration was good consider-
ing the big mismatch between SITW and VAST. The technique
of adding VAST dev data to the centering adaptation and score
normalization tuned to align SITW and VAST dev score dis-
tributions was effective. As comparison, we include F-TDNN
result without S-Norm, which yields much worse calibration.
However, there were still a margin of 11-19% relative between
min. and act. Cp.

Table 2 presents the results for SRE18 CMN2. Cprimary
is the average of DCFs at priors 0.01 and 0.005. Here, dev
and eval results were very correlated and obtained good calibra-
tion. Again, E/F-TDNN results were the best closely followed
by ResNet. E/F-TDNN were 50% better than i-vector and 20%
better than TDNN. For the ResNet system DPLDA was bet-
ter than SPLDA in dev so this system was included in the pri-
mary fusion. However, it didn’t perform well on the eval due
to over-fitting. By Replacing DPLDA by SPLDA in the post-
eval fusion, we obtained some improvement. Post-eval fusion
improved 17% w.r.t. best single system.

Due to space constraints, we don’t include the results of our
contrastive submissions with progressive best fusion of 2,3,...
systems. Those results showed a significant gain by fusing 2
systems, but the gain of fusing 3 or more systems was marginal.

8.2. Post-eval calibration for VAST

To improve VAST calibration, we tried to transform the SITW
target and non-target score distributions overlap with the SRE18
VAST dev score distributions. To do so, we adapted the mean
and variance of the SITW scores (µSITW, σ2

SITW) to VAST
(µVAST, σ2

VAST) using maximum a posteriori, obtaining µMAP,
σ2
MAP. Next, we transform the SITW scores sSITW with

sMAP =
σMAP

σSITW
(sSITW − µSITW) + µVAST . (1)

We applied this procedure separately to the SITW target
and non-target distribution. Finally, we use the adapted SITW
scores to train the calibration.

Applying this method, we obtained almost perfect calibra-
tion on VAST primary, E/F-TDNN systems, with actual Cp of
0.369, 0.409 and 0.402 respectively. For the F-TDNN with S-
Norm, we obtained actual Cp=0.471, which still has some gap
with the min. Cp. This indicates that combining S-Norm with
this calibration method was the best option.

9. Conclusions
We analyzed the JHU-MIT systems for NIST SRE18. The best
single systems were very deep x-vectors based on extended and
factorized TDNN architectures. Residual networks based on 2D
convolutions performed close to E/F-TDNN with the advantage
of having much less parameters. Shallower TDNN and i-vectors
performed significantly worse. We can say that the systems pre-
sented here show the current stat-of-the-art in speaker recogni-
tion evaluations. Primary fusions obtained improvements w.r.t.
single systems, although most of the gain came from the fu-
sion of two competitive systems. We noted significant mis-
match between our SITW development set and the VAST data.
We showed how to obtain good calibration using very small of
VAST dev data to align SITW and VAST score distributions.
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